Difference between revisions of "Team:CPU CHINA/Demonstrate"

Line 275: Line 275:
 
<br/>
 
<br/>
 
<br/>
 
<br/>
 +
 +
 +
<h5>[1] Cai, X., Hagedorn, C. H., & Cullen, B. R. (2004). Human micrornas are processed from capped, polyadenylated transcripts that can also function as mrnas. <i>RNA, 10</i>(12), 1957.
 +
<h5>[2] Amuthan, G. (2004). The microprocessor complex mediates the genesis of micrornas. <i>Nature, 432</i>(7014), 235-40.
 +
<h5>[3] Han, J., Lee, Y., Yeom, K. H., Nam, J. W., Heo, I., & Rhee, J. K., et al. (2006). Molecular basis for the recognition of primary micrornas by the drosha-dgcr8 complex. <i>Cell, 125</i>(5), 887-901.
 +
<h5>[4] Castanotto, D., & Rossi, J. J. (2009). The promises and pitfalls of rna-interference-based therapeutics. <i>Nature, 457</i>(7228), 426-433.
 +
<h5>[5] Zeng, Y., & Cullen, B. R. (2005). Efficient processing of primary microrna hairpins by drosha requires flanking nonstructured rna sequences. <i>Journal of Biological Chemistry, 280</i>(30), 27595-603.
 +
<h5>[6] Beisel, C. L., Chen, Y. Y., Culler, S. J., Hoff, K. G., & Smolke, C. D. (2011). Design of small molecule-responsive micrornas based on structural requirements for drosha processing. <i>Nucleic Acids Research,39</i>(7), 2981-2994.
 +
<h5>[7] Kumar, D., An, C. I., & Yokobayashi, Y. (2009). Conditional rna interference mediated by allosteric ribozyme. <i>Journal of the American Chemical Society, 131</i>(39), 13906-13907.
 +
<h5>[8] Cheng, H., Zhang, Y., Wang, H., Sun, N., Liu, M., & Chen, H., et al. (2016). Regulation of map4k4 gene expression by rna interference through an engineered theophylline-dependent hepatitis delta virus ribozyme switch. <i>Molecular Biosystems, 12</i>(11), 3370-3376.
 +
<h5>[9] Zhang, Y., Wang, J., Cheng, H., Sun, N., Liu, M., & Wu, Z., et al. (2017). Inducible bcl-2 gene rna interference mediated by aptamer-integrated hdv ribozyme switch. <i>Integrative Biology Quantitative Biosciences from Nano to Macro, 9</i>(7), 619.
 +
<h5>[10] Moradpour, Darius, Volker, Gosert, Rainer, & Wölk, et al. (2002). Hepatitis c: molecular virology and antiviral targets. <i>Trends in Molecular Medicine, 8</i>(10), 476-482.
 +
<h5>[11] Brass, V., Gouttenoire, J., Wahl, A., Pal, Z., Blum, H. E., & Penin, F., et al. (2010). Hepatitis c virus rna replication requires a conserved structural motif within the transmembrane domain of the ns5b rna-dependent rna polymerase. <i>Journal of Virology, 84</i>(21), 11580.
 +
<h5>[12] Vo, N. V., Tuler, J. R., & Lai, M. M. (2004). Enzymatic characterization of the full-length and c-terminally truncated hepatitis c virus rna polymerases: function of the last 21 amino acids of the c terminus in template binding and rna synthesis. <i>Biochemistry, 43</i>(32), 10579.
 +
<h5>[13] Lee, K. J., Choi, J., Ou, J. H., & Lai, M. M. (2004). The c-terminal transmembrane domain of hepatitis c virus (hcv) rna polymerase is essential for hcv replication in vivo. <i>Journal of Virology, 78</i>(7), 3797.
 +
<h5>[14] Lohmann, V., Körner, F., Herian, U., & Bartenschlager, R. (1997). Biochemical properties of hepatitis c virus ns5b rna-dependent rna polymerase and identification of amino acid sequence motifs essential for enzymatic activity. <i>Journal of Virology, 71</i>(11), 8416-8428.
 +
<h5>[15] <a><u>http://parts.igem.org/Part:BBa_K1442100</u></a>
 +
<h5>[16] Kao, C. C., Yang, X., Kline, A., Wang, Q. M., Barket, D., & Heinz, B. A. (2000). Template requirements for rna synthesis by a recombinant hepatitis c virus rna-dependent rna polymerase.<i> Journal of Virology,74</i>(23), 11121.
 +
<h5>[17] <a><u>http://parts.igem.org/wiki/index.php?title=Part:BBa_K1442304</u></a>
 +
<h5>[18] O'Farrell, D., Trowbridge, R., Rowlands, D., & Jager, J. (2003). Substrate complexes of hepatitis c virus rna polymerase (hc-j4): structural evidence for nucleotide import and de-novo initiation. <i>Journal of Molecular Biology,326</i>(4), 1025-1035.
 +
<h5>[19] Rhyu, M. S. (1995). Telomeres, telomerase, and immortality. <i>J Natl Cancer Inst, 87</i>(12), 884-894.
 +
<h5>[20] Buseman, C. M., Wright, W. E., & Shay, J. W. (2012). Is telomerase a viable target in cancer?. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 730</i>(1-2), 90-97.
 +
<h5>[21] Nakayama, J., Tahara, H., Tahara, E., Saito, M., Ito, K., & Nakamura, H., et al. (1998). Telomerase activation by htrt in human normal fibroblasts and hepatocellular carcinomas.<i> Nature Genetics, 18</i>(1), 65-68.
 +
<h5>[22] Poole, J. C., Andrews, L. G., & Tollefsbol, T. O. (2001). Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). <i>Gene</i>, 1-12.
 +
<h5>[23] Kyo, S., Kanaya, T., Takakura, M., Tanaka, M., & Inoue, M. (1999). Human telomerase reverse transcriptase as a critical determinant of telomerase activity in normal and malignant endometrial tissues. <i>International Journal of Cancer</i>, 80(1), 60-63.
 +
<h5>[24] Aisner, D. L., Wright, W. E., & Shay, J. W. (2002). Telomerase regulation: not just flipping the switch. <i>Current Opinion in Genetics & Development,12</i>(1), 80-85.
 +
<h5>[25] Nakamura, T. M., & Cech, T. R. (1997). Telomerase catalytic subunit homologs from fission yeast and human. <i>Science, 277</i>(5328), 955.
 +
<h5>[26] Meyerson, M., Counter, C. M., Eaton, E. N., Ellisen, L. W., Steiner, P., & Caddle, S. D., et al. (1997). Hest2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. <i>Cell, 90</i>(4), 785-795.
 +
<h5>[27] Zhou, X. U., Lu, J., & Zhu, H. (2016). Correlation between the expression of htert gene and the clinicopathological characteristics of hepatocellular carcinoma. <i>Oncology Letters, 11</i>(1), 111.
 +
<h5>[28] Kyo, S., Takakura, M., Fujiwara, T., & Inoue, M. (2010). Understanding and exploiting htert promoter regulation for diagnosis and treatment of human cancers. <i>Cancer Science, 99</i>(8), 1528-1538.
 +
<h5>[29] Takakura, M., Kyo, S., Kanaya, T., Hirano, H., Takeda, J., & Yutsudo, M., et al. (1999). Cloning of human telomerase catalytic subunit (htert) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. <i>Cancer Research, 59</i>(3), 551-557.
 +
<h5>[30] <a><u>http://parts.igem.org/Part:BBa_K1722002</u></a>
 +
<h5>[31] <a><u>http://parts.igem.org/wiki/index.php?title=Part:BBa_K1922001</u></a>
 +
<h5>[32] <a><u>http://parts.igem.org/Part:BBa_K1699001</u></a>
 +
<h5>[33] <a><u>http://parts.igem.org/Part:BBa_K1722001</u></a>
 +
<h5>[34] Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. <i>CA: A Cancer Journal for Clinicians, 65</i>(1), 5-29.
 +
<h5>[35] Riordan, S. M., & Williams, R. (2017). Medical management of hepatocellular carcinoma. <i>Journal of Oncology Practice, 13</i>(6), 356.
 +
<h5>[36] Panzitt, K., Tschernatsch, M. M., Guelly, C., Moustafa, T., Stradner, M., & Strohmaier, H. M., et al. (2007). Characterization of hulc, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding rna. <i>Gastroenterology, 132</i>(1), 330-342.
 +
<h5>[37] Wang, J., Liu, X., Wu, H., Ni, P., Gu, Z., & Qiao, Y., et al. (2010). Creb up-regulates long non-coding rna, hulc expression through interaction with microrna-372 in liver cancer. <i>Nucleic Acids Research, 38</i>(16), 5366-5383.
 +
<h5>[38] Collins, C. S., Hong, J., Sapinoso, L., Zhou, Y., Liu, Z., & Micklash, K., et al. (2006). A small interfering rna screen for modulators of tumor cell motility identifies map4k4 as a promigratory kinase. <i>Proc Natl Acad Sci U S A, 103</i>(10), 3775-3780.
 +
<h5>[39] Han, S. X., Zhu, Q., Ma, J. L., Zhao, J., Huang, C., & Jia, X., et al. (2010). Lowered hgk expression inhibits cell invasion and adhesion in hepatocellular carcinoma cell line hepg2. <i>World Journal of Gastroenterology, 16</i>(36), 4541-4548.
 +
<h5>[40] Gao, X., Gao, C., Liu, G., & Hu, J. (2016). Map4k4: an emerging therapeutic target in cancer. <i>Cell & Bioscience, 6</i>(1), 56.
 +
<h5>[41] Das, A. T., Tenenbaum, L., & Berkhout, B. (2016). Tet-on systems for doxycycline-inducible gene expression. <i>Current Gene Therapy, 16</i>(3),
 +
<h5>[42] Stieger, K., Belbellaa, B., Guiner, C. L., Moullier, P., & Rolling, F. (2009). In vivo, gene regulation using tetracycline-regulatable systems ☆. <i>Advanced Drug Delivery Reviews, 61</i>(7), 527-541.
 +
<h5>[43] Gu, J., Zhang, L., Huang, X., Lin, T., Yin, M., & Xu, K., et al. (2002). A novel single tetracycline-regulative adenoviral vector for tumor-specific bax gene expression and cell killing in vitro and in vivo. <i>Oncogene,21</i>(31), 4757-4764.
 +
<h5>[44] <a><u>https://2013.igem.org/Team:SYSU-China/Project/Design</u></a>
 +
  
  

Revision as of 03:24, 8 December 2018

"The AND gate is a basic digital logic gate that implements logical conjunction. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1)."

——Wikipedia

I am Promoter hTERT! Click me!
I am Promoter Hulc! Click me!