Difference between revisions of "Team:HZAU-China/Basic Part"

Line 794: Line 794:
 
                 <p>Pyroptosis is a form of lytic programmed cell death with inflammation. Recent studies reported that the N-terminal of GSDMD acts as an effector of pyroptosis. Full length GSDMD (GSDMD FL) is cleaved by Caspase 1, releasing the pore-forming domain (GSDMD-N275), which can oligomerize and make pores on the cell membrane. Formation of pores causes cell to swell, leading to membrane rupture and massive leakage of cytosolic contents<sup>1</sup>.</p>
 
                 <p>Pyroptosis is a form of lytic programmed cell death with inflammation. Recent studies reported that the N-terminal of GSDMD acts as an effector of pyroptosis. Full length GSDMD (GSDMD FL) is cleaved by Caspase 1, releasing the pore-forming domain (GSDMD-N275), which can oligomerize and make pores on the cell membrane. Formation of pores causes cell to swell, leading to membrane rupture and massive leakage of cytosolic contents<sup>1</sup>.</p>
 
                 <div class="h2">The N-terminal of GSDMD execute the function of pyroptosis in cells</div>
 
                 <div class="h2">The N-terminal of GSDMD execute the function of pyroptosis in cells</div>
                 <p>We fused eGFP with GSDMD-N275 and GSDMD FL (full length) respectively. Then the corresponding plasmids were transfected into Hela GSDMD KO(knock down) cell. Cell microscopy showed that the cells transfected with GSDMD-N275 underwent pyroptosis while the cells with GSDMD FL did not (<b>Figure 1</b>). We also tested the cell viability through an ATP assay (CellTiter-Glo<sup>®</sup> Luminescent Cell Viability Assay) and demonstrated that GSDMD-N275 and mutants of GSDMD FL have different abilities to induce pyroptosis (<b>Figure 2</b>).</p>
+
                 <p>We fused eGFP with GSDMD-N275 (N-terminal 275 amino acids) and GSDMD FL (full length), respectively. Then the corresponding
 +
                    plasmids were transfected into Hela GSDMD knockout (KO) cell. Cell microscopy showed that the cells
 +
                    transfected with GSDMD-N275 underwent pyroptosis while the cells with GSDMD FL did not (<b>Figure 1</b>).
 +
                    We also tested the cell viability through an ATP assay (CellTiter-Glo<sup>®</sup> Luminescent Cell Viability
 +
                    Assay) and demonstrated that GSDMD-N275 and mutants of GSDMD FL have different abilities to induce
 +
                    pyroptosis (<b>Figure 2</b>).</p>
 
                 <div style="width: 100%; margin: 30px auto">
 
                 <div style="width: 100%; margin: 30px auto">
 
                     <img src="https://static.igem.org/mediawiki/2018/d/d7/T--HZAU-China--basicPart1.png.png" width="100%" alt="">
 
                     <img src="https://static.igem.org/mediawiki/2018/d/d7/T--HZAU-China--basicPart1.png.png" width="100%" alt="">
 
                 </div>
 
                 </div>
                 <p><b>Figure 1.</b> Microscopy of the Hela GSDMD KO cells transfected with pCS2-eGFP-GSDMD FL and pCS2-eGFP-GSDMD-N275, respectively. Pyroptotic cells are pointed by red arrow.</p>
+
                 <p><b>Figure 1.</b> Microscopy of the Hela GSDMD KO cells transfected with pCS2-eGFP-GSDMD FL (above) and
 +
                    pCS2-eGFP-GSDMD-N275 (below), respectively. Pyroptotic cells are pointed by red arrow.</p>
 
                 <div class="collapseDiv">
 
                 <div class="collapseDiv">
 
                     <label for="zhedie-toggle1">Method</label>
 
                     <label for="zhedie-toggle1">Method</label>
Line 804: Line 810:
 
                     <div id="zhedie1" class="text-success text-left">
 
                     <div id="zhedie1" class="text-success text-left">
 
                         <b>Preparation of Cells for transfection</b><br>
 
                         <b>Preparation of Cells for transfection</b><br>
                         1. Grow Hela GSDMD KO cells in a humidified 37℃, 5% CO<sub>2</sub> tissue-culture
+
                         1. Grow Hela GSDMD KO cells in a humidified 37 °C, 5% CO<sub>2</sub> tissue-culture incubator.<br>
                        incubator.<br>
+
                         2. Count the cells using a hemocytometer. Seed in 24-well (5 × 10^4 per well) and grow.<br>
                         2. Count the cells using a hemocytometer. Seed in 24-well (5×10^4 per well) and grow.<br>
+
                         <b>Transfection</b> <br>
                         <b>Transfection</b><br>
+
 
                         1. Dilute 0.5 μg DNA into 50 μl jetPRIME<sup>®</sup> buffer (supplied). Mix by vortexing.<br>
 
                         1. Dilute 0.5 μg DNA into 50 μl jetPRIME<sup>®</sup> buffer (supplied). Mix by vortexing.<br>
 
                         2. Add 1 μl jetPRIME<sup>®</sup>, vortex for 10 s, spin down briefly.<br>
 
                         2. Add 1 μl jetPRIME<sup>®</sup>, vortex for 10 s, spin down briefly.<br>
 
                         3. Incubate for 10 min at RT.<br>
 
                         3. Incubate for 10 min at RT.<br>
                         4. Add 50μl of transfection mix per well drop wise onto the cells in serum containing
+
                         4. Add 50μl of transfection mix per well drop wise onto the cells in serum containing medium,
                        medium, and distribute evenly.<br>
+
                        and distribute evenly.<br>
 
                         5. Gently rock the plates back and forth and from side to side.<br>
 
                         5. Gently rock the plates back and forth and from side to side.<br>
                         6. If needed, replace transfection medium after 4 h by cell growth medium and return the
+
                         6. If needed, replace transfection medium after 4 h by cell growth medium and return the plates
                         plates to the incubator.<br>
+
                         to the incubator.<br>
                         Observation is taken after 1.5 h<br><br>
+
                         Observation is taken after 1.5 h.<br><br>
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
Line 822: Line 827:
 
                     <img src="https://static.igem.org/mediawiki/2018/f/f5/T--HZAU-China--basicPart2.png" width="100%" alt="">
 
                     <img src="https://static.igem.org/mediawiki/2018/f/f5/T--HZAU-China--basicPart2.png" width="100%" alt="">
 
                 </div>
 
                 </div>
                 <p><b>Figure 2.</b> Cell viability of the 293T cells transfected with pCS2-Flag-GSDMD FL, pCS2-Flag-GSDMD-N275, pCS2-Flag-GSDMD L290D, pCS2-Flag-GSDMD Y373D and pCS2-Flag-GSDMD A377D, respectively. Asterisks indicate the statistically significant differences. ATP-based cell viability was measured (n=6).</p>
+
                 <p><b>Figure 2.</b> Cell viability of the 293T cells transfected with pCS2-Flag-GSDMD FL,
 +
                    pCS2-Flag-GSDMD-N275, pCS2-Flag-GSDMD L290D, pCS2-Flag-GSDMD Y373D, pCS2-Flag-GSDMD A377D,
 +
                    respectively. Asterisks indicate the statistically significant differences. ATP-based cell
 +
                    viability was measured (n=6).</p>
 
                 <div class="collapseDiv">
 
                 <div class="collapseDiv">
 
                     <label for="zhedie-toggle2">Method</label>
 
                     <label for="zhedie-toggle2">Method</label>
 
                     <input type="checkbox" id="zhedie-toggle2">
 
                     <input type="checkbox" id="zhedie-toggle2">
 
                     <div id="zhedie2" class="text-success text-left">
 
                     <div id="zhedie2" class="text-success text-left">
                         <b>Preparation of Cells for Infection</b><br>
+
                         <b>Preparation of Cells for ATP assay</b><br>
                         1. Grow Hela GSDMD KO cells in a humidified 37℃, 5% CO<sub>2</sub> tissue-culture
+
                         1. Grow HEK293T cells in a humidified 37 °C, 5% CO<sub>2</sub> tissue-culture incubator.<br>
                        incubator.<br>
+
                         2. Count the cells using a hemocytometer. Seed in 96-well (1 × 10^4 per well) and grow
                         2. Count the cells using a hemocytometer. Seed in 24-well (9×10^4 per well) and grow
+
 
                         overnight.<br>
 
                         overnight.<br>
                         <b>Preparation of Bacteria</b><br>
+
                         3. Transfect 0.5 μg DNA per well.<br>
                        1. Grow bacteria overnight 16 h in 2 mL LB in a 15-mL tube. Incubate at 37℃ in a shaking
+
                         4. Equilibrate the plate and its contents at room temperature for approximately 30 minutes
                        incubator (200 rpm).<br>
+
                         after 20 h.<br>
                        2. Subculture bacteria by transferring 300 μL of the overnight culture into 5 mL of LB in a
+
                         5. Add a volume of CellTiter-Glo<sup>®</sup> Reagent equal to the volume of cell culture medium present in
                        loosely capped 50-mL tube. Incubate at 37℃ in a shaking incubator (200 rpm) to late log
+
                         each well. (add 100 μl of reagent to 100 μl of medium containing cells for a 96-well plate).<br>
                        phase.<br>
+
                         6. Mix contents for 2 minutes on an orbital shaker to induce cell lysis.<br>
                         3. Pellet 1 mL of the <i>Salmonella</i> subculture by centrifugation at 1,000×g in a microfuge for
+
                         7. Allow the plate to incubate at room temperature for 10 minutes to stabilize luminescent
                         2 min at room temperature.<br>
+
                         signal.<br>
                         4. Remove 900 μL of supernatant and gently resuspend the pellet in 900 μL PBS.<br>
+
                         8. Record luminescence.<br><br>
                        <b>Infection</b><br>
+
                        1. Aspirate media and rinse the monolayer twice with PBS.<br>
+
                         2. Inoculate cells with bacteria (MOI = 100) by adding bacteria directly to the
+
                        cell-culture supernatant.<br>
+
                         3. Incubate for 3 h at 37℃ in 5% CO<sub>2</sub>.<br>
+
                         4. Aspirate media and rinse the monolayer twice with PBS.<br>
+
                         5. Add fresh GM containing 100 μg/mL gentamicin and incubate at 37℃ in 5% CO<sub>2</sub>.<br>
+
                         Observation is taken after 2 h.<br><br>
+
  
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
                 <div class="h2">The N-terminal of GSDMD lyses bacteria</div>
+
                 <div class="h2">GSDMD-N275 can lyse bacteria</div>
                 <p>Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) in <i>Salmonella enterica</i> serovar Typhimurium str. SL1344 <i>ΔsifA</i>
+
                 <p>Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) in <i>Salmonella enterica</i>
                    is under the control of P<sub>tet</sub>. The colony-forming unit (CFU) was measured for counting the number of viable bacterial cells (<b>Figure 3</b>).  
+
                    serovar Typhimurium str. SL1344 Δ<i>sifA</i> is under the control of P<sub>tet</sub>. The
                    This result shows that eGFP-GSDMD-N275 exhibits cytotoxicity in bacteria.</p>
+
                    colony-forming unit (CFU)
 +
                    was measured for counting the number of viable bacterial cells (<b>Figure 3</b>). This result shows that
 +
                    eGFP-GSDMD-N275 exhibits cytotoxicity in bacteria.</p>
 
                 <div style="width: 30%; margin: 30px auto">
 
                 <div style="width: 30%; margin: 30px auto">
 
                     <img src="https://static.igem.org/mediawiki/2018/f/fb/T--HZAU-China--basicPart3.jpg" width="100%" alt="">
 
                     <img src="https://static.igem.org/mediawiki/2018/f/fb/T--HZAU-China--basicPart3.jpg" width="100%" alt="">
 
                 </div>
 
                 </div>
                 <p><b>Figure 3.</b> CFU comparison between the SL1344 <i>ΔsifA</i> cells with eGFP-GSDMD-N275 plasmid and with the empty vector.
+
                 <p><b>Figure 3.</b> CFU comparison between the SL1344 Δ<i>sifA</i> cells with eGFP-GSDMD-N275 plasmid
                    In each group, anhydrotetracycline (ATc) (15μg/ml) was added into medium when bacteria grown to logarithmic phase (OD = 0.6~0.8).  
+
                    and with the
                    Vector refers to bacterium containing a high copy number plasmid which only express TetR under the control of P<sub>tet</sub> .  
+
                    empty vector. In each group, ATc (15μg/ml) was added into medium when bacterium grew to logarithmic
                    CFU for vector and eGFP-GSDMD-N275 are shown in the logarithmic form (log10) (n=3). </p>
+
                    phase (OD = 0.6~0.8). Vector refers to bacterium containing a high copy number plasmid which only
 +
                    expresses TetR under the control of P<sub>tet</sub>. CFU for vector
 +
                    and eGFP-GSDMD-N275 are shown in the logarithmic form (log10) (n=3). </p>
 
                 <div class="collapseDiv">
 
                 <div class="collapseDiv">
 
                     <label for="zhedie-toggle3">Method</label>
 
                     <label for="zhedie-toggle3">Method</label>
 
                     <input type="checkbox" id="zhedie-toggle3">
 
                     <input type="checkbox" id="zhedie-toggle3">
 
                     <div id="zhedie3" class="text-success text-left">
 
                     <div id="zhedie3" class="text-success text-left">
                        1. Cell are cultured overnight in LB broth containing corresponding antibiotics, and
+
                      1. Bacteria are cultured overnight in LB broth containing corresponding antibiotics, and
 
                         dilute each 1 volume overnight cultures with 100 volume fresh LB containing antibiotics.
 
                         dilute each 1 volume overnight cultures with 100 volume fresh LB containing antibiotics.
 
                         Culture in 37℃ 200 rpm.<br>
 
                         Culture in 37℃ 200 rpm.<br>
 
                         2. When OD reaching to 0.6-0.8, add anhydrotetracycline with final concentration of
 
                         2. When OD reaching to 0.6-0.8, add anhydrotetracycline with final concentration of
                      15μg/ml to induce the expression of EGFP-GSDMD-N275.<br>
+
                        μg/ml to induce the expression of EGFP-GSDMD-N275.<br>
                         3. Take 100 μl diluted culture to plate on LB agar plates containing appropriate
+
                         3. Take 100 μl diluted culture to plate on LB agar plates containing appropriate concentration
                         concentration of antibody after 1.5 hours of induce.<br>
+
                         of antibody after 1.5 hours of induce.<br>
 
                         Observation is taken overnight.<br><br>
 
                         Observation is taken overnight.<br><br>
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
                 <div class="h2">The N-terminal of GSDMD from lytic bacteria induce cell pyroptosis</div>
+
                 <div class="h2">GSDMD-N275 from lytic bacteria induces host cell pyroptosis</div>
                 <p>Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) is under the control of tet promoter in <i>ΔsifA</i> SL1344.  
+
                 <p>Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) is under the control of tet
                    Hela GSDMD KO cells were infected with <i>ΔsifA</i> SL1344. Inducer ATc (16μg/mL) were added 3h after infection.  
+
                    promoter in Δ<i>sifA</i> SL1344. Hela GSDMD KO cells were infected with Δ<i>sifA</i> SL1344.
                    Microscopy shows that eGFP-GSDMD-N275 locates in cytoplasm after 5 min of induction and triggered pyroptosis after 30 min of induction (<b>Figure 4</b>).
+
                    Inducer ATc
                    After 1.5 h of induction, Hela GSDMD KO cells underwent second necrosis caused by bacterial infection without inducer.
+
                    (16μg/mL) were added 3h after infection. Microscopy shows that eGFP-GSDMD-N275 located in cytoplasm
                      Morphology of this process is similar to pyroptosis<sup>2</sup>. Thus, the population of ruptured cells was counted.  
+
                    after 5 min of induction and triggered pyroptosis after 30 min of induction (<b>Figure 4</b>). After
                      There is 1.96fold change between control group and induced group (<b>Figure 5</b>).  
+
                    1.5 h
                      So the pyroptosis of host cell in the induced group was triggered by eGFP-GSDMD-N275 not by bacterial infection.
+
                    of induction, Hela GSDMD KO cells underwent second necrosis caused by bacterial infection without
 
+
                    inducer. Morphology of this process is similar to pyroptosis<sup>4</sup>. Thus, the population of
 +
                    ruptured
 +
                    cells was counted. There is 1.96 fold change between control group and induced group (<b>Figure 5</b>).
 +
                    So
 +
                    the pyroptosis of host cell in the induced group was triggered by eGFP-GSDMD-N275 not by bacterial
 +
                    infection.
 
                     </p>
 
                     </p>
 
                 <div style="width: 90%; margin: 0 auto">
 
                 <div style="width: 90%; margin: 0 auto">
 
                     <img src="https://static.igem.org/mediawiki/2018/b/b3/T--HZAU-China--basicPart4.png" width="100%" alt="">
 
                     <img src="https://static.igem.org/mediawiki/2018/b/b3/T--HZAU-China--basicPart4.png" width="100%" alt="">
 
                 </div>
 
                 </div>
                 <p><b>Figure 4.</b> Hela GSDMD KO cells were infected with <i>ΔsifA</i> SL1344 containing high copy number plasmids which express eGFP-GSDMD-N275 under the control of ATc.  
+
                 <p><b>Figure 4.</b> Hela GSDMD KO cells were infected with Δ<i>sifA</i> SL1344 containing high copy
                    Photos were captured 5 min, 30min, 1.5h after induction, respectively. </p>
+
                    number plasmids
 +
                    which express eGFP-GSDMD-N275 under the control of ATc. Photographs were captured 5 min, 30 min, 90 min
 +
                    after induction, respectively. </p>
 
                 <div style="width: 50%; margin: 0 auto">
 
                 <div style="width: 50%; margin: 0 auto">
 
                     <img src="https://static.igem.org/mediawiki/2018/2/22/T--HZAU-China--basicPart5.png" width="100%" alt="">
 
                     <img src="https://static.igem.org/mediawiki/2018/2/22/T--HZAU-China--basicPart5.png" width="100%" alt="">
 
                 </div>
 
                 </div>
                 <p><b>Figure 5.</b> Numbers of pyroptotic cells before and after ATc induction. Ruptured cells in a field of view were counted.</p>
+
                 <p><b>Figure 5.</b>Ruptured cells in a
 +
                    field of
 +
                    view were counted. </p>
 
                 <div class="collapseDiv">
 
                 <div class="collapseDiv">
 
                     <label for="zhedie-toggle4">Method</label>
 
                     <label for="zhedie-toggle4">Method</label>
Line 901: Line 913:
 
                     <div id="zhedie4" class="text-success text-left">
 
                     <div id="zhedie4" class="text-success text-left">
 
                         <b>Preparation of Cells for Infection</b><br>
 
                         <b>Preparation of Cells for Infection</b><br>
                         1. Grow Hela GSDMD KO cells in a humidified 37℃, 5% CO<sub>2</sub> tissue-culture
+
                         1. Grow Hela GSDMD KO cells in a humidified 37 °C, 5% CO<sub>2</sub> tissue-culture incubator.<br>
                        incubator.<br>
+
                         2. Count the cells using a hemocytometer. Seed in 24-well (5 × 10^4 per well) and grow
                         2. Count the cells using a hemocytometer. Seed in 24-well (5×10^4 per well) and grow
+
 
                         overnight.<br>
 
                         overnight.<br>
                         <b>Preparation of Bacteria</b><br>
+
                         <b>Preparation of Bacteria</b> <br>
                         1. Grow bacteria overnight 16 h in 2 mL LB in a 15-mL tube. Incubate at 37℃ in a shaking
+
                         1. Grow bacteria overnight 16 h in 2 mL LB in a 15-mL tube. Incubate at 37 °C in a shaking
 
                         incubator (200 rpm).<br>
 
                         incubator (200 rpm).<br>
 
                         2. Subculture bacteria by transferring 300 μL of the overnight culture into 5 mL of LB in a
 
                         2. Subculture bacteria by transferring 300 μL of the overnight culture into 5 mL of LB in a
                         loosely capped 50-mL tube. Incubate at 37℃ in a shaking incubator (200 rpm) to late log
+
                         loosely capped 50-mL tube. Incubate at 37 °C in a shaking incubator (200 rpm) to late log
 
                         phase.<br>
 
                         phase.<br>
                         3. Pellet 1 mL of the <i>Salmonella</i> subculture by centrifugation at 1,000×g in a microfuge for
+
                         3. Pellet 1 mL of the <i>Salmonella</i> subculture by centrifugation at 1,000×g in a microfuge
                         2 min at room temperature.<br>
+
                         for 2
 +
                        min at room temperature.<br>
 
                         4. Remove 900 μL of supernatant and gently resuspend the pellet in 900 μL PBS.<br>
 
                         4. Remove 900 μL of supernatant and gently resuspend the pellet in 900 μL PBS.<br>
 
                         <b>Infection</b><br>
 
                         <b>Infection</b><br>
 
                         1. Aspirate media and rinse the monolayer twice with PBS.<br>
 
                         1. Aspirate media and rinse the monolayer twice with PBS.<br>
                         2. Inoculate cells with bacteria (MOI = 100) by adding bacteria directly to the
+
                         2. Inoculate cells with bacteria (MOI = 100) by adding bacteria directly to the cell-culture
                        cell-culture supernatant.<br>
+
                        supernatant.<br>
                         3. Incubate for 2 h at 37℃ in 5% CO<sub>2</sub>.<br>
+
                         3. Incubate for 2 h at 37 °C in 5% CO<sub>2</sub>.<br>
 
                         4. Aspirate media and wash.<br>
 
                         4. Aspirate media and wash.<br>
                         5. Add fresh GM containing 100 μg/mL gentamicin and 16 μg/mL ATc incubate at 37℃ in 5% CO<sub>2</sub>.<br>
+
                         5. Add fresh GM containing 100 μg/mL gentamicin and 16 μg/mL incubate at 37 °C in 5% CO<sub>2</sub>.<br>
                         Observation is taken after 5 min, 30 min, 1.5 h.<br><br>
+
                         Observation is taken after 5 min, 30 min, 90min.<br><br>
  
 
                     </div>
 
                     </div>

Revision as of 02:03, 18 October 2018

​​​
N-terminal of Gasdermin D (1-275aa)

Pyroptosis is a form of lytic programmed cell death with inflammation. Recent studies reported that the N-terminal of GSDMD acts as an effector of pyroptosis. Full length GSDMD (GSDMD FL) is cleaved by Caspase 1, releasing the pore-forming domain (GSDMD-N275), which can oligomerize and make pores on the cell membrane. Formation of pores causes cell to swell, leading to membrane rupture and massive leakage of cytosolic contents1.

The N-terminal of GSDMD execute the function of pyroptosis in cells

We fused eGFP with GSDMD-N275 (N-terminal 275 amino acids) and GSDMD FL (full length), respectively. Then the corresponding plasmids were transfected into Hela GSDMD knockout (KO) cell. Cell microscopy showed that the cells transfected with GSDMD-N275 underwent pyroptosis while the cells with GSDMD FL did not (Figure 1). We also tested the cell viability through an ATP assay (CellTiter-Glo® Luminescent Cell Viability Assay) and demonstrated that GSDMD-N275 and mutants of GSDMD FL have different abilities to induce pyroptosis (Figure 2).

Figure 1. Microscopy of the Hela GSDMD KO cells transfected with pCS2-eGFP-GSDMD FL (above) and pCS2-eGFP-GSDMD-N275 (below), respectively. Pyroptotic cells are pointed by red arrow.

Preparation of Cells for transfection
1. Grow Hela GSDMD KO cells in a humidified 37 °C, 5% CO2 tissue-culture incubator.
2. Count the cells using a hemocytometer. Seed in 24-well (5 × 10^4 per well) and grow.
Transfection
1. Dilute 0.5 μg DNA into 50 μl jetPRIME® buffer (supplied). Mix by vortexing.
2. Add 1 μl jetPRIME®, vortex for 10 s, spin down briefly.
3. Incubate for 10 min at RT.
4. Add 50μl of transfection mix per well drop wise onto the cells in serum containing medium, and distribute evenly.
5. Gently rock the plates back and forth and from side to side.
6. If needed, replace transfection medium after 4 h by cell growth medium and return the plates to the incubator.
Observation is taken after 1.5 h.

Figure 2. Cell viability of the 293T cells transfected with pCS2-Flag-GSDMD FL, pCS2-Flag-GSDMD-N275, pCS2-Flag-GSDMD L290D, pCS2-Flag-GSDMD Y373D, pCS2-Flag-GSDMD A377D, respectively. Asterisks indicate the statistically significant differences. ATP-based cell viability was measured (n=6).

Preparation of Cells for ATP assay
1. Grow HEK293T cells in a humidified 37 °C, 5% CO2 tissue-culture incubator.
2. Count the cells using a hemocytometer. Seed in 96-well (1 × 10^4 per well) and grow overnight.
3. Transfect 0.5 μg DNA per well.
4. Equilibrate the plate and its contents at room temperature for approximately 30 minutes after 20 h.
5. Add a volume of CellTiter-Glo® Reagent equal to the volume of cell culture medium present in each well. (add 100 μl of reagent to 100 μl of medium containing cells for a 96-well plate).
6. Mix contents for 2 minutes on an orbital shaker to induce cell lysis.
7. Allow the plate to incubate at room temperature for 10 minutes to stabilize luminescent signal.
8. Record luminescence.

GSDMD-N275 can lyse bacteria

Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) in Salmonella enterica serovar Typhimurium str. SL1344 ΔsifA is under the control of Ptet. The colony-forming unit (CFU) was measured for counting the number of viable bacterial cells (Figure 3). This result shows that eGFP-GSDMD-N275 exhibits cytotoxicity in bacteria.

Figure 3. CFU comparison between the SL1344 ΔsifA cells with eGFP-GSDMD-N275 plasmid and with the empty vector. In each group, ATc (15μg/ml) was added into medium when bacterium grew to logarithmic phase (OD = 0.6~0.8). Vector refers to bacterium containing a high copy number plasmid which only expresses TetR under the control of Ptet. CFU for vector and eGFP-GSDMD-N275 are shown in the logarithmic form (log10) (n=3).

1. Bacteria are cultured overnight in LB broth containing corresponding antibiotics, and dilute each 1 volume overnight cultures with 100 volume fresh LB containing antibiotics. Culture in 37℃ 200 rpm.
2. When OD reaching to 0.6-0.8, add anhydrotetracycline with final concentration of μg/ml to induce the expression of EGFP-GSDMD-N275.
3. Take 100 μl diluted culture to plate on LB agar plates containing appropriate concentration of antibody after 1.5 hours of induce.
Observation is taken overnight.

GSDMD-N275 from lytic bacteria induces host cell pyroptosis

Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) is under the control of tet promoter in ΔsifA SL1344. Hela GSDMD KO cells were infected with ΔsifA SL1344. Inducer ATc (16μg/mL) were added 3h after infection. Microscopy shows that eGFP-GSDMD-N275 located in cytoplasm after 5 min of induction and triggered pyroptosis after 30 min of induction (Figure 4). After 1.5 h of induction, Hela GSDMD KO cells underwent second necrosis caused by bacterial infection without inducer. Morphology of this process is similar to pyroptosis4. Thus, the population of ruptured cells was counted. There is 1.96 fold change between control group and induced group (Figure 5). So the pyroptosis of host cell in the induced group was triggered by eGFP-GSDMD-N275 not by bacterial infection.

Figure 4. Hela GSDMD KO cells were infected with ΔsifA SL1344 containing high copy number plasmids which express eGFP-GSDMD-N275 under the control of ATc. Photographs were captured 5 min, 30 min, 90 min after induction, respectively.

Figure 5.Ruptured cells in a field of view were counted.

Preparation of Cells for Infection
1. Grow Hela GSDMD KO cells in a humidified 37 °C, 5% CO2 tissue-culture incubator.
2. Count the cells using a hemocytometer. Seed in 24-well (5 × 10^4 per well) and grow overnight.
Preparation of Bacteria
1. Grow bacteria overnight 16 h in 2 mL LB in a 15-mL tube. Incubate at 37 °C in a shaking incubator (200 rpm).
2. Subculture bacteria by transferring 300 μL of the overnight culture into 5 mL of LB in a loosely capped 50-mL tube. Incubate at 37 °C in a shaking incubator (200 rpm) to late log phase.
3. Pellet 1 mL of the Salmonella subculture by centrifugation at 1,000×g in a microfuge for 2 min at room temperature.
4. Remove 900 μL of supernatant and gently resuspend the pellet in 900 μL PBS.
Infection
1. Aspirate media and rinse the monolayer twice with PBS.
2. Inoculate cells with bacteria (MOI = 100) by adding bacteria directly to the cell-culture supernatant.
3. Incubate for 2 h at 37 °C in 5% CO2.
4. Aspirate media and wash.
5. Add fresh GM containing 100 μg/mL gentamicin and 16 μg/mL incubate at 37 °C in 5% CO2.
Observation is taken after 5 min, 30 min, 90min.

Basic Part Table
Name Type Description Designer Length(bp)
BBa_K2632002 Promoter Promoter sifA Mo Qiqin 331
BBa_K2632003 Coding N-terminal of GasderminD (1-275aa) Zhujun Xia 825
BBa_K2632004 Coding Full length Gasdermin D Zhujun Xia 1455
BBa_K2632005 Coding L290D mutant of full length Gasdermin D Zhujun Xia 1455
BBa_K2632007 Coding A377D mutant of full length Gasdermin D. Zhujun Xia 1455
Reference

1 Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111-116, doi:10.1038/nature18590 (2016).

2 He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell research 25, 1285-1298, doi:10.1038/cr.2015.139 (2015).

Basic Part

N-terminal of Gasdermin D

Basic Part Table

Back to Top
Composite Part