Difference between revisions of "Team:Vilnius-Lithuania/Model"

Line 826: Line 826:
 
</section>
 
</section>
 
<section class="design_subsections">
 
<section class="design_subsections">
  <h1 id="Thermo_Switches_model">Thermo Switches model</h1>
+
        <h1 id="Thermo_Switches_model">Thermo Switches model</h1>
  <div class="third_level_links">
+
        <div class="third_level_links">
      <a href="#Edinburgh_model">Edinburgh model</a>
+
          <a href="#Edinburgh_model">Edinburgh model</a>
      <a href="#Groeningen_model">Groeningen model</a>
+
          <a href="#Groeningen_model">Groeningen model</a>
      <a href="#COMSOL_model">COMSOL model</a>
+
          <a href="#COMSOL_model">COMSOL model</a>
      <a href="#Thermo_Switches_model">Thermo Switches model</a>
+
          <a href="#Thermo_Switches_model">Thermo Switches model</a>
  </div>
+
        </div>
  <div>
+
        <div>
      Lorem ipsum dolor, sit amet consectetur adipisicing elit. Esse beatae assumenda eaque ex recusandae pariatur sunt soluta modi facere laborum exercitationem odio iure magnam obcaecati quos voluptatibus placeat, ratione harum!
+
            <h1>Background</h1>
      Provident, maxime ipsum veniam, rerum facere ad vero fugit ipsa natus recusandae sit voluptatum architecto laudantium vitae necessitatibus! Nesciunt illum porro sint odio sequi reprehenderit. Sint eligendi ex impedit recusandae!
+
            <p></p>
      Alias obcaecati impedit iure recusandae quas asperiores tempore sint, consectetur veniam provident iste nulla fugit velit aliquam expedita, assumenda repellat dolorem dolore! Sit quis dolorem ad pariatur repellat reiciendis officiis.
+
            <p>
      Asperiores molestiae eos quo inventore recusandae quae placeat delectus, natus sint. Ullam quas culpa nobis exercitationem omnis animi velit, deleniti fugit! Sapiente aperiam sit minima nostrum, rerum quae laudantium vero?
+
                    RNA thermometers are RNA-based genetic control tools that react to temperature changes <sup>1</sup>. Low temperatures keep the mRNA at a conformation that masks the ribosome binding site within the 5’ end untranslated region (UTR). Masking of the Shine-Dalgarno (SD) sequence restricts ribosome binding and subsequent protein-translation. Higher temperatures melt the hairpins of RNA secondary structure allowing the ribosomes to access SD sequence to initiate translation <sup>1</sup>. In terms of applicability of RNA thermometers in <var>in vitro</var> systems, they display certain advantages over ribo- or toehold switches: they do not require binding of a ligand, metabolite or trigger RNA to induce the conformational change <sup>2,3</sup>, therefore are especially compatible with liposome IVTT system.
      Qui blanditiis, excepturi veritatis eaque temporibus voluptate maxime facere laborum voluptatem rerum ex a ipsum voluptatibus tempore, saepe sunt omnis nostrum sint? Voluptatum facilis omnis ea accusantium explicabo magnam architecto!
+
            </p>
      Repellendus incidunt doloremque, a cum voluptates esse officia quia veniam architecto. Quibusdam deserunt nulla, dolore perspiciatis accusantium ad aliquam voluptatem iste iure, quae minus ipsa voluptates, sit voluptatum consequatur tempora?
+
            <p>
      Architecto impedit in repellendus, quo dolorum sequi voluptatum omnis maxime perspiciatis aspernatur obcaecati sint iusto tenetur praesentium labore. Natus eveniet quaerat recusandae dignissimos nam sed distinctio quos fugiat aliquid eligendi.
+
                    Although some acquirable and already tested thermoswitches can be found in literature <sup>1,4</sup>, the field is still particularly underexplored. Possibility to design countless synthetic thermoswitches corresponding to different temperatures and of varying structure, is facilitated by computational models and RNA bioinformatics approaches. Together with two pioneers in this field from Vienna University (see <a href="https://2018.igem.org/Team:Vilnius-Lithuania/Attributions">Attributions</a>), we have <var>de novo</var> designed six heat-inducible RNA thermometers previously never mentioned in any paper or literature review. Not only did they complement SynDrop, but also helped expanding the library of well characterized and widely-applicable biobricks.
      Molestias inventore nobis minus aspernatur recusandae asperiores excepturi ipsam voluptas quos, quae voluptatem voluptatibus vero veniam dolores fuga aliquid neque ut dolorem beatae cum temporibus tempora? Iure expedita debitis corrupti.
+
            </P>
      Quae quam earum impedit laborum, nobis aspernatur fugit enim consequuntur provident laboriosam obcaecati doloremque ipsam quis modi quos ratione ipsum beatae? Voluptas, debitis eum! Dolorem accusantium et rem. Veniam, dicta!
+
            <p></p>
      Sequi aut, eos id nemo maiores iste! Dicta cum eos, incidunt aperiam voluptate facilis vero vel deleniti inventore accusantium cupiditate saepe dolore atque quisquam voluptates aliquam amet a! Hic, consectetur.
+
            <h2>Concept of the Model</h2>
  </div>
+
            <p>
</section>
+
                    We have optimized the opening energy of the ribosome docking site, which is a stretch of 30 nucleotides starting at the beginning of the Shine-Dalgarno (SD) sequence downstream into the coding sequence. This region corresponds to the binding footprint of the assembled initiation ribosome and must be unfolded prior to the assembly of the ribosome machinery. The model optimized for that region to have a high opening energy (meaning low translation efficiency) at low temperatures and a low opening energy (high translation efficiency) at high temperatures. Opening energies were calibrated around the mean value of opening energies observed for all protein coding genes in E. coli. When designing custom synthetic RNA thermometers, it was important to take into account the upstream and downstream sequences of our constructs and to model different structures and sequences in order to select only the best ones for practical implementation. Therefore 10 designs for each construct was designed (see figures below) out of which only 1 was selected based on the computed plots of translation efficiency vs. temperature.  
 +
            </p>
 +
            <p></p>
 +
            <h1>Results</h1>
 +
            <p></p>
 +
            <p>
 +
                    the model computed total 40 different thermoswitches for our composite parts, 10 for each:
 +
                    <ol>
 +
                        <li>
 +
                                Mstx-OmpA-GFP Nanobody;
 +
                        </li>
 +
                        <li>
 +
                                GFP Nanobody-Iga-Mstx;
 +
                        </li>
 +
                        <li>
 +
                                Mstx-OmpA-His;
 +
                        </li>
 +
                        <li>
 +
                                His-Iga-Mstx.
 +
                        </li>
 +
                    </ol>
 +
            </p>
 +
            <p>
 +
                    Only 1 design was selected based on the computed plots of translation efficiency vs. temperature.
 +
            </p>
 +
            <p>
 +
                    <strong>Fig. 1</strong> Plots of translation efficiency vs. temperature. On the left hand side: plots of 10 modelled thermoswitches for Mstx-OmpA-GFP Nanobody. On the right hand side: plot of the selected thermoswitch to use with Mstx-OmpA-GFP Nanobody. RNA thermometer termed sw_6 displayed no artifacts, with near control-identical translation efficiency at high temperature and low efficiency at < 25 C.
 +
            </p>
 +
            <p>
 +
                    <strong>Fig. 2</strong> Plots of translation efficiency vs temperature. On the left hand side: plots of 10 modelled thermoswitches for GFP Nanobody-Iga-Mstx. On the right hand side: plot of the selected thermoswitch to use with GFP Nanobody-Iga-Mstx. RNA thermometer termed sw_5 displayed no artifacts, with relatively high translation efficiency at high temperature and largely lower efficiency at < 25 C.
 +
 
 +
            </p>
 +
            <p>
 +
                    <strong>Fig. 3</strong> Plots of translation efficiency vs. temperature. On the left hand side: plots of 10 modelled thermoswitches for Mstx-OmpA-His. On the right hand side: plot of the selected thermoswitch to use with Mstx-OmpA-His. RNA thermometer termed sw_8 displayed no artifacts, with near control-identical translation efficiency at high temperature and low efficiency at < 25 C.
 +
            </p>
 +
            <p>
 +
                    <strong>Fig. 4</strong> Plots of translation efficiency vs temperature. On the left hand side: plots of 10 modelled thermoswitches for His-Iga-Mstx. On the right hand side: plot of the selected thermoswitch to use with His-Iga-Mstx. RNA thermometer termed sw_4 displayed no artifacts, with relatively high translation efficiency at high temperature and largely lower efficiency at < 25 C.
 +
            </p>
 +
            <p>
 +
                    Thermoswitches were initially designed to appropriately melt and function at 37 C. Comparing the first curve in each plot which resembles the original sequence of our constructs without incorporated thermoswitch (control), it can be seen that novel designs show much stronger temperature dependence. However, they did not manage to achieve quite exact 37 C and displayed marginally lower translation efficiency than controls. Some sequences displayed artifacts that showed up as jumps in the efficiency plots. The believed reason was the usage of different SD sequences at low and high temperatures. For in vivo testing we selected designs that did not exhibit such jumps. Another interesting finding was that all thermoswitches designed for Iga protease bearing constructs showed a considerably lower efficiency of translation even at higher temperatures compared to OmpA bearing constructs, meaning that this characteristic was probably attributed to membrane protein structure and would be needed to be addressed in the future.
 +
            </p>
 +
            <p>
 +
                    The model was also applied to check the activity of thermoswitches that we have acquired from literature (see Design and Results/<a href="https://2018.igem.org/Team:Vilnius-Lithuania/Design#RNA_Thermoswitches">RNA Thermoswitches</a>). Our model predicted fair, but viable switching effects for thermoswitch-GFP designs, which were later supported by in vivo measurements.
 +
            </p>
 +
            <p>
 +
                    <strong>Fig. 5</strong> Plots of translation efficiency vs. temperature of the “GJ” thermoswithes-GFP constructs. Thermoswitches GJ2, GJ3, GJ9, GJ10 display similarly fair translation efficiency at 37 C, except for GJ6, which displays notably higher translation efficiency. GJ thermoswitches significantly differ in their activity at lower temperatures, with GJ9 locking the transcription most tightly and GJ3 being the leakiest of all tested designs.
 +
            </p>
 +
            <p></p>
 +
            <h1>Model</h1>
 +
            <p></p>
 +
            <p>
 +
                    A simple in-silico translation-initiation potential model<sup>5</sup> to quantify the likelihood of in vitro translation of a given mRNA sequence from a series of interaction energy parameters at constant temperatures was developed. The model defines the translation-initiation potential σ as:
 +
            </p>
 +
            <p><strong>Fig. 6</strong></p>
 +
            <p>
 +
                    where R is the Boltzmann constant, T the temperature, ΔE<sub>SD</sub> the hybridization energy between the SD and anti-SD sequences, ΔE<sub>tRNA</sub> the hybridization energy of the start codon and its respective anti-codon (i.e, the tRNA<sup>Met</sup>), and ΔE<sub>open</sub> the energy required to unfold the 30-nucleotide-long RDS. Here, ΔE<sub>SD</sub> and ΔE<sub>tRNA</sub> are constant since neither the SD nor the start codon are altered. Consequently, variations in σ are exclusively determined by ΔE<sub>open</sub>. Applying the model to the plasmids with our constructs bearing thermoswitches, enabled us to rationalize translation events, as translatable constructs consistently scored higher σ, or lower ΔE<sub>open</sub>, than non-translatable ones.
 +
            </p>
 +
            <p></p>
 +
            <h2>References</h2>
 +
            <p></p>
 +
            <ol>
 +
                <li>
 +
                        Neupert J, Karcher D, Bock R. Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. Nucleic Acids Res. [Internet]. Oxford University Press; 2008; 36:e124–e124.
 +
                </li>
 +
                <li>
 +
                        Narberhaus F, Waldminghaus T, Chowdhury S. RNA thermometers. FEMS Microbiol. Rev. [Internet]. Wiley/Blackwell (10.1111); 2006; 30:3–16.
 +
                </li>
 +
                <li>
 +
                        Storz G. An RNA thermometer. Genes Dev. [Internet]. Cold Spring Harbor Laboratory Press; 1999; 13:633–6.
 +
                </li>
 +
                <li>
 +
                        Sen S, Apurva D, Satija R, Siegal D, Murray RM. Design of a Toolbox of RNA Thermometers. ACS Synth. Biol. [Internet]. 2017; 6:1461–70.
 +
                </li>
 +
                <li>
 +
                        Zayni S, Damiati S, Moreno-Flores S, Amman F, Hofacker I, Ehmoser EK. Enhancing the cell-free expression of native membrane proteins by in-silico optimization of the coding sequence – an experimental study of the human voltage-dependent anion channel.ioRxiv [Internet]. Cold Spring Harbor Laboratory; 2018; 411694.
 +
                </li>
 +
            </ol>
 +
            </div>
 +
    </section>
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 01:57, 18 October 2018

Modeling

Lorem ipsum, dolor sit amet consectetur adipisicing

Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab

invert