Difference between revisions of "Team:Vilnius-Lithuania/Model"

Line 879: Line 879:
 
             </p>
 
             </p>
 
             <p>
 
             <p>
                     The model was also applied to check the activity of thermoswitches that we have acquired from literature (see Design and Results/<a href="https://2018.igem.org/Team:Vilnius-Lithuania/Design#RNA_Thermoswitches">RNA Thermoswitches</a>). Our model predicted fair, but viable switching effects for thermoswitch-GFP designs, which were later supported by in vivo measurements.
+
                     The model was also applied to check the activity of thermoswitches that we have acquired from literature (see <a href="https://2018.igem.org/Team:Vilnius-Lithuania/Design">Design and Results</a>/<a href="https://2018.igem.org/Team:Vilnius-Lithuania/Design#RNA_Thermoswitches">RNA Thermoswitches</a>). Our model predicted fair, but viable switching effects for thermoswitch-GFP designs, which were later supported by in vivo measurements.
 
             </p>
 
             </p>
 
             <p>
 
             <p>

Revision as of 21:10, 4 November 2018

Modeling

Mathematical model

Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab

invert