Difference between revisions of "Team:UCL/Description"

Line 1: Line 1:
<html>
+
 
 +
{{UCL/BootstrapCSS}}
 +
{{UCL/Style}}
 +
 
 +
<html lang="en">
 
<head>
 
<head>
     <title>UCL iGEM 2018</title>
+
     <meta charset="UTF-8">
     <meta name="viewport" content="width=device-width, initial-scale=1">
+
     <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0">
 +
    <meta http-equiv="X-UA-Compatible" content="ie=edge">
 +
    <title>UCL SETA - Model</title>
 +
    <link rel="icon" href="https://static.igem.org/mediawiki/2018/7/73/T--UCL--Logo2.png">
 +
   
 
</head>
 
</head>
<style>
 
  
#sideMenu,
+
<script type="text/javascript" src="https://2018.igem.org/Template:UCL/BootstrapJS?action=raw&ctype=text/javascript"></script>
#top_title {
+
<script type="text/javascript" src="https://2018.igem.org/Template:UCL/JQuery?action=raw&ctype=text/javascript"></script>
    display: none; //removes the top iGEM logo thing
+
<script type="text/javascript" src="https://2018.igem.org/Template:UCL/WowJS?action=raw&ctype=text/javascript"></script>
}
+
  
#content {
 
    width: 100vw;
 
    padding: 0px;
 
    border: none;
 
    color: black;
 
    margin-left: auto;
 
    margin-right: auto;
 
    background-color: #fff;
 
    position: relative;
 
}
 
  
/* Header */
+
<script>
 +
$(document).ready(function(){
 +
  $("a").on('click', function(event) {
 +
    if (this.hash !== "") {
 +
      event.preventDefault();
 +
      var hash = this.hash;
 +
      $('html, body').animate({
 +
        scrollTop: $(hash).offset().top - 100
 +
      }, 1500, function(){
 +
        window.location.hash = hash;
 +
      });
 +
    }
 +
  });
 +
});
 +
</script>
  
ul {
+
     <script>
     list-style-type: none;
+
        new WOW().init();
    margin: 0;
+
     </script>
     padding: 0;
+
    overflow: hidden;
+
    background-color: none;
+
    list-style-image: none; //removes the iGEM wiki bullets
+
}
+
  
li {
+
<body>
    float: left;
+
<div class="background_img_igem">
}
+
  <div class="navbarzindex">
 +
  <div class="navbar-brand_igem"><a href="https://2018.igem.org/Team:UCL">
 +
        <img class="img-logo_igem" src="https://static.igem.org/mediawiki/2018/7/73/T--UCL--Logo2.png" ></a>
 +
    </div>
  
.topnav {
+
<div class="topnav_igem" id="myTopnav_igem">
  overflow: hidden;
+
<div class="floatright_igem">
  background-color: white;
+
<a href="javascript:void(0);" style="font-size:21px;" class="icon_igem" onclick="myFunction()">&#9776;</a>
   width: 100%;
+
   <div class="dropdown_igem">
}
+
    <button class="dropbtn_igem"onclick="People()">People
  
.topnav a {
+
    </button>
  float: left;
+
    <div class="dropdown-content_igem"id="dropdownpeople_igem">
  color: black;
+
        <a href="https://2018.igem.org/Team:UCL/Team">Team</a>
  text-align: center;
+
        <a href="https://2018.igem.org/Team:UCL/Attributions">Attributions</a>
  padding: 10px 10px;
+
        <a href="https://2018.igem.org/Team:UCL/Attributions#Sponsors">Sponsors</a>
  text-decoration: none;
+
    </div>
   font-size: 20px;
+
   </div>
   font-family: futura;
+
   <div class="dropdown_igem">
  display: inline-grid;
+
    <button class="dropbtn_igem"onclick="Project()">Project
}
+
  
.topnav a:hover {
+
    </button>
  background-color: white;
+
    <div class="dropdown-content_igem"id="dropdownproject_igem">
  color: tomato;
+
        <a href="https://2018.igem.org/Team:UCL/Description">Description</a>
}
+
        <a href="https://2018.igem.org/Team:UCL/Results">Results</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Demonstrate">Demonstrate</a>
 +
        <a href="https://2018.igem.org/Team:UCL/InterLab">InterLab</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Safety">Safety</a>
 +
    </div>
 +
  </div>
 +
  <div class="dropdown_igem">
 +
    <button class="dropbtn_igem"onclick="Parts()">Parts
  
.topnav a.active {
+
    </button>
  background-color: #tomato;
+
    <div class="dropdown-content_igem"id="dropdownparts_igem">
   color: white;
+
        <a href="https://2018.igem.org/Team:UCL/Design">Part Design</a>
}
+
        <a href="https://2018.igem.org/Team:UCL/Parts">Parts</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Improve">Improved Part</a>
 +
    </div>
 +
   </div>
 +
  <div class="dropdown_igem">
 +
    <button class="dropbtn_igem"onclick="Modelling()">Modelling
  
 +
    </button>
 +
    <div class="dropdown-content_igem"id="dropdownmodelling_igem">
 +
        <a href="https://2018.igem.org/Team:UCL/Model">Modelling</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Model#Intein">Intein</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Model#Intein_Polymerisation">Intein Polymerisation</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Model#LAMMPS">LAMMPS</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Model#Scale_Up">Scale Up</a>
 +
    </div>
 +
  </div>
 +
  <div class="dropdown_igem">
 +
    <button class="dropbtn_igem"onclick="Humanpractices()">Human Practices
  
li .dropdown {
+
    </button>
     position: relative;
+
     <div class="dropdown-content_igem"id"dropdownhumanpractices_igem">
    display: inline-block;
+
        <a href="https://2018.igem.org/Team:UCL/Human_Practices">Human Practices</a>
}
+
        <a href="https://2018.igem.org/Team:UCL/Public_Engagement">Public Engagement</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Collaborations">Collaborations</a>
 +
    </div>
 +
  </div>
 +
  <div class="dropdown_igem">
 +
    <button class="dropbtn_igem"onclick="Notebook()">Notebook
  
li a:hover, .dropdown:hover .dropbtn{
+
    </button>
    color: tomato;
+
    <div class="dropdown-content_igem"id="dropdownnotebook_igem">
     background-color: white;
+
        <a href="https://2018.igem.org/Team:UCL/Notebook">Notebook</a>
}
+
        <a href="https://2018.igem.org/Team:UCL/Achievements">Achievements</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Experiments">Experiments</a>
 +
     </div>
 +
  </div>
  
.dropdown .dropbtn {
 
    border: none;
 
    outline: none;
 
    color: black;
 
    text-align: center;
 
    padding: 10px 10px;
 
    text-decoration: none;
 
    font-size: 20px;
 
    font-family: futura;
 
    margin: 0;
 
    background-color: white;
 
}
 
  
.dropdown-content {
+
</div>
    display: none;
+
</div>
    position: absolute;
+
</div>
    background-color: tomato;
+
    min-width: 90px;
+
    box-shadow: 0px 8px 16px 0px rgba(0, 0, 0, 0.2)
+
}
+
  
.dropdown-content a {
+
<script>
     color: white;
+
  $(window).on('scroll',function(){
     padding: 12px 16px;
+
     if($(window).scrollTop()){
     text-decoration: none;
+
      $('.navbarzindex').addClass('black');
     font-size: 15px;
+
     }
     display: block;
+
     else {
     text-align: left;
+
      $('.navbarzindex').removeClass('black');
 +
     }
 +
  })
 +
</script>
 +
<script>
 +
function myFunction() {
 +
    var x = document.getElementById("myTopnav_igem");
 +
     if (x.className === "topnav_igem") {
 +
        x.className += " responsive";
 +
     } else {
 +
        x.className = "topnav_igem";
 +
    }
 
}
 
}
 +
</script>
  
.dropdown-content a:hover {
 
    background-color: #f1f1f1
 
}
 
  
.dropdown:hover .dropdown-content {
 
    display: block;
 
}
 
  
#rcorners1 {
+
<script>
     border-radius: 20px;
+
(function(){
     border: 2px solid tomato;
+
     var dropDownClass = 'dropdown-content_igem';
     padding: 3px;
+
     var showClass = 'show_igem';
    width: 90px;
+
     var dropDowns = document.getElementsByClassName('dropdown_igem');
    height: 96px;
+
}
+
  
#rcorners2 {
+
    var open = function(e){
    border-radius: 17px;
+
        var openDropDown = e.target.nextElementSibling;
    padding: 0px;
+
        var dropdowns = document.getElementsByClassName(dropDownClass);
    width: 90px;
+
    height: 25px;
+
    text-align: center;
+
    background-position: center;
+
}
+
  
#rcorners3 {
+
        openDropDown.classList.toggle(showClass);
    border-radius: 17px;
+
    padding: 0px;
+
    width: 90px;
+
    height: 25px;
+
    text-align: center;
+
    background-position: center;
+
}
+
  
/* Content */
+
        var closeDropDown = function(event) {
 +
            if (event.target === e.target) {
 +
                return;
 +
            }
 +
            if (openDropDown.classList.contains(showClass)) {
 +
                openDropDown.classList.remove(showClass);
 +
            }
 +
            window.removeEventListener('click', closeDropDown);
 +
        };
 +
        window.addEventListener('click', closeDropDown);
 +
    }
  
@font-face{
+
     for(var i = 0; i < dropDowns.length; i++){
     font-family: Futura; src: url(Futura.otf);
+
        dropDowns[i].children[0].addEventListener('click', open);
}
+
    }
 +
}());
 +
</script>
  
h1 {
 
    margin-top: 10;
 
    font-family: "Futura", Gil Sans, arial, sans-serif;
 
    font-size: 40;
 
    color: tomato;
 
    text-align: center;
 
    padding: 20px !important;
 
}
 
  
h2 {
+
<script type="text/javascript" src="https://2018.igem.org/Template:UCL/ScrollToFixed?action=raw&ctype=text/javascript"></script>
    margin-top: 10;
+
    font-family: futura;
+
    font-size: 25;
+
    color: tomato;
+
    text-align: center;
+
    padding: 10px !important;
+
}
+
  
p {
+
<script>
     margin-top: 10;
+
$(document).ready(function() {
    margin-left: 10;
+
     $('#sidenav').scrollToFixed({ marginTop: 250 });
    margin-right: 10;
+
});
    font-family: avenir;
+
</script>
    font-size: 16;
+
    padding: 20px !important;
+
}
+
  
/* Footer */
 
  
footer {
+
<!-- CONTENT******************************************************************************************************************************************************* -->
    background-color: white !important;
+
<div class="container">
    padding: 0px;
+
    text-align: center;
+
    margin: 0;
+
    table-layout:fixed;
+
    font-size: 30 !important;
+
    margin-left: 0 !important;
+
    margin-right: 0 !important;
+
}
+
  
table {
+
     <div class="container">
     font-family: futura;
+
        <img class="wow fadeInUp subpage_img_igem" src="../resources/Images/model.svg" data-wow-duration="2s" data-wow-delay="0.1s"/>
    color: black !important;
+
        <div class="h1_igem_subpage">Project Description</div>
     border-style: hidden;
+
     </div>
     table-layout: fixed;
+
     <div class="container containter-fluid container_igem">
    font-size: 16 !important;
+
        <div id="sidenav" class="sidenav">
    background-color: transparent;
+
          <a href="#TBP">The Biomaterials Problem</a>
    width: 100%;
+
          <a href="#TTS">The Theoretical Solution</a>
    border-collapse: collapse;
+
          <a href="#TIM">The Intein Miracle</a>
}
+
          <a href="#MAO">Modular and Orthogonal</a>
 +
          <a href="#ASSM">A Spider Silk Model</a>
  
td, th {
+
        </div>
    font-family: avenir;
+
    border: 1px solid transparent;
+
    background-color: white;
+
    text-align: left;
+
    padding: 5px;
+
    text-align: center;
+
    text-decoration: none;
+
    height: inherit;
+
}
+
  
tr {
+
        <section id="TBP">
    height: 0;
+
            <div class="card card_igem wow fadeInUp" data-wow-duration="2s" data-wow-delay="0.1s">
}
+
                <div class="card-title text-center">
 +
                    <h4>The Biomaterials Problem</h4>
 +
                </div>
 +
                <div class="card-body text-justify">
 +
                    <div class="container">
 +
                        <div class="row">
 +
                            <div class="mmmm col-sm-10 mmmm mrfont">
 +
                                <p class="card-text card-text_igem text-justify">
 +
                                  Biomaterials have the ability to replace animal leather, plastic and textiles whilst simultaneously leaving a smaller carbon footprint. Synthetic silk, collagen, elastin and keratin are biomaterials which are commonly referred to when discussing replacements to our current harmful chemical polymers. The biomaterials manufacturing industry is in need of a modular platform capable of polymerising and functionalizing these proteins. This would enable the manufacturers to create tunable materials with varying properties.
  
</style>
 
  
<body>
+
                                </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </section>
  
<div class="topnav">
+
        <section id="TTS">
<ul>
+
            <div class="card card_igem wow fadeInUp" data-wow-duration="2s" data-wow-delay="0.1s">
    <li><a href="https://2018.igem.org/Team:UCL">
+
                <div class="card-title text-center">
        <img src="https://static.igem.org/mediawiki/2018/7/73/T--UCL--Logo2.png" width="70" align="middle"></a></li>
+
                    <h4>The Theoretical Solution</h4>
    <li class="dropdown">
+
                </div>
      <button class="dropbtn">Project
+
                <div class="card-body text-justify">
        <i class="fa fa-caret-down"></i>
+
                    <div class="container">
      </button>
+
                        <div class="row">
        <div class="dropdown-content" class="center" id="rcorners1">
+
                            <div class="col-md-10 mmmm mrfont">
            <a href="https://2018.igem.org/Team:UCL/Description" id="rcorners2">Description</a>
+
                              <p class="card-text card-text_igem text-justify">
            <a href="#parts" id="rcorners3">BioBricks</a>
+
                                A tunable platform in biomaterials means proteins of different properties can be fused together in a reliable manner. Ideally, steric hindrance would be negligible when fusing proteins. Furthermore, you should be able to control the amount of polymerisation and how long polymers are. Polymer length is a key parameter to enabling tunable properties as this will impact on their behaviour.
            <a href="https://2018.igem.org/Team:UCL/Results" id="rcorners3">Results</a>
+
                              </p>
            <a href="https://2018.igem.org/Team:UCL/InterLab" id="rcorners3">InterLab</a>
+
                            </div>
        </div>
+
                        </div>
    </li>
+
                    </div>
<li class="dropdown">
+
                 </div>
      <button class="dropbtn">Modelling
+
        <i class="fa fa-caret-down"></i>
+
      </button>
+
        <div class="dropdown-content" class="center" id="rcorners1">
+
            <a href="#description" id="rcorners2">Equation</a>
+
        </div>
+
    </li>
+
<li class="dropdown">
+
      <button class="dropbtn">Human Practices
+
        <i class="fa fa-caret-down"></i>
+
      </button>
+
    </li>
+
    <li class="dropdown">
+
          <button class="dropbtn">Team
+
            <i class="fa fa-caret-down"></i>
+
          </button>
+
            <div class="dropdown-content" class="center" id="rcorners1">
+
                <a href="https://2018.igem.org/Team:UCL/Team" id="rcorners2">People</a>
+
                 <a href="#description" id="rcorners2">Attributions</a>
+
 
             </div>
 
             </div>
         </li>
+
         </section>
<li class="dropdown">
+
      <button class="dropbtn">Awards
+
        <i class="fa fa-caret-down"></i>
+
      </button>
+
    </li>
+
  
</ul>
+
        <section id="TIM">
</div>
+
            <div class="card card_igem wow fadeInUp" data-wow-duration="2s" data-wow-delay="0.1s">
 +
                <div class="card-title text-center">
 +
                    <h4>The Intein Miracle</h4>
 +
                </div>
 +
                <div class="card-body text-justify">
 +
                    <div class="container">
 +
                        <div class="row">
 +
                            <div class="col-md-10 mmmm mrfont">
 +
                              <p class="card-text card-text_igem text-justify">
 +
                              Since Anraku and Stevens discovered intein proteins in 1990, protein engineering has had a powerful control element added to their toolbox. Inteins enable proteins of choice to fuse together simultaneously leaving behind an insignificant scar. The size of this amino acid scar means steric hindrance is minimal and does not impede on natural protein folding. Split inteins are synthesised individually and when they come in close contact they will fuse N- and C- termini and excise out the exteins. This enables two biomaterial proteins to be fused together.
 +
                              </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </section>
  
<div class="column full_size">
 
  
  <h2><font size="5">Spider silk as a biomaterial</font></h2>
 
  <p style="font-family: avenir"><font size="3">Spider silk is famous for its mechanical properties including strength and toughness, but it is also biodegradable and biocompatible. The cannibalistic nature of spiders renders the harvesting challenging. Therefore, recombinant spider silks have been developed to produce synthetic spider silks in bacteria. <br></br>
 
  
  The spider silk fibres can be arranged in a variety of biomaterial structures such as hydrogels, non-woven filters, spheres and capsules, and biofilms. These can be used as cell scaffolds, wound healing, drug delivery, cosmetics and textiles.<br></br>
 
  
  The structure of the encoded protein guarantees a direct control of its self-assembly through pH changes, hence preventing aggregation of the final fibre. While this occurs naturally in silk-producing spiders, it can be effectively replicated in the lab via controlling the production with targeted PI control systems.
+
        <section id="MAO">
  </font></p>
+
            <div class="card card_igem wow fadeInUp" data-wow-duration="2s" data-wow-delay="0.1s">
 +
                <div class="card-title text-center">
 +
                    <h4>Modular and Orthogonal</h4>
 +
                </div>
 +
                <div class="card-body text-justify">
 +
                    <div class="container">
 +
                        <div class="row">
 +
                            <div class="col-md-10 mmmm mrfont">
 +
                              <p class="card-text card-text_igem text-justify">
 +
                                SETA is taking intein polymers one step further by creating a modular platform for polymerization and functionalization of proteins. Fixed restriction sites create a plug-and-play tool for inserting biomaterial proteins in between inteins. The modular platform consists of two orthogonal intein flanked monomers and an intein passenger for capping. The intein monomer tool enables endless polymerisation by fusing biomaterial proteins to each other whilst the intein passenger stops this process by fusing a functional protein with no flanking inteins.
 +
                              </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </section>
  
  <h2><font size="5">Our approach</font></h2>
+
        <section id="ASSM">
 +
            <div class="card card_igem wow fadeInUp" data-wow-duration="2s" data-wow-delay="0.1s">
 +
                <div class="card-title text-center">
 +
                    <h4>A Spider Silk Model</h4>
 +
                </div>
 +
                <div class="card-body text-justify">
 +
                    <div class="container">
 +
                        <div class="row">
 +
                            <div class="col-md-10 mmmm mrfont">
 +
                              <p class="card-text card-text_igem text-justify">
 +
                                Spider silk gained fame thanks to its mechanical properties rendering it stronger than steel. The protein biopolymer is also biodegradable and biocompatible making it an ideal substitute to undegradable chemical polymers like plastics. Given the novelty value amongst the public, the abundance of literature and the presence of growing industry, we decided to model SETA on spider silk polymerisation and functionalization.
 +
                              </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </section>
  
  <p style="margin-bottom: 70; font-family: avenir"><font size="3">Previous iGEM teams have focused on the possibilities linked with spider silk for biomaterial applications, the UCL iGEM 2018 team, however wants to explore the properties of spider silk for the creation of widely applicable biomaterials, spanning from recovery of metals to tissue engineering.<br></br>
 
  
  Our initial design is to use a SpyCatcher-Silk fusion protein to create a modular platform for the functionalisation of spider silk proteins. This can be expanded upon to create engineered spider silk with metal binding proteins for metal recovery or growth factors for tissue engineering and regenerative medicine. <br></br>
 
 
  By collaborating with the UCL Department of Biochemical Engineering we intend to go beyond a simple proof of principle by developing a production process at a manufacturing scale. We intend to develop a large-scale model through real testing at benchtop and pilot scales.
 
  </font></p>
 
  
 +
    </div>
 +
</div>
 
</div>
 
</div>
 +
<div class="footer">
 +
    <div class="container">
 +
        <div class="row">
 +
            <div class="col-lg-4">
 +
                <center>
 +
                    <div class="h2_footer_igem">Our Location</div>
 +
                    University College London<br />
 +
  Gower St, Bloomsbury<br />London <br />WC1E 6BT
 +
                    <span></span>
  
<div class="clear extra_space"></div>
+
                </center>
 +
            </div>
 +
            <div class="col-lg-4">
 +
                <center>
 +
                    <div class="h2_footer_igem">Contact Us</div>
 +
                  ucl.igem@ucl.ac.uk
 +
                    <a class="footer_img_igem" href="https://www.ucl.ac.uk/">
 +
                        <img src="https://static.igem.org/mediawiki/2018/f/ff/T--UCL--UCLLogo.jpeg" height="100rem;" />
 +
                    </a>
 +
                </center>
 +
            </div>
 +
            <div class="col-lg-4">
 +
                <center>
 +
                    <div class="h2_footer_igem">Follow Us</div>
 +
                    <a href="https://www.facebook.com/UCLiGEM/"class="contacticons">
 +
                        <img src="https://static.igem.org/mediawiki/2018/c/c4/T--UCL--FBLogo.svg" style="padding-top:1em;" height="62rem;"/>
 +
                    </a>
 +
                    <a href="https://twitter.com/ucligem?lang=en"class="contacticons">
 +
                        <img src="https://static.igem.org/mediawiki/2018/e/ed/T--UCL--TwitterLogo.svg" style="padding-top:1em;" height="62rem;"/>
 +
                    </a>
 +
                    <a href="https://www.instagram.com/ucl.igem/"class="contacticons">
 +
                        <img src="https://static.igem.org/mediawiki/2018/3/31/T--UCL--InstaLogo.png" style="padding-top:1em;" height="62rem;"/>
  
 +
                    </a>
 +
                </center>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</div>
 
</body>
 
</body>
 
<footer>
 
<table>
 
  <tr>
 
    <th style="font-family:futura; background-color:white; border:1px solid transparent"><font size= 5; color=tomato>Contact Us</font></th>
 
    <th style="font-family:futura; background-color:white; border:1px solid transparent"><font size= 5; color=tomato>Sponsors</font></th>
 
    <th style="font-family:futura; background-color:white; border:1px solid transparent"><font size= 5; color=tomato>Follow Us</font></th>
 
  </tr>
 
  <tr>
 
      <td style="border:1px solid transparent">
 
          <p style="font-family:avenir; background-color:white; text-align:center"><font size= 3>University College London
 
              <br></br>Gower Street - London - WC1E 6BT
 
              <br></br>Biochemical Engineering Department
 
              <br></br>+44 (0)20 7679 2000
 
              <br></br><a href = "mailto: ucligem2018@gmail.com">ucligem2018@gmail.com</a>
 
          </p>
 
        </td>
 
      <td style="border:1px solid transparent"><img src="http://placehold.it/200x100/e4dede/c4baba"></td>
 
        <td style="border:1px solid transparent">
 
          <a href="https://www.facebook.com/UCLiGEM/">
 
            <img src="https://static.igem.org/mediawiki/2018/e/e6/T--UCL--facebook58.png"><br></br></a>
 
          <a href="https://twitter.com/ucligem?lang=en">
 
            <img src="https://static.igem.org/mediawiki/2018/a/a2/T--UCL--twitter1.png" width="60" height="60"><br></br></a>
 
          <a href="https://www.instagram.com/ucl.igem/">
 
            <img src="https://static.igem.org/mediawiki/2018/7/79/T--UCL--instagram.png" width="60" height="60"><br></br></a>
 
        </td>
 
  </tr>
 
</table>
 
 
</footer>
 
 
</html>
 

Revision as of 02:52, 18 October 2018

UCL SETA - Model

Project Description

The Biomaterials Problem

Biomaterials have the ability to replace animal leather, plastic and textiles whilst simultaneously leaving a smaller carbon footprint. Synthetic silk, collagen, elastin and keratin are biomaterials which are commonly referred to when discussing replacements to our current harmful chemical polymers. The biomaterials manufacturing industry is in need of a modular platform capable of polymerising and functionalizing these proteins. This would enable the manufacturers to create tunable materials with varying properties.

The Theoretical Solution

A tunable platform in biomaterials means proteins of different properties can be fused together in a reliable manner. Ideally, steric hindrance would be negligible when fusing proteins. Furthermore, you should be able to control the amount of polymerisation and how long polymers are. Polymer length is a key parameter to enabling tunable properties as this will impact on their behaviour.

The Intein Miracle

Since Anraku and Stevens discovered intein proteins in 1990, protein engineering has had a powerful control element added to their toolbox. Inteins enable proteins of choice to fuse together simultaneously leaving behind an insignificant scar. The size of this amino acid scar means steric hindrance is minimal and does not impede on natural protein folding. Split inteins are synthesised individually and when they come in close contact they will fuse N- and C- termini and excise out the exteins. This enables two biomaterial proteins to be fused together.

Modular and Orthogonal

SETA is taking intein polymers one step further by creating a modular platform for polymerization and functionalization of proteins. Fixed restriction sites create a plug-and-play tool for inserting biomaterial proteins in between inteins. The modular platform consists of two orthogonal intein flanked monomers and an intein passenger for capping. The intein monomer tool enables endless polymerisation by fusing biomaterial proteins to each other whilst the intein passenger stops this process by fusing a functional protein with no flanking inteins.

A Spider Silk Model

Spider silk gained fame thanks to its mechanical properties rendering it stronger than steel. The protein biopolymer is also biodegradable and biocompatible making it an ideal substitute to undegradable chemical polymers like plastics. Given the novelty value amongst the public, the abundance of literature and the presence of growing industry, we decided to model SETA on spider silk polymerisation and functionalization.