Difference between revisions of "Team:IIT Kanpur/Model"

(Replaced content with "{{Template:IIT_Kanpur}} {{Template:IIT_Kanpur/Footer}}")
Line 1: Line 1:
 
{{Template:IIT_Kanpur}}
 
{{Template:IIT_Kanpur}}
 +
<html>
 +
 +
<head>
 +
<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
 +
<meta name=Generator content="Microsoft Word 15 (filtered)">
 +
<style>
 +
<!--
 +
/* Font Definitions */
 +
@font-face
 +
{font-family:"Cambria Math";
 +
panose-1:2 4 5 3 5 4 6 3 2 4;}
 +
@font-face
 +
{font-family:"Calibri Light";
 +
panose-1:2 15 3 2 2 2 4 3 2 4;}
 +
@font-face
 +
{font-family:Calibri;
 +
panose-1:2 15 5 2 2 2 4 3 2 4;}
 +
@font-face
 +
{font-family:MathJax_Math;
 +
panose-1:0 0 0 0 0 0 0 0 0 0;}
 +
/* Style Definitions */
 +
p.MsoNormal, li.MsoNormal, div.MsoNormal
 +
{margin-top:0cm;
 +
margin-right:0cm;
 +
margin-bottom:8.0pt;
 +
margin-left:0cm;
 +
line-height:107%;
 +
font-size:11.0pt;
 +
font-family:"Calibri",sans-serif;}
 +
h4
 +
{mso-style-link:"Heading 4 Char";
 +
margin-right:0cm;
 +
margin-left:0cm;
 +
font-size:12.0pt;
 +
font-family:"Times New Roman",serif;
 +
font-weight:bold;}
 +
p
 +
{margin-right:0cm;
 +
margin-left:0cm;
 +
font-size:12.0pt;
 +
font-family:"Times New Roman",serif;}
 +
span.MsoPlaceholderText
 +
{color:gray;}
 +
span.mi
 +
{mso-style-name:mi;}
 +
span.mo
 +
{mso-style-name:mo;}
 +
span.Heading4Char
 +
{mso-style-name:"Heading 4 Char";
 +
mso-style-link:"Heading 4";
 +
font-family:"Times New Roman",serif;
 +
font-weight:bold;}
 +
.MsoPapDefault
 +
{margin-bottom:8.0pt;
 +
line-height:107%;}
 +
@page WordSection1
 +
{size:595.3pt 841.9pt;
 +
margin:72.0pt 72.0pt 72.0pt 72.0pt;}
 +
div.WordSection1
 +
{page:WordSection1;}
 +
-->
 +
</style>
 +
 +
</head>
 +
 +
<body lang=EN-IN>
 +
 +
<div class=WordSection1>
 +
 +
<p class=MsoNormal align=center style='text-align:center'><span
 +
style='font-size:20.0pt;line-height:107%;color:#2F5597'>Modelling</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:18.0pt;line-height:107%;color:#2E75B6'>Overview
 +
</span></p>
 +
 +
<p class=MsoNormal>Mathematical modelling is fundamental to synthetic biology,
 +
a tool that allows for deeper understanding of biological systems, acting as a
 +
link between the conception and the physical realisation of a biological
 +
circuit. Being able stimulate and understand our system behaviour before actual
 +
implementation saves both time and resources.</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>Through our modelling we tried to gain insight into our
 +
system so that we could improve it and make it realistically achievable.</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>We tried to describe the whole system with a mathematical
 +
system of linear ODEs which could characterizes the expression and secretion of
 +
all enzymes, the associated substrate – enzyme kinetics.</p>
 +
 +
<p class=MsoNormal>In order to realize the long term goal of developing a
 +
detergent biodegradation device for household and commercial use we tried to
 +
implement continuous culture modelling on our bioreactor design in order to
 +
estimate yearly cost of detergent biodegradation.</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%;color:#1F4E79'>Single
 +
Cell Modelling</span></p>
 +
 +
<p class=MsoNormal><img width=602 height=387 id="Picture 9"
 +
src="Modelling111_files/image001.jpg"
 +
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44177337_161118344832834_5155785162818060288_n.png?_nc_cat=110&amp;oh=9e7779a555a3f3b881a5adfaa566230f&amp;oe=5C581588"><span
 +
style='font-size:14.0pt;line-height:107%;color:black'>Allows to model our gene
 +
regulatory network (GRN) and the extracellular secretion of our enzyme alkyl
 +
sulfatase (SdsA1).</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>This
 +
model helped us gain insight into our system in order to understand dependence
 +
of rate of secretion of alkyl sulfatase in media under varying promoter
 +
strengths and secretion efficiencies due to the different secretion
 +
extracellular secretion tags PelB and OmpT.</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>Our
 +
model is based on overexpression of alkyl sulfatase under constitutive
 +
promoters from Anderson promoter collection in iGEM  registry. The
 +
concentration of our enzyme SdsA1 is then predicted using the rates of
 +
transcription, translation and degradation (of both mRNA and protein) that are
 +
known in literature.</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>Since
 +
under a constitutive gene expression is unregulated, it is always on and its
 +
strength could be modelled through the transcription rate constant k1. </span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>as:
 +
</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><img width=372 height=141 id="Picture 5"
 +
src="Modelling111_files/image002.png"></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>Using
 +
the law of mass action</span></p>
 +
 +
<p class=MsoNormal>&nbsp;</p>
 +
 +
<p class=MsoNormal><img width=387 height=108 id="Picture 6"
 +
src="Modelling111_files/image003.png"></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
 +
normal'><span style='font-size:13.5pt;font-family:"Arial",sans-serif'>Transcription
 +
rate k1 is estimated from literature.</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'> </span></p>
 +
 +
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
 +
normal'><span style='font-size:13.5pt;font-family:"Arial",sans-serif'>Translation
 +
rate k2 is estimated from the literature</span></p>
 +
 +
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
 +
normal'><span style='font-size:13.5pt;font-family:"Arial",sans-serif'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
 +
normal'><span style='font-size:13.5pt;font-family:"Arial",sans-serif'>mRNA
 +
degradation (d1) and Protein degradation rate (d2) are known for Ecoli through
 +
literature.</span></p>
 +
 +
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
 +
normal'><span style='font-size:13.5pt;font-family:"Arial",sans-serif'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>Since
 +
SdsA1 (alkyl sulfatase) a extracellular enzyme, it was essential to understand
 +
effect of secretion efficiencies of our enzyme from Ecoli cells, in order to
 +
determine concentration of SdsA1 in the media, which would be needed to model
 +
our enzyme substrate kinetics in order to understand SDS(Sodium Dodecyl Sulfate
 +
) degradation.</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>We
 +
tried to model our protein secretion using a empirical secretion law used by
 +
iGEM Stuttgart 2017 team.</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>  
 +
</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><a href="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"><span
 +
style='font-size:14.0pt;line-height:107%;color:black;text-decoration:none'><img
 +
border=0 width=479 height=48 id="Picture 4"
 +
src="Modelling111_files/image004.png"
 +
alt="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"></span></a></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>r<sub>secretion</sub>
 +
: secretion rate </span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>[enzyme]
 +
: enzyme concentration </span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>s
 +
: secretion efficiency </span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>t
 +
: time </span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>Here the
 +
secretion efficiency is a value between zero and one ().</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'> </span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>Since
 +
reliable data on expression of SdsA1 and its extracellular expression in Ecoli
 +
was not available we concluded that our model could only provide a qualitative
 +
understanding various factors on these .</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><a href="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"><span
 +
style='font-size:14.0pt;line-height:107%;color:black;text-decoration:none'><img
 +
border=0 width=479 height=48 id="Picture 18"
 +
src="Modelling111_files/image005.png"
 +
alt="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"></span></a><img
 +
border=0 width=602 height=276 id="Picture 8"
 +
src="Modelling111_files/image006.png"
 +
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44185937_2064200740556003_6694159164534423552_n.png?_nc_cat=105&amp;oh=040a1b04709ea79fa27d8959210921b6&amp;oe=5C482425"></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><img border=0 width=560 height=363 id="Picture 2"
 +
src="Modelling111_files/image007.png"
 +
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44351672_551274411976028_2657043464260157440_n.png?_nc_cat=102&amp;oh=ebd37b04550aef2d5e8d2f15364d230b&amp;oe=5C50AC06"></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>Fig.1 Effect
 +
of secretion efficiency on enzyme production</span></p>
 +
 +
<p class=MsoNormal><img border=0 width=560 height=374 id="Picture 7"
 +
src="Modelling111_files/image008.png"
 +
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44203308_1781628528626872_7513042899114655744_n.png?_nc_cat=111&amp;oh=9400d852e101215b021771e1a18d90f4&amp;oe=5C3F00B1"></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>Fig.2 Effect
 +
of promoter strength on enzyme production</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:18.0pt;line-height:107%;color:#333F50'>Enzyme
 +
Kinetics</span></p>
 +
 +
<p class=MsoNormal>We use the simple Michaelis-Menten formula to describe our enzymes’
 +
kinetics.</p>
 +
 +
<p class=MsoNormal><img border=0 width=252 height=65 id="Picture 1"
 +
src="Modelling111_files/image009.png"></p>
 +
 +
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>     </span><img
 +
border=0 width=178 height=77 id="Picture 10"
 +
src="Modelling111_files/image010.png"> </p>
 +
 +
<p class=MsoNormal>Here, <em><span style='font-size:12.0pt;line-height:107%;
 +
font-family:"Calibri",sans-serif'>V</span></em><sub><span style='font-size:
 +
12.0pt;line-height:107%'>max</span></sub> represents the maximum velocity
 +
achieved by the system, at maximum (saturating) substrate concentrations. <em><span
 +
style='font-size:12.0pt;line-height:107%;font-family:"Calibri",sans-serif'>K<sub>M</sub></span></em>
 +
(the Michaelis constant; sometimes represented as <em><span style='font-family:
 +
"Calibri",sans-serif'>K<sub>S</sub></span></em> instead) is the substrate
 +
concentration at which the reaction velocity is 50% of the<span
 +
style='font-size:12.0pt;line-height:107%'> <em><span style='font-family:"Calibri",sans-serif'>V</span></em><sub>max</sub></span>.
 +
[<em><span style='font-family:"Calibri",sans-serif'>S</span></em>] is the
 +
concentration of the substrate <em><span style='font-family:"Calibri",sans-serif'>S</span></em>.</p>
 +
 +
<p class=MsoNormal><span style='font-size:12.0pt;line-height:107%'>Our enzyme (E)
 +
being SDS, substrate S being SdsA1 and P being our final product 1-Dodecanol.</span></p>
 +
 +
<p class=MsoNormal><img border=0 width=511 height=53 id="Picture 11"
 +
src="Modelling111_files/image011.png"></p>
 +
 +
<p class=MsoNormal><span style='font-size:12.0pt;line-height:107%'>Here k1 is
 +
rate of forward and k-1 being rate of backword reactions and k2 being rate of
 +
product formation.</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:12.0pt;line-height:107%'>In terms of
 +
specific </span><span style='font-family:"Arial",sans-serif'>Michaelis-Menten
 +
reaction, these constants are quoted in the literature as:</span></p>
 +
 +
<p class=MsoNormal><img border=0 width=254 height=145 id="Picture 13"
 +
src="Modelling111_files/image012.png"></p>
 +
 +
<p class=MsoNormal><span style='font-size:12.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal>We assumed a average SDS concentration of 5-10 mg/L in
 +
domestic wastewater discharges. </p>
 +
 +
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:18.0pt;line-height:107%;color:#595959'>Continuous
 +
Culture Modelling</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><img width=273 height=358
 +
src="Modelling111_files/image013.jpg" align=left hspace=12
 +
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44236260_489616118186439_8807087846427983872_n.png?_nc_cat=105&amp;oh=12547d5feeea7af7a9a5ca9f30244400&amp;oe=5C52B499"></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>In order to
 +
understand if our project could be implemented in a real world we decided to check
 +
its economic sustainability by trying to estimate the yearly cost of operation of
 +
our bioreactor.</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>To do so we
 +
implement a model based on previous model developed by iGEM 2017 Manchester
 +
team who were trying to estimate cost of chemostat operation for cleaning Phosphate
 +
in wastewater.</span></p>
 +
 +
<p class=MsoNormal>The growth of bacteria in its exponential phase can be
 +
represented in the following exponential growth equation:</p>
 +
 +
<p class=MsoNormal><img border=0 width=602 height=66 id="Picture 25"
 +
src="Modelling111_files/image014.jpg"></p>
 +
 +
<p class=MsoNormal>where: <br>
 +
<br>
 +
<span class=mi></span><i><span style='font-size:15.0pt;line-height:107%;
 +
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-33><span style='color:inherit'><span
 +
id=MathJax-Element-2-Frame><span style='display:inline-block'><span
 +
style='clip:rect(2.035em, 1000em, 2.834em, -1000em)'><span id=MathJax-Span-34><span
 +
id=MathJax-Span-35>x</span></span></span></i><span style='display:inline-block'></span></span></span></span></span></nobr></span>
 +
is the <i>bacteria concentration</i> (dry weight mass/unit volume) at time <span
 +
class=mi></span><i><span style='font-size:15.0pt;line-height:107%;font-family:
 +
"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-36><span style='color:inherit'><span
 +
id=MathJax-Element-3-Frame><span style='display:inline-block'><span
 +
style='clip:rect(1.851em, 1000em, 2.834em, -1000em)'><span id=MathJax-Span-37><span
 +
id=MathJax-Span-38>t</span></span></span></i><span style='display:inline-block'></span><br>
 +
</span></span></span></span></nobr></span><span class=mo></span><i><span
 +
style='font-size:15.0pt;line-height:107%;font-family:"MathJax_Math",serif'><nobr><span
 +
role=math style='display:inline-block' id=MathJax-Span-39><span
 +
style='color:inherit'><span id=MathJax-Element-4-Frame><span style='display:
 +
inline-block'><span style='clip:rect(2.035em, 1000em, 3.039em, -1000em)'><span
 +
id=MathJax-Span-40><span id=MathJax-Span-41><span id=MathJax-Span-42><span
 +
id=MathJax-Span-43>&#956;</span></span></span></i></span></span></span></span></span></span></nobr></span>
 +
is the <i>specific growth rate</i><br>
 +
<span class=mi></span><i><span style='font-size:15.0pt;line-height:107%;
 +
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-44><span style='color:inherit'><span
 +
id=MathJax-Element-5-Frame><span style='display:inline-block'><span
 +
style='clip:rect(1.563em, 1000em, 2.692em, -1000em)'><span id=MathJax-Span-45><span
 +
id=MathJax-Span-46><span style='display:inline-block'><span style='clip:rect(3.176em, 1000em, 4.158em, -1000em)'><span
 +
id=MathJax-Span-47>t</span></span><span style='display:inline-block'></i></span><span
 +
class=mi></span><i><span style='font-size:10.5pt;line-height:107%;font-family:
 +
"MathJax_Math",serif'></span><span id=MathJax-Span-48>d<span style='display:
 +
inline-block;overflow:hidden'></span></i></span></span></span></span></span></span></span></span></span></nobr></span>
 +
is the <i>doubling time</i> (time required for the concentration of organism to
 +
double)</p>
 +
 +
<p class=MsoNormal>Monod showed that there is a relationship between the
 +
specific growth rate and the concentration of a limiting growth substrate that
 +
can be represented in this equation:</p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>                            
 +
</span><img border=0 width=601 height=76 id="Picture 26"
 +
src="Modelling111_files/image015.jpg"></p>
 +
 +
<p class=MsoNormal><img width=81 height=43 src="Modelling111_files/image016.jpg"
 +
align=left hspace=12>where: <br>
 +
<br>
 +
<span class=mi></span><i><span style='font-size:15.0pt;line-height:107%;
 +
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-80><span style='color:inherit'><span
 +
id=MathJax-Element-7-Frame><span style='display:inline-block'><span
 +
style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span id=MathJax-Span-81><span
 +
id=MathJax-Span-82>s</span></span></span></i><span style='display:inline-block'></span></span></span></span></span></nobr></span>
 +
the <i>concentration of a limiting growth substrate</i><br>
 +
<span class=mo></span><i><span style='font-size:15.0pt;line-height:107%;
 +
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-83><span style='color:inherit'><span
 +
id=MathJax-Element-8-Frame><span style='display:inline-block'><span
 +
style='clip:rect(1.747em, 1000em, 2.794em, -1000em)'><span id=MathJax-Span-84><span
 +
id=MathJax-Span-85><span style='display:inline-block'><span style='clip:rect(3.36em, 1000em, 4.363em, -1000em)'><span
 +
id=MathJax-Span-86><span id=MathJax-Span-87><span id=MathJax-Span-88>&#956;</span></span></span></i></span></span><span
 +
style='display:inline-block'><span class=mi></span><i><span style='font-size:
 +
10.5pt;line-height:107%;font-family:"MathJax_Math",serif'></span><span
 +
id=MathJax-Span-89><span id=MathJax-Span-90><span id=MathJax-Span-91>m</span><span
 +
id=MathJax-Span-92>a</span><span id=MathJax-Span-93>x</span></span></span></i></span></span></span></span></span></span></span></span></nobr></span>
 +
is the <i>maximum growth rate</i> (growth rate when organism is placed in
 +
excess nutrients without any limiting factors) </p>
 +
 +
<p class=MsoNormal><span class=mi><i><span style='font-size:15.0pt;line-height:
 +
107%;font-family:"MathJax_Math",serif'>K<span style='display:inline-block;
 +
overflow:hidden'></span></i></span><span class=mi></span><i><span
 +
style='font-size:10.5pt;line-height:107%;font-family:"MathJax_Math",serif'></span></span><span
 +
id=MathJax-Span-98>s</span></span></i><span style='display:inline-block'></span><i></span></span></span></span></span></span></span></nobr></span>
 +
</i>is the <i>saturation constant</i> – the value of <span class=mi></span><i><span
 +
style='font-size:15.0pt;line-height:107%;font-family:"MathJax_Math",serif'><nobr><span
 +
role=math style='display:inline-block' id=MathJax-Span-99><span
 +
style='color:inherit'><span id=MathJax-Element-10-Frame><span style='display:
 +
inline-block'><span style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span
 +
id=MathJax-Span-100><span id=MathJax-Span-101>s</span></span></span></i><span
 +
style='display:inline-block'></span></span></span></span></span></nobr></span>
 +
when:                                                            </p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal>Bacterial  growth and utilization of substrate is depicted
 +
by the Monod by the equation:</p>
 +
 +
<p class=MsoNormal><img border=0 width=600 height=75 id="Picture 27"
 +
src="Modelling111_files/image017.png"></p>
 +
 +
<p class=MsoNormal style='line-height:normal'><span style='font-size:12.0pt;
 +
font-family:"Times New Roman",serif'>where </span><i><span style='font-size:
 +
15.0pt;font-family:"MathJax_Math",serif'>Y</span></i><span style='font-size:
 +
12.0pt;font-family:"Times New Roman",serif'> is known as the <i>yield constant</i>.</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>Here</span></p>
 +
 +
<p class=MsoNormal><img border=0 width=253 height=66 id="Picture 20"
 +
src="Modelling111_files/image018.png"></p>
 +
 +
<p class=MsoNormal>In the chemostat fresh growth medium is added into the
 +
vessel at a <i>steady flow-rate</i> (<span class=mi></span><i><span
 +
style='font-size:15.0pt;line-height:107%;font-family:"MathJax_Math",serif'><nobr><span
 +
role=math style='display:inline-block' id=MathJax-Span-180><span
 +
style='color:inherit'><span id=MathJax-Element-19-Frame><span style='display:
 +
inline-block'><span style='clip:rect(1.797em, 1000em, 2.823em, -1000em)'><span
 +
id=MathJax-Span-181><span id=MathJax-Span-182>F<span style='display:inline-block;
 +
overflow:hidden'></span></i></span></span></span></span></span></span></span></nobr></span>)
 +
and culture liquid exits at the same rate and the growth medium is uniformly
 +
dispersed. The rate of nutrient is exchange is given by the <i>dilution rate</i>
 +
(<span class=mi></span><i><span style='font-size:15.0pt;line-height:107%;
 +
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-183><span style='color:inherit'><span
 +
id=MathJax-Element-20-Frame><span style='display:inline-block'><span
 +
style='clip:rect(1.794em, 1000em, 2.823em, -1000em)'><span id=MathJax-Span-184><span
 +
id=MathJax-Span-185>D</span></span></span></i><span style='display:inline-block'></span></span></span></span></span></nobr></span>):</p>
 +
 +
<p class=MsoNormal><img border=0 width=602 height=63 id="Picture 28"
 +
src="Modelling111_files/image019.jpg"></p>
 +
 +
<p class=MsoNormal>Assuming every organism will have an equal probability of
 +
leaving the vessel within a given time. The <i>wash-out rate</i> (rate in which
 +
organism initially present in the vessel will be washed out) can be expressed
 +
as:</p>
 +
 +
<p class=MsoNormal><img border=0 width=602 height=65 id="Picture 29"
 +
src="Modelling111_files/image020.jpg"></p>
 +
 +
<p>where <span class=mi><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-226><i><span style='font-size:15.0pt;font-family:"MathJax_Math",serif'><span
 +
style='display:inline-block'><span id=MathJax-Element-23-Frame><span
 +
style='clip:rect(2.035em, 1000em, 2.834em, -1000em)'><span id=MathJax-Span-227><span
 +
id=MathJax-Span-228>x</span></span></span></i><span style='display:inline-block'></span></span></span></span></span></nobr></span>
 +
is the concentration of organisms in the vessel</p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
 +
normal'><span style='font-size:12.0pt;font-family:"Times New Roman",serif'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal style='line-height:normal'><b><span style='font-size:12.0pt;
 +
font-family:"Times New Roman",serif'>1. Changes in concentration of organism</span></b></p>
 +
 +
<p class=MsoNormal style='line-height:normal'><span style='font-size:12.0pt;
 +
font-family:"Times New Roman",serif'>In a continuous culture, combining growth (1)
 +
and washout rate (5) we have the net rate of increase is therefore:</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><img border=0 width=595 height=49 id="Picture 39"
 +
src="Modelling111_files/image021.jpg"></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><img border=0 width=601 height=70 id="Picture 30"
 +
src="Modelling111_files/image022.jpg"></p>
 +
 +
<p><b>2. Changes in substrate concentration</b></p>
 +
 +
<p>Assuming  substrate enters the vessel at a concentration <span class=mi><nobr><span
 +
role=math style='display:inline-block' id=MathJax-Span-347><i><span
 +
style='font-size:15.0pt;font-family:"MathJax_Math",serif'><span
 +
style='display:inline-block'><span id=MathJax-Element-33-Frame><span
 +
style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span id=MathJax-Span-348><span
 +
id=MathJax-Span-349><span style='display:inline-block'><span style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span
 +
id=MathJax-Span-350>S<span style='display:inline-block;overflow:hidden'></span></i></span><span
 +
class=mi></span><i><span style='font-size:10.5pt;font-family:"MathJax_Math",serif'></span></span><span
 +
id=MathJax-Span-351><span id=MathJax-Span-352><span id=MathJax-Span-353>i</span><span
 +
id=MathJax-Span-354>n</span></span></span></i></span></span></span></span></span></span></span></span></nobr></span>,
 +
consumed by the bacterial cell in the vessel and then exits the vessel at
 +
concentration <span class=mi><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-355><i><span style='font-size:15.0pt;font-family:"MathJax_Math",serif'><span
 +
style='display:inline-block'><span id=MathJax-Element-34-Frame><span
 +
style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span id=MathJax-Span-356><span
 +
id=MathJax-Span-357><span style='display:inline-block'><span style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span
 +
id=MathJax-Span-358>S<span style='display:inline-block;overflow:hidden'></span></i></span><span
 +
class=mi></span><i><span style='font-size:10.5pt;font-family:"MathJax_Math",serif'></span></span><span
 +
id=MathJax-Span-359><span id=MathJax-Span-360><span id=MathJax-Span-361>o</span><span
 +
id=MathJax-Span-362>u</span><span id=MathJax-Span-363>t</span></span></span></i></span></span></span></span></span></span></span></span></nobr></span>.
 +
The net rate of change is therefore:</p>
 +
 +
<p class=MsoNormal><img border=0 width=414 height=87 id="Picture 35"
 +
src="Modelling111_files/image023.png"></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><img border=0 width=602 height=226 id="Picture 32"
 +
src="Modelling111_files/image024.jpg"></p>
 +
 +
<p class=MsoNormal>When <span class=mi></span><i><span style='font-size:10.5pt;
 +
line-height:107%;font-family:"MathJax_Math",serif'><nobr><span role=math
 +
style='display:inline-block' id=MathJax-Span-545><span style='color:inherit'><span
 +
id=MathJax-Element-45-Frame><span style='display:inline-block'><span
 +
style='clip:rect(1.272em, 1000em, 2.951em, -1000em)'><span id=MathJax-Span-546><span
 +
id=MathJax-Span-547><span style='display:inline-block'><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span
 +
id=MathJax-Span-548><span id=MathJax-Span-549>d</span><span
 +
id=MathJax-Span-550>x</span></span></span><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span
 +
id=MathJax-Span-551><span id=MathJax-Span-552>/d</span><span
 +
id=MathJax-Span-553>t</span></span></span></i><span style='display:inline-block'></span></span></span></span></span></span></span></span></span></nobr></span>
 +
and <span class=mi></span><i><span style='font-size:10.5pt;line-height:107%;
 +
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-554><span style='color:inherit'><span
 +
id=MathJax-Element-46-Frame><span style='display:inline-block'><span
 +
style='clip:rect(1.273em, 1000em, 2.951em, -1000em)'><span id=MathJax-Span-555><span
 +
id=MathJax-Span-556><span style='display:inline-block'><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span
 +
id=MathJax-Span-557><span id=MathJax-Span-558>d</span><span
 +
id=MathJax-Span-559>s</span></span></span><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span
 +
id=MathJax-Span-560><span id=MathJax-Span-561>/d</span><span
 +
id=MathJax-Span-562>t</span></span></span></i><span style='display:inline-block'></span></span></span></span></span></span></span></span></span></nobr></span>
 +
is 0, the system is said to be in a ‘steady state’ because the concentration of
 +
organism and substrate within the continuous culture is kept constant. The
 +
values of steady state <span class=mi></span><i><span style='font-size:15.0pt;
 +
line-height:107%;font-family:"MathJax_Math",serif'><nobr><span role=math
 +
style='display:inline-block' id=MathJax-Span-563><span style='color:inherit'><span
 +
id=MathJax-Element-47-Frame><span style='display:inline-block'><span
 +
style='clip:rect(2.035em, 1000em, 2.834em, -1000em)'><span id=MathJax-Span-564><span
 +
id=MathJax-Span-565>x</span></span></span></i><span style='display:inline-block'></span></span></span></span></span></nobr></span>
 +
and <span class=mi></span><i><span style='font-size:15.0pt;line-height:107%;
 +
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-566><span style='color:inherit'><span
 +
id=MathJax-Element-48-Frame><span style='display:inline-block'><span
 +
style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span id=MathJax-Span-567><span
 +
id=MathJax-Span-568>s</span></span></span></i><span style='display:inline-block'></span></span></span></span></span></nobr></span>,
 +
designated as <em><span style='font-family:"Calibri",sans-serif'></span><span
 +
style='color:inherit'><span id=MathJax-Element-49-Frame><nobr><span role=math
 +
style='display:inline-block' id=MathJax-Span-569><span style='display:inline-block'><span
 +
style='clip:rect(1.5em, 1000em, 2.546em, -1000em)'><span id=MathJax-Span-570><span
 +
id=MathJax-Span-571><span id=MathJax-Span-572><span id=MathJax-Span-573><span
 +
style='display:inline-block'><span style='clip:rect(3.36em, 1000em, 4.158em, -1000em)'><span
 +
id=MathJax-Span-574>x~ and s~</span></em> are expressed as:</p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><img border=0 width=602 height=125 id="Picture 33"
 +
src="Modelling111_files/image025.jpg"></p>
 +
 +
<p class=MsoNormal>So the two parameters D and <span class=mi></span><i><span
 +
style='font-size:15.0pt;line-height:107%;font-family:"MathJax_Math",serif'><nobr><span
 +
role=math style='display:inline-block' id=MathJax-Span-686><span
 +
style='color:inherit'><span id=MathJax-Element-54-Frame><span style='display:
 +
inline-block'><span style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span
 +
id=MathJax-Span-687><span id=MathJax-Span-688><span style='display:inline-block'><span
 +
style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span id=MathJax-Span-689>S<span
 +
style='display:inline-block;overflow:hidden'></span></i></span><span class=mi></span><i><span
 +
style='font-size:10.5pt;line-height:107%;font-family:"MathJax_Math",serif'></span></span><span
 +
id=MathJax-Span-690><span id=MathJax-Span-691><span id=MathJax-Span-692>i</span><span
 +
id=MathJax-Span-693>n</span></span></span></i></span></span></span></span></span></span></span></span></nobr></span>
 +
control the steady state within the chemostat. Since we have been also using
 +
E.coli for SDS degradation we use values constants of (growth constant <span
 +
id=MathJax-Element-55-Frame><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-694><span style='display:inline-block'><span style='clip:rect(1.747em, 1000em, 2.794em, -1000em)'><span
 +
id=MathJax-Span-695><span id=MathJax-Span-696><span style='display:inline-block'><span
 +
style='clip:rect(3.36em, 1000em, 4.363em, -1000em)'><span id=MathJax-Span-697><span
 +
id=MathJax-Span-698><span id=MathJax-Span-699>)<span class=mo><i><span
 +
style='font-size:15.0pt;line-height:107%;font-family:"MathJax_Math",serif'>&#956;</span></span></i></span></span></span><span
 +
class=mi><i><span style='font-size:10.5pt;line-height:107%;font-family:"MathJax_Math",serif'></span><span
 +
id=MathJax-Span-700><span id=MathJax-Span-701><span id=MathJax-Span-702>m</span><span
 +
id=MathJax-Span-703>a</span><span id=MathJax-Span-704>x</span></span></span></i></span></span></span></span></span></span></span></span></nobr></span>,
 +
<span class=mi></span><i><span style='font-size:15.0pt;line-height:107%;
 +
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-705><span style='color:inherit'><span
 +
id=MathJax-Element-56-Frame><span style='display:inline-block'><span
 +
style='clip:rect(1.506em, 1000em, 2.692em, -1000em)'><span id=MathJax-Span-706><span
 +
id=MathJax-Span-707><span style='display:inline-block'><span style='clip:rect(3.119em, 1000em, 4.147em, -1000em)'><span
 +
id=MathJax-Span-708>K<span style='display:inline-block;overflow:hidden'></span></i></span><span
 +
class=mi></span><i><span style='font-size:10.5pt;line-height:107%;font-family:
 +
"MathJax_Math",serif'></span></span><span id=MathJax-Span-709>s</span></span></i><span
 +
style='display:inline-block'></span></span></span></span></span></span></span></span></nobr></span>
 +
and <span class=mi></span><i><span style='font-size:15.0pt;line-height:107%;
 +
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-710><span style='color:inherit'><span
 +
id=MathJax-Element-57-Frame><span style='display:inline-block'><span
 +
style='clip:rect(1.794em, 1000em, 2.822em, -1000em)'><span id=MathJax-Span-711><span
 +
id=MathJax-Span-712>Y<span style='display:inline-block;overflow:hidden'></span></i></span></span></span></span></span></span></span></nobr></span>
 +
same as used by team iGEM Manchester 2017</p>
 +
 +
<p class=MsoNormal><img border=0 width=602 height=259 id="Picture 34"
 +
src="Modelling111_files/image026.jpg"></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal>Finally output is modelled through the equation:</p>
 +
 +
<p class=MsoNormal><img border=0 width=414 height=87 id="Picture 36"
 +
src="Modelling111_files/image023.png"></p>
 +
 +
<p class=MsoNormal>So there two design parameters in our bioreactor design
 +
model required for consideration. <span class=mi></span><i><span
 +
style='font-size:13.0pt;line-height:107%;font-family:"MathJax_Math",serif'><nobr><span
 +
role=math style='display:inline-block' id=MathJax-Span-1045><span
 +
style='color:inherit'><span id=MathJax-Element-71-Frame><span style='display:
 +
inline-block'><span style='clip:rect(1.705em, 1000em, 2.7em, -1000em)'><span
 +
id=MathJax-Span-1046><span id=MathJax-Span-1047>D</span></span></span></i><span
 +
style='display:inline-block'></span></span></span></span></span></nobr></span>
 +
(<i>dilution rate</i>) and <span class=mi></span><i><span style='font-size:
 +
13.0pt;line-height:107%;font-family:"MathJax_Math",serif'><nobr><span role=math
 +
style='display:inline-block' id=MathJax-Span-1048><span style='color:inherit'><span
 +
id=MathJax-Element-72-Frame><span style='display:inline-block'><span
 +
style='clip:rect(1.32em, 1000em, 2.494em, -1000em)'><span id=MathJax-Span-1049><span
 +
id=MathJax-Span-1050><span style='display:inline-block'><span style='clip:rect(3.137em, 1000em, 4.176em, -1000em)'><span
 +
id=MathJax-Span-1051>S<span style='display:inline-block;overflow:hidden'></span></i></span><span
 +
class=mi></span><i><span style='font-size:9.0pt;line-height:107%;font-family:
 +
"MathJax_Math",serif'></span></span><span id=MathJax-Span-1052><span
 +
id=MathJax-Span-1053><span id=MathJax-Span-1054>i</span><span
 +
id=MathJax-Span-1055>n</span></span></span></i></span></span></span></span></span></span></span></span></nobr></span>
 +
(<i>initial substrate concentration</i>)</p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal style='line-height:normal'><span style='font-size:16.0pt;
 +
font-family:"Times New Roman",serif'>Cost Estimation</span></p>
 +
 +
<p class=MsoNormal style='line-height:normal'><span style='font-size:16.0pt;
 +
font-family:"Times New Roman",serif'>In order to achieve economically viable
 +
bioreactor we need to use a cheap easily available source of growth medium like
 +
molasses.</span></p>
 +
 +
<p style='margin-left:30.0pt'>-Molasses cost $0.07/kg</p>
 +
 +
<p style='margin-left:30.0pt'>-The density of molasses is roughly 1.4 kg/L</p>
 +
 +
<p style='margin-left:30.0pt'>-Therefore, 1 L of molasses will cost $0.07 x 1.4
 +
= $0.098</p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><img border=0 width=438 height=66 id="Picture 37"
 +
src="Modelling111_files/image027.png"></p>
 +
 +
<p class=MsoNormal><img border=0 width=433 height=148 id="Picture 38"
 +
src="Modelling111_files/image028.png"></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>Dodecanol
 +
manufactured by conventional methods usually is contaminated by long carbon
 +
chain compounds, hence are associated with expensive purification  costs.The
 +
low downstream processing costs of our final product 1-dodecanol obtained from
 +
bacterial degradation of SDS may help us cut down our costs, hence this could
 +
lead to development of economically viable product.</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>So based our
 +
model we get the necessary cost for production of 1 kg of E.coli that would be
 +
needed for SDS degradation.</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>Also market
 +
price of detergent grade SDS is about Rs 160/kg = $2.18</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>     And price
 +
of of 1-dodecanol (98%) is about Rs 9070/kg =</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>Based on
 +
these rough estimate of prices we can estimate our yearly cost of operation.</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><i><span style='font-size:14.0pt;line-height:107%'>References:</span></i></p>
 +
 +
<p class=MsoNormal>Towards the Identification of Type II Secretion Signals in a
 +
Nonacylated Variant of Pullulanase from <i>Klebsiella oxytoca</i> (2005),
 +
Olivera Franceti&#263; and Anthony P. Pugsley.</p>
 +
 +
<p class=MsoNormal>Guy-Bart Stan. Modelling in Biology. Lecture notes, 2017. </p>
 +
 +
<p class=MsoNormal>http://www.bg.ic.ac.uk/research/g.stan/2010_Course_MiB_article.pdf,
 +
Accessed 04/08/2017.</p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
 +
normal'><span style='font-family:"Calibri Light",sans-serif'>American Journal
 +
of Analytical Chemistry,2014, 5, 8-16</span></p>
 +
 +
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
 +
normal'><span style='font-family:"Calibri Light",sans-serif'>Published Online
 +
January 2014 (http://www.scirp.org/journal/ajac) http://dx.doi.org/10.4236/ajac.2014.51002</span></p>
 +
 +
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
 +
normal'><span style='font-family:"Calibri Light",sans-serif'>OPEN ACCESS AJAC Commercial
 +
Laundry Water CharacterisationJ. K. Braga*, M. B. A. Varesche</span></p>
 +
 +
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
 +
normal'><span style='font-family:"Calibri Light",sans-serif'>Department of
 +
Hydraulics and Sanitation, Engineering School of São Carlos, São Paulo
 +
University, </span></p>
 +
 +
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
 +
normal'><span style='font-family:"Calibri Light",sans-serif'>São Carlos, Brazil</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:12.0pt;line-height:107%'>https://math.la.asu.edu/~halsmith/bacteriagrow.pdf</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 +
 +
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>&nbsp;</span></p>
 +
 +
</div>
 +
 +
</body>
 +
 +
</html>
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
  
 
{{Template:IIT_Kanpur/Footer}}
 
{{Template:IIT_Kanpur/Footer}}

Revision as of 00:50, 18 October 2018

Modelling

Overview

Mathematical modelling is fundamental to synthetic biology, a tool that allows for deeper understanding of biological systems, acting as a link between the conception and the physical realisation of a biological circuit. Being able stimulate and understand our system behaviour before actual implementation saves both time and resources.

 

Through our modelling we tried to gain insight into our system so that we could improve it and make it realistically achievable.

 

We tried to describe the whole system with a mathematical system of linear ODEs which could characterizes the expression and secretion of all enzymes, the associated substrate – enzyme kinetics.

In order to realize the long term goal of developing a detergent biodegradation device for household and commercial use we tried to implement continuous culture modelling on our bioreactor design in order to estimate yearly cost of detergent biodegradation.

 

 

 

 

 

 

 

 

 

 

 

 

Single Cell Modelling

https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44177337_161118344832834_5155785162818060288_n.png?_nc_cat=110&oh=9e7779a555a3f3b881a5adfaa566230f&oe=5C581588Allows to model our gene regulatory network (GRN) and the extracellular secretion of our enzyme alkyl sulfatase (SdsA1).

This model helped us gain insight into our system in order to understand dependence of rate of secretion of alkyl sulfatase in media under varying promoter strengths and secretion efficiencies due to the different secretion extracellular secretion tags PelB and OmpT.

Our model is based on overexpression of alkyl sulfatase under constitutive promoters from Anderson promoter collection in iGEM  registry. The concentration of our enzyme SdsA1 is then predicted using the rates of transcription, translation and degradation (of both mRNA and protein) that are known in literature.

Since under a constitutive gene expression is unregulated, it is always on and its strength could be modelled through the transcription rate constant k1.

as:

 

 

Using the law of mass action

 

 

Transcription rate k1 is estimated from literature.

 

Translation rate k2 is estimated from the literature

 

mRNA degradation (d1) and Protein degradation rate (d2) are known for Ecoli through literature.

 

 

Since SdsA1 (alkyl sulfatase) a extracellular enzyme, it was essential to understand effect of secretion efficiencies of our enzyme from Ecoli cells, in order to determine concentration of SdsA1 in the media, which would be needed to model our enzyme substrate kinetics in order to understand SDS(Sodium Dodecyl Sulfate ) degradation.

We tried to model our protein secretion using a empirical secretion law used by iGEM Stuttgart 2017 team.

  

 

https://static.igem.org/mediawiki/2017/3/31/Secretion.png

rsecretion : secretion rate

[enzyme] : enzyme concentration

s : secretion efficiency

t : time

Here the secretion efficiency is a value between zero and one ().

 

 

 

Since reliable data on expression of SdsA1 and its extracellular expression in Ecoli was not available we concluded that our model could only provide a qualitative understanding various factors on these .

 

 

https://static.igem.org/mediawiki/2017/3/31/Secretion.pnghttps://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44185937_2064200740556003_6694159164534423552_n.png?_nc_cat=105&oh=040a1b04709ea79fa27d8959210921b6&oe=5C482425

 

 

https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44351672_551274411976028_2657043464260157440_n.png?_nc_cat=102&oh=ebd37b04550aef2d5e8d2f15364d230b&oe=5C50AC06

Fig.1 Effect of secretion efficiency on enzyme production

https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44203308_1781628528626872_7513042899114655744_n.png?_nc_cat=111&oh=9400d852e101215b021771e1a18d90f4&oe=5C3F00B1

 

Fig.2 Effect of promoter strength on enzyme production

 

 

Enzyme Kinetics

We use the simple Michaelis-Menten formula to describe our enzymes’ kinetics.

      

Here, Vmax represents the maximum velocity achieved by the system, at maximum (saturating) substrate concentrations. KM (the Michaelis constant; sometimes represented as KS instead) is the substrate concentration at which the reaction velocity is 50% of the Vmax. [S] is the concentration of the substrate S.

Our enzyme (E) being SDS, substrate S being SdsA1 and P being our final product 1-Dodecanol.

Here k1 is rate of forward and k-1 being rate of backword reactions and k2 being rate of product formation.

In terms of specific Michaelis-Menten reaction, these constants are quoted in the literature as:

 

We assumed a average SDS concentration of 5-10 mg/L in domestic wastewater discharges.

 

 

 

 

Continuous Culture Modelling

 

https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44236260_489616118186439_8807087846427983872_n.png?_nc_cat=105&oh=12547d5feeea7af7a9a5ca9f30244400&oe=5C52B499

 

 

 

 

 

 

 

 

 

 

In order to understand if our project could be implemented in a real world we decided to check its economic sustainability by trying to estimate the yearly cost of operation of our bioreactor.

To do so we implement a model based on previous model developed by iGEM 2017 Manchester team who were trying to estimate cost of chemostat operation for cleaning Phosphate in wastewater.

The growth of bacteria in its exponential phase can be represented in the following exponential growth equation:

where:

x is the bacteria concentration (dry weight mass/unit volume) at time t
μ is the specific growth rate
td is the doubling time (time required for the concentration of organism to double)

Monod showed that there is a relationship between the specific growth rate and the concentration of a limiting growth substrate that can be represented in this equation:

                            

where:

s the concentration of a limiting growth substrate
μmax is the maximum growth rate (growth rate when organism is placed in excess nutrients without any limiting factors)

Ks is the saturation constant – the value of s when:                                                            

 

 

Bacterial  growth and utilization of substrate is depicted by the Monod by the equation:

where Y is known as the yield constant.

Here

In the chemostat fresh growth medium is added into the vessel at a steady flow-rate (F) and culture liquid exits at the same rate and the growth medium is uniformly dispersed. The rate of nutrient is exchange is given by the dilution rate (D):

Assuming every organism will have an equal probability of leaving the vessel within a given time. The wash-out rate (rate in which organism initially present in the vessel will be washed out) can be expressed as:

where x is the concentration of organisms in the vessel

 

 

1. Changes in concentration of organism

In a continuous culture, combining growth (1) and washout rate (5) we have the net rate of increase is therefore:

 

 

2. Changes in substrate concentration

Assuming  substrate enters the vessel at a concentration Sin, consumed by the bacterial cell in the vessel and then exits the vessel at concentration Sout. The net rate of change is therefore:

 

When dx/dt and ds/dt is 0, the system is said to be in a ‘steady state’ because the concentration of organism and substrate within the continuous culture is kept constant. The values of steady state x and s, designated as x~ and s~ are expressed as:

 

So the two parameters D and Sin control the steady state within the chemostat. Since we have been also using E.coli for SDS degradation we use values constants of (growth constant )μmax, Ks and Y same as used by team iGEM Manchester 2017

 

 

Finally output is modelled through the equation:

So there two design parameters in our bioreactor design model required for consideration. D (dilution rate) and Sin (initial substrate concentration)

 

Cost Estimation

In order to achieve economically viable bioreactor we need to use a cheap easily available source of growth medium like molasses.

-Molasses cost $0.07/kg

-The density of molasses is roughly 1.4 kg/L

-Therefore, 1 L of molasses will cost $0.07 x 1.4 = $0.098

 

 

Dodecanol manufactured by conventional methods usually is contaminated by long carbon chain compounds, hence are associated with expensive purification  costs.The low downstream processing costs of our final product 1-dodecanol obtained from bacterial degradation of SDS may help us cut down our costs, hence this could lead to development of economically viable product.

 

So based our model we get the necessary cost for production of 1 kg of E.coli that would be needed for SDS degradation.

Also market price of detergent grade SDS is about Rs 160/kg = $2.18

     And price of of 1-dodecanol (98%) is about Rs 9070/kg =

Based on these rough estimate of prices we can estimate our yearly cost of operation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References:

Towards the Identification of Type II Secretion Signals in a Nonacylated Variant of Pullulanase from Klebsiella oxytoca (2005), Olivera Francetić and Anthony P. Pugsley.

Guy-Bart Stan. Modelling in Biology. Lecture notes, 2017.

http://www.bg.ic.ac.uk/research/g.stan/2010_Course_MiB_article.pdf, Accessed 04/08/2017.

 

American Journal of Analytical Chemistry,2014, 5, 8-16

Published Online January 2014 (http://www.scirp.org/journal/ajac) http://dx.doi.org/10.4236/ajac.2014.51002

OPEN ACCESS AJAC Commercial Laundry Water CharacterisationJ. K. Braga*, M. B. A. Varesche

Department of Hydraulics and Sanitation, Engineering School of São Carlos, São Paulo University,

São Carlos, Brazil

 

https://math.la.asu.edu/~halsmith/bacteriagrow.pdf