Line 17: | Line 17: | ||
<p class="lead text-white lh-180">CAncer PersOnalized Encapsulin Immunotherapy and Relapse Assay</p> | <p class="lead text-white lh-180">CAncer PersOnalized Encapsulin Immunotherapy and Relapse Assay</p> | ||
− | + | <a href="https://2018.igem.org/Team:EPFL/Description" class="btn btn-white btn-circle btn-translate--hover btn-icon mr-sm-4 scroll-me"> | |
+ | |||
<span class="btn-inner--text">Learn more about our project</span> | <span class="btn-inner--text">Learn more about our project</span> | ||
<span class="btn-inner--icon"><i class="fas fa-angle-right"></i></span> | <span class="btn-inner--icon"><i class="fas fa-angle-right"></i></span> |
Revision as of 02:22, 18 October 2018
CAPOEIRA
CAncer PersOnalized Encapsulin Immunotherapy and Relapse Assay
Learn more about our projectWhat is CAPOEIRA ?
While Melanoma remains the deadliest form of skin cancer, immunotherapy approaches can harness our immune system to defeat it! Yet, current immuno-treatments suffer from high costs, limited accessibility, and poor specificity. Our project “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance. First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger T-cells’ attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to fight back!
This is CAPOEIRA
Bioinformatics
First, a bioinformatic pipeline integrating state-of-the-art tools identifies our target: melonoma neoantigens, the fingerprints of cancer cells
Vaccine
Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes
Dendritic cell Activation
This encapsulin vaccine activates dendritic cells which trigger T-cell's attack on the neoantigen bearing cancer cells
Follow-up
Nevertheless, we don't underestimate a defeated villain! To detect potential relapse we use techniques like CRISPR-Cas12a to detect circulationg tumor miRNA and DNA