Difference between revisions of "Team:NKU CHINA"

Line 110: Line 110:
 
position: relative;
 
position: relative;
 
     display: inline-block;
 
     display: inline-block;
     width: 100px;
+
     width: 10px;
 
     height: 40px;
 
     height: 40px;
 
     line-height: 40px;
 
     line-height: 40px;

Revision as of 12:26, 10 August 2018

Team:NKU_China-2018.igem.org

iGEM:NKU_China

Project Description

Biosynthesis enables renewable and environmental-friendly production of various compounds. However, present biosynthetic performance still awaits improvements to be cost competitive with petroleum-based chemical synthesis and to be suitable for large-scale industrial production. In order to achieve this goal, many approaches have been created, among which PopQC (Population Quality Control) is proved to be efficient. In our project, PopQC was developed in Bacillus amyloliquefaciens LL3 and Bacillus subtilis 168 to continuously select high-performing cells in order to improve the yield of target metabolite—glutamate. In the presence of PopQC, high-producers stayed alive while low-producers were unable to survive. Consequently, the average intracellular concentration as well as the yield of glutamate among the population was enhanced, which finally led to poly-γ-glutamate yield enhancement.

Artificial biosynthetic pathways have enabled renewable, environmental-friendly production of a variety of significant products ranging from simple fuels (such as ethanol, butanol and fatty acid derivatives) to intricate natural products (such as artemisinin, strictosidine, erythromycin, and so on). However, these biosynthetic processes are always criticized for being uneconomical for large-scale industrial production because of their relatively lower yield compared to petroleum-based chemical synthesis. Therefore, it’s urgent and important to create new approaches to enhance biosynthetic performance.

PopQC, which is the abbreviation for population quality control, is a new approach designed for biosynthesis yield enhancement based on the non-genetic cell-to-cell variation. Because of some nongenetic differences, different cells in a single colony will have considerable variations in protein and metabolite concentrations. Therefore, in cell cultures there will be both high- and low-producers, and the intrinsic low-producers might cause suboptimal ensemble biosynthesis. The elimination of low-producers can realize the efficient utilization of substrates and high yield of target products. Based on this, PopQC was designed as a plasmid-based gene circuit, which continuously selects high-producers to optimize the biosynthetic performance.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Quae repudiandae fugiat illo cupiditate excepturi esse officiis consectetur, laudantium qui voluptatem. Ad necessitatibus velit, accusantium expedita debitis impedit rerum totam id. Lorem ipsum dolor sit amet, consectetur adipisicing elit. Natus quibusdam recusandae illum, nesciunt, architecto, saepe facere, voluptas eum incidunt dolores magni itaque autem neque velit in. At quia quaerat asperiores.

Our Design

Top