Team:Munich/Hardware/threeJS

(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (factory((global.THREE = {}))); }(this, (function (exports) { 'use strict';

// Polyfills

if ( Number.EPSILON === undefined ) {

Number.EPSILON = Math.pow( 2, - 52 );

}

if ( Number.isInteger === undefined ) {

// Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger

Number.isInteger = function ( value ) {

return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value;

};

}

//

if ( Math.sign === undefined ) {

// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign

Math.sign = function ( x ) {

return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;

};

}

if ( 'name' in Function.prototype === false ) {

// Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name

Object.defineProperty( Function.prototype, 'name', {

get: function () {

return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ];

}

} );

}

if ( Object.assign === undefined ) {

// Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

( function () {

Object.assign = function ( target ) {

if ( target === undefined || target === null ) {

throw new TypeError( 'Cannot convert undefined or null to object' );

}

var output = Object( target );

for ( var index = 1; index < arguments.length; index ++ ) {

var source = arguments[ index ];

if ( source !== undefined && source !== null ) {

for ( var nextKey in source ) {

if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) {

output[ nextKey ] = source[ nextKey ];

}

}

}

}

return output;

};

} )();

}

/** * https://github.com/mrdoob/eventdispatcher.js/ */

function EventDispatcher() {}

Object.assign( EventDispatcher.prototype, {

addEventListener: function ( type, listener ) {

if ( this._listeners === undefined ) this._listeners = {};

var listeners = this._listeners;

if ( listeners[ type ] === undefined ) {

listeners[ type ] = [];

}

if ( listeners[ type ].indexOf( listener ) === - 1 ) {

listeners[ type ].push( listener );

}

},

hasEventListener: function ( type, listener ) {

if ( this._listeners === undefined ) return false;

var listeners = this._listeners;

return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;

},

removeEventListener: function ( type, listener ) {

if ( this._listeners === undefined ) return;

var listeners = this._listeners; var listenerArray = listeners[ type ];

if ( listenerArray !== undefined ) {

var index = listenerArray.indexOf( listener );

if ( index !== - 1 ) {

listenerArray.splice( index, 1 );

}

}

},

dispatchEvent: function ( event ) {

if ( this._listeners === undefined ) return;

var listeners = this._listeners; var listenerArray = listeners[ event.type ];

if ( listenerArray !== undefined ) {

event.target = this;

var array = listenerArray.slice( 0 );

for ( var i = 0, l = array.length; i < l; i ++ ) {

array[ i ].call( this, event );

}

}

}

} );

var REVISION = '97'; var MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2 }; var CullFaceNone = 0; var CullFaceBack = 1; var CullFaceFront = 2; var CullFaceFrontBack = 3; var FrontFaceDirectionCW = 0; var FrontFaceDirectionCCW = 1; var BasicShadowMap = 0; var PCFShadowMap = 1; var PCFSoftShadowMap = 2; var FrontSide = 0; var BackSide = 1; var DoubleSide = 2; var FlatShading = 1; var SmoothShading = 2; var NoColors = 0; var FaceColors = 1; var VertexColors = 2; var NoBlending = 0; var NormalBlending = 1; var AdditiveBlending = 2; var SubtractiveBlending = 3; var MultiplyBlending = 4; var CustomBlending = 5; var AddEquation = 100; var SubtractEquation = 101; var ReverseSubtractEquation = 102; var MinEquation = 103; var MaxEquation = 104; var ZeroFactor = 200; var OneFactor = 201; var SrcColorFactor = 202; var OneMinusSrcColorFactor = 203; var SrcAlphaFactor = 204; var OneMinusSrcAlphaFactor = 205; var DstAlphaFactor = 206; var OneMinusDstAlphaFactor = 207; var DstColorFactor = 208; var OneMinusDstColorFactor = 209; var SrcAlphaSaturateFactor = 210; var NeverDepth = 0; var AlwaysDepth = 1; var LessDepth = 2; var LessEqualDepth = 3; var EqualDepth = 4; var GreaterEqualDepth = 5; var GreaterDepth = 6; var NotEqualDepth = 7; var MultiplyOperation = 0; var MixOperation = 1; var AddOperation = 2; var NoToneMapping = 0; var LinearToneMapping = 1; var ReinhardToneMapping = 2; var Uncharted2ToneMapping = 3; var CineonToneMapping = 4; var UVMapping = 300; var CubeReflectionMapping = 301; var CubeRefractionMapping = 302; var EquirectangularReflectionMapping = 303; var EquirectangularRefractionMapping = 304; var SphericalReflectionMapping = 305; var CubeUVReflectionMapping = 306; var CubeUVRefractionMapping = 307; var RepeatWrapping = 1000; var ClampToEdgeWrapping = 1001; var MirroredRepeatWrapping = 1002; var NearestFilter = 1003; var NearestMipMapNearestFilter = 1004; var NearestMipMapLinearFilter = 1005; var LinearFilter = 1006; var LinearMipMapNearestFilter = 1007; var LinearMipMapLinearFilter = 1008; var UnsignedByteType = 1009; var ByteType = 1010; var ShortType = 1011; var UnsignedShortType = 1012; var IntType = 1013; var UnsignedIntType = 1014; var FloatType = 1015; var HalfFloatType = 1016; var UnsignedShort4444Type = 1017; var UnsignedShort5551Type = 1018; var UnsignedShort565Type = 1019; var UnsignedInt248Type = 1020; var AlphaFormat = 1021; var RGBFormat = 1022; var RGBAFormat = 1023; var LuminanceFormat = 1024; var LuminanceAlphaFormat = 1025; var RGBEFormat = RGBAFormat; var DepthFormat = 1026; var DepthStencilFormat = 1027; var RedFormat = 1028; var RGB_S3TC_DXT1_Format = 33776; var RGBA_S3TC_DXT1_Format = 33777; var RGBA_S3TC_DXT3_Format = 33778; var RGBA_S3TC_DXT5_Format = 33779; var RGB_PVRTC_4BPPV1_Format = 35840; var RGB_PVRTC_2BPPV1_Format = 35841; var RGBA_PVRTC_4BPPV1_Format = 35842; var RGBA_PVRTC_2BPPV1_Format = 35843; var RGB_ETC1_Format = 36196; var RGBA_ASTC_4x4_Format = 37808; var RGBA_ASTC_5x4_Format = 37809; var RGBA_ASTC_5x5_Format = 37810; var RGBA_ASTC_6x5_Format = 37811; var RGBA_ASTC_6x6_Format = 37812; var RGBA_ASTC_8x5_Format = 37813; var RGBA_ASTC_8x6_Format = 37814; var RGBA_ASTC_8x8_Format = 37815; var RGBA_ASTC_10x5_Format = 37816; var RGBA_ASTC_10x6_Format = 37817; var RGBA_ASTC_10x8_Format = 37818; var RGBA_ASTC_10x10_Format = 37819; var RGBA_ASTC_12x10_Format = 37820; var RGBA_ASTC_12x12_Format = 37821; var LoopOnce = 2200; var LoopRepeat = 2201; var LoopPingPong = 2202; var InterpolateDiscrete = 2300; var InterpolateLinear = 2301; var InterpolateSmooth = 2302; var ZeroCurvatureEnding = 2400; var ZeroSlopeEnding = 2401; var WrapAroundEnding = 2402; var TrianglesDrawMode = 0; var TriangleStripDrawMode = 1; var TriangleFanDrawMode = 2; var LinearEncoding = 3000; var sRGBEncoding = 3001; var GammaEncoding = 3007; var RGBEEncoding = 3002; var LogLuvEncoding = 3003; var RGBM7Encoding = 3004; var RGBM16Encoding = 3005; var RGBDEncoding = 3006; var BasicDepthPacking = 3200; var RGBADepthPacking = 3201; var TangentSpaceNormalMap = 0; var ObjectSpaceNormalMap = 1;

/** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */

var _Math = {

DEG2RAD: Math.PI / 180, RAD2DEG: 180 / Math.PI,

generateUUID: ( function () {

// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136

var lut = [];

for ( var i = 0; i < 256; i ++ ) {

lut[ i ] = ( i < 16 ? '0' : ) + ( i ).toString( 16 );

}

return function generateUUID() {

var d0 = Math.random() * 0xffffffff | 0; var d1 = Math.random() * 0xffffffff | 0; var d2 = Math.random() * 0xffffffff | 0; var d3 = Math.random() * 0xffffffff | 0; var uuid = lut[ d0 & 0xff ] + lut[ d0 >> 8 & 0xff ] + lut[ d0 >> 16 & 0xff ] + lut[ d0 >> 24 & 0xff ] + '-' + lut[ d1 & 0xff ] + lut[ d1 >> 8 & 0xff ] + '-' + lut[ d1 >> 16 & 0x0f | 0x40 ] + lut[ d1 >> 24 & 0xff ] + '-' + lut[ d2 & 0x3f | 0x80 ] + lut[ d2 >> 8 & 0xff ] + '-' + lut[ d2 >> 16 & 0xff ] + lut[ d2 >> 24 & 0xff ] + lut[ d3 & 0xff ] + lut[ d3 >> 8 & 0xff ] + lut[ d3 >> 16 & 0xff ] + lut[ d3 >> 24 & 0xff ];

// .toUpperCase() here flattens concatenated strings to save heap memory space. return uuid.toUpperCase();

};

} )(),

clamp: function ( value, min, max ) {

return Math.max( min, Math.min( max, value ) );

},

// compute euclidian modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation

euclideanModulo: function ( n, m ) {

return ( ( n % m ) + m ) % m;

},

// Linear mapping from range <a1, a2> to range <b1, b2>

mapLinear: function ( x, a1, a2, b1, b2 ) {

return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );

},

// https://en.wikipedia.org/wiki/Linear_interpolation

lerp: function ( x, y, t ) {

return ( 1 - t ) * x + t * y;

},

// http://en.wikipedia.org/wiki/Smoothstep

smoothstep: function ( x, min, max ) {

if ( x <= min ) return 0; if ( x >= max ) return 1;

x = ( x - min ) / ( max - min );

return x * x * ( 3 - 2 * x );

},

smootherstep: function ( x, min, max ) {

if ( x <= min ) return 0; if ( x >= max ) return 1;

x = ( x - min ) / ( max - min );

return x * x * x * ( x * ( x * 6 - 15 ) + 10 );

},

// Random integer from <low, high> interval

randInt: function ( low, high ) {

return low + Math.floor( Math.random() * ( high - low + 1 ) );

},

// Random float from <low, high> interval

randFloat: function ( low, high ) {

return low + Math.random() * ( high - low );

},

// Random float from <-range/2, range/2> interval

randFloatSpread: function ( range ) {

return range * ( 0.5 - Math.random() );

},

degToRad: function ( degrees ) {

return degrees * _Math.DEG2RAD;

},

radToDeg: function ( radians ) {

return radians * _Math.RAD2DEG;

},

isPowerOfTwo: function ( value ) {

return ( value & ( value - 1 ) ) === 0 && value !== 0;

},

ceilPowerOfTwo: function ( value ) {

return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) );

},

floorPowerOfTwo: function ( value ) {

return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) );

}

};

/** * @author mrdoob / http://mrdoob.com/ * @author philogb / http://blog.thejit.org/ * @author egraether / http://egraether.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */

function Vector2( x, y ) {

this.x = x || 0; this.y = y || 0;

}

Object.defineProperties( Vector2.prototype, {

"width": {

get: function () {

return this.x;

},

set: function ( value ) {

this.x = value;

}

},

"height": {

get: function () {

return this.y;

},

set: function ( value ) {

this.y = value;

}

}

} );

Object.assign( Vector2.prototype, {

isVector2: true,

set: function ( x, y ) {

this.x = x; this.y = y;

return this;

},

setScalar: function ( scalar ) {

this.x = scalar; this.y = scalar;

return this;

},

setX: function ( x ) {

this.x = x;

return this;

},

setY: function ( y ) {

this.y = y;

return this;

},

setComponent: function ( index, value ) {

switch ( index ) {

case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index );

}

return this;

},

getComponent: function ( index ) {

switch ( index ) {

case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index );

}

},

clone: function () {

return new this.constructor( this.x, this.y );

},

copy: function ( v ) {

this.x = v.x; this.y = v.y;

return this;

},

add: function ( v, w ) {

if ( w !== undefined ) {

console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w );

}

this.x += v.x; this.y += v.y;

return this;

},

addScalar: function ( s ) {

this.x += s; this.y += s;

return this;

},

addVectors: function ( a, b ) {

this.x = a.x + b.x; this.y = a.y + b.y;

return this;

},

addScaledVector: function ( v, s ) {

this.x += v.x * s; this.y += v.y * s;

return this;

},

sub: function ( v, w ) {

if ( w !== undefined ) {

console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w );

}

this.x -= v.x; this.y -= v.y;

return this;

},

subScalar: function ( s ) {

this.x -= s; this.y -= s;

return this;

},

subVectors: function ( a, b ) {

this.x = a.x - b.x; this.y = a.y - b.y;

return this;

},

multiply: function ( v ) {

this.x *= v.x; this.y *= v.y;

return this;

},

multiplyScalar: function ( scalar ) {

this.x *= scalar; this.y *= scalar;

return this;

},

divide: function ( v ) {

this.x /= v.x; this.y /= v.y;

return this;

},

divideScalar: function ( scalar ) {

return this.multiplyScalar( 1 / scalar );

},

applyMatrix3: function ( m ) {

var x = this.x, y = this.y; var e = m.elements;

this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ]; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];

return this;

},

min: function ( v ) {

this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y );

return this;

},

max: function ( v ) {

this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y );

return this;

},

clamp: function ( min, max ) {

// assumes min < max, componentwise

this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) );

return this;

},

clampScalar: function () {

var min = new Vector2(); var max = new Vector2();

return function clampScalar( minVal, maxVal ) {

min.set( minVal, minVal ); max.set( maxVal, maxVal );

return this.clamp( min, max );

};

}(),

clampLength: function ( min, max ) {

var length = this.length();

return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

},

floor: function () {

this.x = Math.floor( this.x ); this.y = Math.floor( this.y );

return this;

},

ceil: function () {

this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y );

return this;

},

round: function () {

this.x = Math.round( this.x ); this.y = Math.round( this.y );

return this;

},

roundToZero: function () {

this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );

return this;

},

negate: function () {

this.x = - this.x; this.y = - this.y;

return this;

},

dot: function ( v ) {

return this.x * v.x + this.y * v.y;

},

cross: function ( v ) {

return this.x * v.y - this.y * v.x;

},

lengthSq: function () {

return this.x * this.x + this.y * this.y;

},

length: function () {

return Math.sqrt( this.x * this.x + this.y * this.y );

},

manhattanLength: function () {

return Math.abs( this.x ) + Math.abs( this.y );

},

normalize: function () {

return this.divideScalar( this.length() || 1 );

},

angle: function () {

// computes the angle in radians with respect to the positive x-axis

var angle = Math.atan2( this.y, this.x );

if ( angle < 0 ) angle += 2 * Math.PI;

return angle;

},

distanceTo: function ( v ) {

return Math.sqrt( this.distanceToSquared( v ) );

},

distanceToSquared: function ( v ) {

var dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy;

},

manhattanDistanceTo: function ( v ) {

return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );

},

setLength: function ( length ) {

return this.normalize().multiplyScalar( length );

},

lerp: function ( v, alpha ) {

this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha;

return this;

},

lerpVectors: function ( v1, v2, alpha ) {

return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

},

equals: function ( v ) {

return ( ( v.x === this.x ) && ( v.y === this.y ) );

},

fromArray: function ( array, offset ) {

if ( offset === undefined ) offset = 0;

this.x = array[ offset ]; this.y = array[ offset + 1 ];

return this;

},

toArray: function ( array, offset ) {

if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0;

array[ offset ] = this.x; array[ offset + 1 ] = this.y;

return array;

},

fromBufferAttribute: function ( attribute, index, offset ) {

if ( offset !== undefined ) {

console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );

}

this.x = attribute.getX( index ); this.y = attribute.getY( index );

return this;

},

rotateAround: function ( center, angle ) {

var c = Math.cos( angle ), s = Math.sin( angle );

var x = this.x - center.x; var y = this.y - center.y;

this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y;

return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author jordi_ros / http://plattsoft.com * @author D1plo1d / http://github.com/D1plo1d * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author timknip / http://www.floorplanner.com/ * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */

function Matrix4() {

this.elements = [

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1

];

if ( arguments.length > 0 ) {

console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );

}

}

Object.assign( Matrix4.prototype, {

isMatrix4: true,

set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {

var te = this.elements;

te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;

return this;

},

identity: function () {

this.set(

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1

);

return this;

},

clone: function () {

return new Matrix4().fromArray( this.elements );

},

copy: function ( m ) {

var te = this.elements; var me = m.elements;

te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ]; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];

return this;

},

copyPosition: function ( m ) {

var te = this.elements, me = m.elements;

te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ];

return this;

},

extractBasis: function ( xAxis, yAxis, zAxis ) {

xAxis.setFromMatrixColumn( this, 0 ); yAxis.setFromMatrixColumn( this, 1 ); zAxis.setFromMatrixColumn( this, 2 );

return this;

},

makeBasis: function ( xAxis, yAxis, zAxis ) {

this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 );

return this;

},

extractRotation: function () {

var v1 = new Vector3();

return function extractRotation( m ) {

// this method does not support reflection matrices

var te = this.elements; var me = m.elements;

var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length(); var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length(); var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length();

te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 3 ] = 0;

te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 7 ] = 0;

te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; te[ 11 ] = 0;

te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1;

return this;

};

}(),

makeRotationFromEuler: function ( euler ) {

if ( ! ( euler && euler.isEuler ) ) {

console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );

}

var te = this.elements;

var x = euler.x, y = euler.y, z = euler.z; var a = Math.cos( x ), b = Math.sin( x ); var c = Math.cos( y ), d = Math.sin( y ); var e = Math.cos( z ), f = Math.sin( z );

if ( euler.order === 'XYZ' ) {

var ae = a * e, af = a * f, be = b * e, bf = b * f;

te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d;

te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c;

te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c;

} else if ( euler.order === 'YXZ' ) {

var ce = c * e, cf = c * f, de = d * e, df = d * f;

te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d;

te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b;

te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c;

} else if ( euler.order === 'ZXY' ) {

var ce = c * e, cf = c * f, de = d * e, df = d * f;

te[ 0 ] = ce - df * b; te[ 4 ] = - a * f; te[ 8 ] = de + cf * b;

te[ 1 ] = cf + de * b; te[ 5 ] = a * e; te[ 9 ] = df - ce * b;

te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c;

} else if ( euler.order === 'ZYX' ) {

var ae = a * e, af = a * f, be = b * e, bf = b * f;

te[ 0 ] = c * e; te[ 4 ] = be * d - af; te[ 8 ] = ae * d + bf;

te[ 1 ] = c * f; te[ 5 ] = bf * d + ae; te[ 9 ] = af * d - be;

te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c;

} else if ( euler.order === 'YZX' ) {

var ac = a * c, ad = a * d, bc = b * c, bd = b * d;

te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad;

te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e;

te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f;

} else if ( euler.order === 'XZY' ) {

var ac = a * c, ad = a * d, bc = b * c, bd = b * d;

te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e;

te[ 1 ] = ac * f + bd; te[ 5 ] = a * e; te[ 9 ] = ad * f - bc;

te[ 2 ] = bc * f - ad; te[ 6 ] = b * e; te[ 10 ] = bd * f + ac;

}

// bottom row te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0;

// last column te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1;

return this;

},

makeRotationFromQuaternion: function () {

var zero = new Vector3( 0, 0, 0 ); var one = new Vector3( 1, 1, 1 );

return function makeRotationFromQuaternion( q ) {

return this.compose( zero, q, one );

};

}(),

lookAt: function () {

var x = new Vector3(); var y = new Vector3(); var z = new Vector3();

return function lookAt( eye, target, up ) {

var te = this.elements;

z.subVectors( eye, target );

if ( z.lengthSq() === 0 ) {

// eye and target are in the same position

z.z = 1;

}

z.normalize(); x.crossVectors( up, z );

if ( x.lengthSq() === 0 ) {

// up and z are parallel

if ( Math.abs( up.z ) === 1 ) {

z.x += 0.0001;

} else {

z.z += 0.0001;

}

z.normalize(); x.crossVectors( up, z );

}

x.normalize(); y.crossVectors( z, x );

te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x; te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y; te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;

return this;

};

}(),

multiply: function ( m, n ) {

if ( n !== undefined ) {

console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' ); return this.multiplyMatrices( m, n );

}

return this.multiplyMatrices( this, m );

},

premultiply: function ( m ) {

return this.multiplyMatrices( m, this );

},

multiplyMatrices: function ( a, b ) {

var ae = a.elements; var be = b.elements; var te = this.elements;

var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];

var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];

te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;

te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;

te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;

te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;

return this;

},

multiplyScalar: function ( s ) {

var te = this.elements;

te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;

return this;

},

applyToBufferAttribute: function () {

var v1 = new Vector3();

return function applyToBufferAttribute( attribute ) {

for ( var i = 0, l = attribute.count; i < l; i ++ ) {

v1.x = attribute.getX( i ); v1.y = attribute.getY( i ); v1.z = attribute.getZ( i );

v1.applyMatrix4( this );

attribute.setXYZ( i, v1.x, v1.y, v1.z );

}

return attribute;

};

}(),

determinant: function () {

var te = this.elements;

var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];

//TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )

return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 )

);

},

transpose: function () {

var te = this.elements; var tmp;

tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;

tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;

return this;

},

setPosition: function ( v ) {

var te = this.elements;

te[ 12 ] = v.x; te[ 13 ] = v.y; te[ 14 ] = v.z;

return this;

},

getInverse: function ( m, throwOnDegenerate ) {

// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm var te = this.elements, me = m.elements,

n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ], n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ], n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ], n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],

t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;

var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;

if ( det === 0 ) {

var msg = "THREE.Matrix4: .getInverse() can't invert matrix, determinant is 0";

if ( throwOnDegenerate === true ) {

throw new Error( msg );

} else {

console.warn( msg );

}

return this.identity();

}

var detInv = 1 / det;

te[ 0 ] = t11 * detInv; te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;

te[ 4 ] = t12 * detInv; te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;

te[ 8 ] = t13 * detInv; te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;

te[ 12 ] = t14 * detInv; te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;

return this;

},

scale: function ( v ) {

var te = this.elements; var x = v.x, y = v.y, z = v.z;

te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;

return this;

},

getMaxScaleOnAxis: function () {

var te = this.elements;

var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];

return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );

},

makeTranslation: function ( x, y, z ) {

this.set(

1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1

);

return this;

},

makeRotationX: function ( theta ) {

var c = Math.cos( theta ), s = Math.sin( theta );

this.set(

1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1

);

return this;

},

makeRotationY: function ( theta ) {

var c = Math.cos( theta ), s = Math.sin( theta );

this.set(

c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1

);

return this;

},

makeRotationZ: function ( theta ) {

var c = Math.cos( theta ), s = Math.sin( theta );

this.set(

c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1

);

return this;

},

makeRotationAxis: function ( axis, angle ) {

// Based on http://www.gamedev.net/reference/articles/article1199.asp

var c = Math.cos( angle ); var s = Math.sin( angle ); var t = 1 - c; var x = axis.x, y = axis.y, z = axis.z; var tx = t * x, ty = t * y;

this.set(

tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1

);

return this;

},

makeScale: function ( x, y, z ) {

this.set(

x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1

);

return this;

},

makeShear: function ( x, y, z ) {

this.set(

1, y, z, 0, x, 1, z, 0, x, y, 1, 0, 0, 0, 0, 1

);

return this;

},

compose: function ( position, quaternion, scale ) {

var te = this.elements;

var x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; var x2 = x + x, y2 = y + y, z2 = z + z; var xx = x * x2, xy = x * y2, xz = x * z2; var yy = y * y2, yz = y * z2, zz = z * z2; var wx = w * x2, wy = w * y2, wz = w * z2;

var sx = scale.x, sy = scale.y, sz = scale.z;

te[ 0 ] = ( 1 - ( yy + zz ) ) * sx; te[ 1 ] = ( xy + wz ) * sx; te[ 2 ] = ( xz - wy ) * sx; te[ 3 ] = 0;

te[ 4 ] = ( xy - wz ) * sy; te[ 5 ] = ( 1 - ( xx + zz ) ) * sy; te[ 6 ] = ( yz + wx ) * sy; te[ 7 ] = 0;

te[ 8 ] = ( xz + wy ) * sz; te[ 9 ] = ( yz - wx ) * sz; te[ 10 ] = ( 1 - ( xx + yy ) ) * sz; te[ 11 ] = 0;

te[ 12 ] = position.x; te[ 13 ] = position.y; te[ 14 ] = position.z; te[ 15 ] = 1;

return this;

},

decompose: function () {

var vector = new Vector3(); var matrix = new Matrix4();

return function decompose( position, quaternion, scale ) {

var te = this.elements;

var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();

// if determine is negative, we need to invert one scale var det = this.determinant(); if ( det < 0 ) sx = - sx;

position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ];

// scale the rotation part matrix.copy( this );

var invSX = 1 / sx; var invSY = 1 / sy; var invSZ = 1 / sz;

matrix.elements[ 0 ] *= invSX; matrix.elements[ 1 ] *= invSX; matrix.elements[ 2 ] *= invSX;

matrix.elements[ 4 ] *= invSY; matrix.elements[ 5 ] *= invSY; matrix.elements[ 6 ] *= invSY;

matrix.elements[ 8 ] *= invSZ; matrix.elements[ 9 ] *= invSZ; matrix.elements[ 10 ] *= invSZ;

quaternion.setFromRotationMatrix( matrix );

scale.x = sx; scale.y = sy; scale.z = sz;

return this;

};

}(),

makePerspective: function ( left, right, top, bottom, near, far ) {

if ( far === undefined ) {

console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );

}

var te = this.elements; var x = 2 * near / ( right - left ); var y = 2 * near / ( top - bottom );

var a = ( right + left ) / ( right - left ); var b = ( top + bottom ) / ( top - bottom ); var c = - ( far + near ) / ( far - near ); var d = - 2 * far * near / ( far - near );

te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;

return this;

},

makeOrthographic: function ( left, right, top, bottom, near, far ) {

var te = this.elements; var w = 1.0 / ( right - left ); var h = 1.0 / ( top - bottom ); var p = 1.0 / ( far - near );

var x = ( right + left ) * w; var y = ( top + bottom ) * h; var z = ( far + near ) * p;

te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;

return this;

},

equals: function ( matrix ) {

var te = this.elements; var me = matrix.elements;

for ( var i = 0; i < 16; i ++ ) {

if ( te[ i ] !== me[ i ] ) return false;

}

return true;

},

fromArray: function ( array, offset ) {

if ( offset === undefined ) offset = 0;

for ( var i = 0; i < 16; i ++ ) {

this.elements[ i ] = array[ i + offset ];

}

return this;

},

toArray: function ( array, offset ) {

if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0;

var te = this.elements;

array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ];

array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ];

array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ];

array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ];

return array;

}

} );

/** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */

function Quaternion( x, y, z, w ) {

this._x = x || 0; this._y = y || 0; this._z = z || 0; this._w = ( w !== undefined ) ? w : 1;

}

Object.assign( Quaternion, {

slerp: function ( qa, qb, qm, t ) {

return qm.copy( qa ).slerp( qb, t );

},

slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {

// fuzz-free, array-based Quaternion SLERP operation

var x0 = src0[ srcOffset0 + 0 ], y0 = src0[ srcOffset0 + 1 ], z0 = src0[ srcOffset0 + 2 ], w0 = src0[ srcOffset0 + 3 ],

x1 = src1[ srcOffset1 + 0 ], y1 = src1[ srcOffset1 + 1 ], z1 = src1[ srcOffset1 + 2 ], w1 = src1[ srcOffset1 + 3 ];

if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {

var s = 1 - t,

cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,

dir = ( cos >= 0 ? 1 : - 1 ), sqrSin = 1 - cos * cos;

// Skip the Slerp for tiny steps to avoid numeric problems: if ( sqrSin > Number.EPSILON ) {

var sin = Math.sqrt( sqrSin ), len = Math.atan2( sin, cos * dir );

s = Math.sin( s * len ) / sin; t = Math.sin( t * len ) / sin;

}

var tDir = t * dir;

x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir;

// Normalize in case we just did a lerp: if ( s === 1 - t ) {

var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );

x0 *= f; y0 *= f; z0 *= f; w0 *= f;

}

}

dst[ dstOffset ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0;

}

} );

Object.defineProperties( Quaternion.prototype, {

x: {

get: function () {

return this._x;

},

set: function ( value ) {

this._x = value; this.onChangeCallback();

}

},

y: {

get: function () {

return this._y;

},

set: function ( value ) {

this._y = value; this.onChangeCallback();

}

},

z: {

get: function () {

return this._z;

},

set: function ( value ) {

this._z = value; this.onChangeCallback();

}

},

w: {

get: function () {

return this._w;

},

set: function ( value ) {

this._w = value; this.onChangeCallback();

}

}

} );

Object.assign( Quaternion.prototype, {

isQuaternion: true,

set: function ( x, y, z, w ) {

this._x = x; this._y = y; this._z = z; this._w = w;

this.onChangeCallback();

return this;

},

clone: function () {

return new this.constructor( this._x, this._y, this._z, this._w );

},

copy: function ( quaternion ) {

this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w;

this.onChangeCallback();

return this;

},

setFromEuler: function ( euler, update ) {

if ( ! ( euler && euler.isEuler ) ) {

throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );

}

var x = euler._x, y = euler._y, z = euler._z, order = euler.order;

// http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m

var cos = Math.cos; var sin = Math.sin;

var c1 = cos( x / 2 ); var c2 = cos( y / 2 ); var c3 = cos( z / 2 );

var s1 = sin( x / 2 ); var s2 = sin( y / 2 ); var s3 = sin( z / 2 );

if ( order === 'XYZ' ) {

this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3;

} else if ( order === 'YXZ' ) {

this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3;

} else if ( order === 'ZXY' ) {

this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3;

} else if ( order === 'ZYX' ) {

this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3;

} else if ( order === 'YZX' ) {

this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3;

} else if ( order === 'XZY' ) {

this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3;

}

if ( update !== false ) this.onChangeCallback();

return this;

},

setFromAxisAngle: function ( axis, angle ) {

// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm

// assumes axis is normalized

var halfAngle = angle / 2, s = Math.sin( halfAngle );

this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle );

this.onChangeCallback();

return this;

},

setFromRotationMatrix: function ( m ) {

// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm

// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

var te = m.elements,

m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],

trace = m11 + m22 + m33, s;

if ( trace > 0 ) {

s = 0.5 / Math.sqrt( trace + 1.0 );

this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s;

} else if ( m11 > m22 && m11 > m33 ) {

s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );

this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s;

} else if ( m22 > m33 ) {

s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );

this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s;

} else {

s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );

this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s;

}

this.onChangeCallback();

return this;

},

setFromUnitVectors: function () {

// assumes direction vectors vFrom and vTo are normalized

var v1 = new Vector3(); var r;

var EPS = 0.000001;

return function setFromUnitVectors( vFrom, vTo ) {

if ( v1 === undefined ) v1 = new Vector3();

r = vFrom.dot( vTo ) + 1;

if ( r < EPS ) {

r = 0;

if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {

v1.set( - vFrom.y, vFrom.x, 0 );

} else {

v1.set( 0, - vFrom.z, vFrom.y );

}

} else {

v1.crossVectors( vFrom, vTo );

}

this._x = v1.x; this._y = v1.y; this._z = v1.z; this._w = r;

return this.normalize();

};

}(),

angleTo: function ( q ) {

return 2 * Math.acos( Math.abs( _Math.clamp( this.dot( q ), - 1, 1 ) ) );

},

rotateTowards: function ( q, step ) {

var angle = this.angleTo( q );

if ( angle === 0 ) return this;

var t = Math.min( 1, step / angle );

this.slerp( q, t );

return this;

},

inverse: function () {

// quaternion is assumed to have unit length

return this.conjugate();

},

conjugate: function () {

this._x *= - 1; this._y *= - 1; this._z *= - 1;

this.onChangeCallback();

return this;

},

dot: function ( v ) {

return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;

},

lengthSq: function () {

return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;

},

length: function () {

return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );

},

normalize: function () {

var l = this.length();

if ( l === 0 ) {

this._x = 0; this._y = 0; this._z = 0; this._w = 1;

} else {

l = 1 / l;

this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l;

}

this.onChangeCallback();

return this;

},

multiply: function ( q, p ) {

if ( p !== undefined ) {

console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' ); return this.multiplyQuaternions( q, p );

}

return this.multiplyQuaternions( this, q );

},

premultiply: function ( q ) {

return this.multiplyQuaternions( q, this );

},

multiplyQuaternions: function ( a, b ) {

// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm

var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;

this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;

this.onChangeCallback();

return this;

},

slerp: function ( qb, t ) {

if ( t === 0 ) return this; if ( t === 1 ) return this.copy( qb );

var x = this._x, y = this._y, z = this._z, w = this._w;

// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/

var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;

if ( cosHalfTheta < 0 ) {

this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z;

cosHalfTheta = - cosHalfTheta;

} else {

this.copy( qb );

}

if ( cosHalfTheta >= 1.0 ) {

this._w = w; this._x = x; this._y = y; this._z = z;

return this;

}

var sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;

if ( sqrSinHalfTheta <= Number.EPSILON ) {

var s = 1 - t; this._w = s * w + t * this._w; this._x = s * x + t * this._x; this._y = s * y + t * this._y; this._z = s * z + t * this._z;

return this.normalize();

}

var sinHalfTheta = Math.sqrt( sqrSinHalfTheta ); var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;

this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB );

this.onChangeCallback();

return this;

},

equals: function ( quaternion ) {

return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );

},

fromArray: function ( array, offset ) {

if ( offset === undefined ) offset = 0;

this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ];

this.onChangeCallback();

return this;

},

toArray: function ( array, offset ) {

if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0;

array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w;

return array;

},

onChange: function ( callback ) {

this.onChangeCallback = callback;

return this;

},

onChangeCallback: function () {}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */

function Vector3( x, y, z ) {

this.x = x || 0; this.y = y || 0; this.z = z || 0;

}

Object.assign( Vector3.prototype, {

isVector3: true,

set: function ( x, y, z ) {

this.x = x; this.y = y; this.z = z;

return this;

},

setScalar: function ( scalar ) {

this.x = scalar; this.y = scalar; this.z = scalar;

return this;

},

setX: function ( x ) {

this.x = x;

return this;

},

setY: function ( y ) {

this.y = y;

return this;

},

setZ: function ( z ) {

this.z = z;

return this;

},

setComponent: function ( index, value ) {

switch ( index ) {

case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index );

}

return this;

},

getComponent: function ( index ) {

switch ( index ) {

case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index );

}

},

clone: function () {

return new this.constructor( this.x, this.y, this.z );

},

copy: function ( v ) {

this.x = v.x; this.y = v.y; this.z = v.z;

return this;

},

add: function ( v, w ) {

if ( w !== undefined ) {

console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w );

}

this.x += v.x; this.y += v.y; this.z += v.z;

return this;

},

addScalar: function ( s ) {

this.x += s; this.y += s; this.z += s;

return this;

},

addVectors: function ( a, b ) {

this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z;

return this;

},

addScaledVector: function ( v, s ) {

this.x += v.x * s; this.y += v.y * s; this.z += v.z * s;

return this;

},

sub: function ( v, w ) {

if ( w !== undefined ) {

console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w );

}

this.x -= v.x; this.y -= v.y; this.z -= v.z;

return this;

},

subScalar: function ( s ) {

this.x -= s; this.y -= s; this.z -= s;

return this;

},

subVectors: function ( a, b ) {

this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z;

return this;

},

multiply: function ( v, w ) {

if ( w !== undefined ) {

console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' ); return this.multiplyVectors( v, w );

}

this.x *= v.x; this.y *= v.y; this.z *= v.z;

return this;

},

multiplyScalar: function ( scalar ) {

this.x *= scalar; this.y *= scalar; this.z *= scalar;

return this;

},

multiplyVectors: function ( a, b ) {

this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z;

return this;

},

applyEuler: function () {

var quaternion = new Quaternion();

return function applyEuler( euler ) {

if ( ! ( euler && euler.isEuler ) ) {

console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );

}

return this.applyQuaternion( quaternion.setFromEuler( euler ) );

};

}(),

applyAxisAngle: function () {

var quaternion = new Quaternion();

return function applyAxisAngle( axis, angle ) {

return this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) );

};

}(),

applyMatrix3: function ( m ) {

var x = this.x, y = this.y, z = this.z; var e = m.elements;

this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;

return this;

},

applyMatrix4: function ( m ) {

var x = this.x, y = this.y, z = this.z; var e = m.elements;

var w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );

this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;

return this;

},

applyQuaternion: function ( q ) {

var x = this.x, y = this.y, z = this.z; var qx = q.x, qy = q.y, qz = q.z, qw = q.w;

// calculate quat * vector

var ix = qw * x + qy * z - qz * y; var iy = qw * y + qz * x - qx * z; var iz = qw * z + qx * y - qy * x; var iw = - qx * x - qy * y - qz * z;

// calculate result * inverse quat

this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;

return this;

},

project: function ( camera ) {

return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix );

},

unproject: function () {

var matrix = new Matrix4();

return function unproject( camera ) {

return this.applyMatrix4( matrix.getInverse( camera.projectionMatrix ) ).applyMatrix4( camera.matrixWorld );

};

}(),

transformDirection: function ( m ) {

// input: THREE.Matrix4 affine matrix // vector interpreted as a direction

var x = this.x, y = this.y, z = this.z; var e = m.elements;

this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;

return this.normalize();

},

divide: function ( v ) {

this.x /= v.x; this.y /= v.y; this.z /= v.z;

return this;

},

divideScalar: function ( scalar ) {

return this.multiplyScalar( 1 / scalar );

},

min: function ( v ) {

this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z );

return this;

},

max: function ( v ) {

this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z );

return this;

},

clamp: function ( min, max ) {

// assumes min < max, componentwise

this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) );

return this;

},

clampScalar: function () {

var min = new Vector3(); var max = new Vector3();

return function clampScalar( minVal, maxVal ) {

min.set( minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal );

return this.clamp( min, max );

};

}(),

clampLength: function ( min, max ) {

var length = this.length();

return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

},

floor: function () {

this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z );

return this;

},

ceil: function () {

this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z );

return this;

},

round: function () {

this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z );

return this;

},

roundToZero: function () {

this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );

return this;

},

negate: function () {

this.x = - this.x; this.y = - this.y; this.z = - this.z;

return this;

},

dot: function ( v ) {

return this.x * v.x + this.y * v.y + this.z * v.z;

},

// TODO lengthSquared?

lengthSq: function () {

return this.x * this.x + this.y * this.y + this.z * this.z;

},

length: function () {

return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );

},

manhattanLength: function () {

return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );

},

normalize: function () {

return this.divideScalar( this.length() || 1 );

},

setLength: function ( length ) {

return this.normalize().multiplyScalar( length );

},

lerp: function ( v, alpha ) {

this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha;

return this;

},

lerpVectors: function ( v1, v2, alpha ) {

return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

},

cross: function ( v, w ) {

if ( w !== undefined ) {

console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' ); return this.crossVectors( v, w );

}

return this.crossVectors( this, v );

},

crossVectors: function ( a, b ) {

var ax = a.x, ay = a.y, az = a.z; var bx = b.x, by = b.y, bz = b.z;

this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx;

return this;

},

projectOnVector: function ( vector ) {

var scalar = vector.dot( this ) / vector.lengthSq();

return this.copy( vector ).multiplyScalar( scalar );

},

projectOnPlane: function () {

var v1 = new Vector3();

return function projectOnPlane( planeNormal ) {

v1.copy( this ).projectOnVector( planeNormal );

return this.sub( v1 );

};

}(),

reflect: function () {

// reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length

var v1 = new Vector3();

return function reflect( normal ) {

return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );

};

}(),

angleTo: function ( v ) {

var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) );

// clamp, to handle numerical problems

return Math.acos( _Math.clamp( theta, - 1, 1 ) );

},

distanceTo: function ( v ) {

return Math.sqrt( this.distanceToSquared( v ) );

},

distanceToSquared: function ( v ) {

var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;

return dx * dx + dy * dy + dz * dz;

},

manhattanDistanceTo: function ( v ) {

return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );

},

setFromSpherical: function ( s ) {

return this.setFromSphericalCoords( s.radius, s.phi, s.theta );

},

setFromSphericalCoords: function ( radius, phi, theta ) {

var sinPhiRadius = Math.sin( phi ) * radius;

this.x = sinPhiRadius * Math.sin( theta ); this.y = Math.cos( phi ) * radius; this.z = sinPhiRadius * Math.cos( theta );

return this;

},

setFromCylindrical: function ( c ) {

return this.setFromCylindricalCoords( c.radius, c.theta, c.y );

},

setFromCylindricalCoords: function ( radius, theta, y ) {

this.x = radius * Math.sin( theta ); this.y = y; this.z = radius * Math.cos( theta );

return this;

},

setFromMatrixPosition: function ( m ) {

var e = m.elements;

this.x = e[ 12 ]; this.y = e[ 13 ]; this.z = e[ 14 ];

return this;

},

setFromMatrixScale: function ( m ) {

var sx = this.setFromMatrixColumn( m, 0 ).length(); var sy = this.setFromMatrixColumn( m, 1 ).length(); var sz = this.setFromMatrixColumn( m, 2 ).length();

this.x = sx; this.y = sy; this.z = sz;

return this;

},

setFromMatrixColumn: function ( m, index ) {

return this.fromArray( m.elements, index * 4 );

},

equals: function ( v ) {

return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );

},

fromArray: function ( array, offset ) {

if ( offset === undefined ) offset = 0;

this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ];

return this;

},

toArray: function ( array, offset ) {

if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0;

array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z;

return array;

},

fromBufferAttribute: function ( attribute, index, offset ) {

if ( offset !== undefined ) {

console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );

}

this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index );

return this;

}

} );

/** * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io * @author tschw */

function Matrix3() {

this.elements = [

1, 0, 0, 0, 1, 0, 0, 0, 1

];

if ( arguments.length > 0 ) {

console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );

}

}

Object.assign( Matrix3.prototype, {

isMatrix3: true,

set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {

var te = this.elements;

te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;

return this;

},

identity: function () {

this.set(

1, 0, 0, 0, 1, 0, 0, 0, 1

);

return this;

},

clone: function () {

return new this.constructor().fromArray( this.elements );

},

copy: function ( m ) {

var te = this.elements; var me = m.elements;

te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];

return this;

},

setFromMatrix4: function ( m ) {

var me = m.elements;

this.set(

me[ 0 ], me[ 4 ], me[ 8 ], me[ 1 ], me[ 5 ], me[ 9 ], me[ 2 ], me[ 6 ], me[ 10 ]

);

return this;

},

applyToBufferAttribute: function () {

var v1 = new Vector3();

return function applyToBufferAttribute( attribute ) {

for ( var i = 0, l = attribute.count; i < l; i ++ ) {

v1.x = attribute.getX( i ); v1.y = attribute.getY( i ); v1.z = attribute.getZ( i );

v1.applyMatrix3( this );

attribute.setXYZ( i, v1.x, v1.y, v1.z );

}

return attribute;

};

}(),

multiply: function ( m ) {

return this.multiplyMatrices( this, m );

},

premultiply: function ( m ) {

return this.multiplyMatrices( m, this );

},

multiplyMatrices: function ( a, b ) {

var ae = a.elements; var be = b.elements; var te = this.elements;

var a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ]; var a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ]; var a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];

var b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ]; var b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ]; var b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];

te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31; te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32; te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;

te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31; te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32; te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;

te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31; te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32; te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;

return this;

},

multiplyScalar: function ( s ) {

var te = this.elements;

te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;

return this;

},

determinant: function () {

var te = this.elements;

var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];

return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;

},

getInverse: function ( matrix, throwOnDegenerate ) {

if ( matrix && matrix.isMatrix4 ) {

console.error( "THREE.Matrix3: .getInverse() no longer takes a Matrix4 argument." );

}

var me = matrix.elements, te = this.elements,

n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ], n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],

t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13,

det = n11 * t11 + n21 * t12 + n31 * t13;

if ( det === 0 ) {

var msg = "THREE.Matrix3: .getInverse() can't invert matrix, determinant is 0";

if ( throwOnDegenerate === true ) {

throw new Error( msg );

} else {

console.warn( msg );

}

return this.identity();

}

var detInv = 1 / det;

te[ 0 ] = t11 * detInv; te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;

te[ 3 ] = t12 * detInv; te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;

te[ 6 ] = t13 * detInv; te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;

return this;

},

transpose: function () {

var tmp, m = this.elements;

tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;

return this;

},

getNormalMatrix: function ( matrix4 ) {

return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();

},

transposeIntoArray: function ( r ) {

var m = this.elements;

r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ];

return this;

},

setUvTransform: function ( tx, ty, sx, sy, rotation, cx, cy ) {

var c = Math.cos( rotation ); var s = Math.sin( rotation );

this.set( sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx, - sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty, 0, 0, 1 );

},

scale: function ( sx, sy ) {

var te = this.elements;

te[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx; te[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy;

return this;

},

rotate: function ( theta ) {

var c = Math.cos( theta ); var s = Math.sin( theta );

var te = this.elements;

var a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ]; var a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ];

te[ 0 ] = c * a11 + s * a21; te[ 3 ] = c * a12 + s * a22; te[ 6 ] = c * a13 + s * a23;

te[ 1 ] = - s * a11 + c * a21; te[ 4 ] = - s * a12 + c * a22; te[ 7 ] = - s * a13 + c * a23;

return this;

},

translate: function ( tx, ty ) {

var te = this.elements;

te[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ]; te[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ];

return this;

},

equals: function ( matrix ) {

var te = this.elements; var me = matrix.elements;

for ( var i = 0; i < 9; i ++ ) {

if ( te[ i ] !== me[ i ] ) return false;

}

return true;

},

fromArray: function ( array, offset ) {

if ( offset === undefined ) offset = 0;

for ( var i = 0; i < 9; i ++ ) {

this.elements[ i ] = array[ i + offset ];

}

return this;

},

toArray: function ( array, offset ) {

if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0;

var te = this.elements;

array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ];

array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ];

array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ];

return array;

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */

var ImageUtils = {

getDataURL: function ( image ) {

var canvas;

if ( image instanceof HTMLCanvasElement ) {

canvas = image;

} else {

canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); canvas.width = image.width; canvas.height = image.height;

var context = canvas.getContext( '2d' );

if ( image instanceof ImageData ) {

context.putImageData( image, 0, 0 );

} else {

context.drawImage( image, 0, 0, image.width, image.height );

}

}

if ( canvas.width > 2048 || canvas.height > 2048 ) {

return canvas.toDataURL( 'image/jpeg', 0.6 );

} else {

return canvas.toDataURL( 'image/png' );

}

}

};

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */

var textureId = 0;

function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {

Object.defineProperty( this, 'id', { value: textureId ++ } );

this.uuid = _Math.generateUUID();

this.name = ;

this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE; this.mipmaps = [];

this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING;

this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping; this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping;

this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; this.minFilter = minFilter !== undefined ? minFilter : LinearMipMapLinearFilter;

this.anisotropy = anisotropy !== undefined ? anisotropy : 1;

this.format = format !== undefined ? format : RGBAFormat; this.type = type !== undefined ? type : UnsignedByteType;

this.offset = new Vector2( 0, 0 ); this.repeat = new Vector2( 1, 1 ); this.center = new Vector2( 0, 0 ); this.rotation = 0;

this.matrixAutoUpdate = true; this.matrix = new Matrix3();

this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)

// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. // // Also changing the encoding after already used by a Material will not automatically make the Material // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. this.encoding = encoding !== undefined ? encoding : LinearEncoding;

this.version = 0; this.onUpdate = null;

}

Texture.DEFAULT_IMAGE = undefined; Texture.DEFAULT_MAPPING = UVMapping;

Texture.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

constructor: Texture,

isTexture: true,

updateMatrix: function () {

this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y );

},

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( source ) {

this.name = source.name;

this.image = source.image; this.mipmaps = source.mipmaps.slice( 0 );

this.mapping = source.mapping;

this.wrapS = source.wrapS; this.wrapT = source.wrapT;

this.magFilter = source.magFilter; this.minFilter = source.minFilter;

this.anisotropy = source.anisotropy;

this.format = source.format; this.type = source.type;

this.offset.copy( source.offset ); this.repeat.copy( source.repeat ); this.center.copy( source.center ); this.rotation = source.rotation;

this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrix.copy( source.matrix );

this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.encoding = source.encoding;

return this;

},

toJSON: function ( meta ) {

var isRootObject = ( meta === undefined || typeof meta === 'string' );

if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) {

return meta.textures[ this.uuid ];

}

var output = {

metadata: { version: 4.5, type: 'Texture', generator: 'Texture.toJSON' },

uuid: this.uuid, name: this.name,

mapping: this.mapping,

repeat: [ this.repeat.x, this.repeat.y ], offset: [ this.offset.x, this.offset.y ], center: [ this.center.x, this.center.y ], rotation: this.rotation,

wrap: [ this.wrapS, this.wrapT ],

format: this.format, minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy,

flipY: this.flipY

};

if ( this.image !== undefined ) {

// TODO: Move to THREE.Image

var image = this.image;

if ( image.uuid === undefined ) {

image.uuid = _Math.generateUUID(); // UGH

}

if ( ! isRootObject && meta.images[ image.uuid ] === undefined ) {

var url;

if ( Array.isArray( image ) ) {

// process array of images e.g. CubeTexture

url = [];

for ( var i = 0, l = image.length; i < l; i ++ ) {

url.push( ImageUtils.getDataURL( image[ i ] ) );

}

} else {

// process single image

url = ImageUtils.getDataURL( image );

}

meta.images[ image.uuid ] = { uuid: image.uuid, url: url };

}

output.image = image.uuid;

}

if ( ! isRootObject ) {

meta.textures[ this.uuid ] = output;

}

return output;

},

dispose: function () {

this.dispatchEvent( { type: 'dispose' } );

},

transformUv: function ( uv ) {

if ( this.mapping !== UVMapping ) return uv;

uv.applyMatrix3( this.matrix );

if ( uv.x < 0 || uv.x > 1 ) {

switch ( this.wrapS ) {

case RepeatWrapping:

uv.x = uv.x - Math.floor( uv.x ); break;

case ClampToEdgeWrapping:

uv.x = uv.x < 0 ? 0 : 1; break;

case MirroredRepeatWrapping:

if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {

uv.x = Math.ceil( uv.x ) - uv.x;

} else {

uv.x = uv.x - Math.floor( uv.x );

} break;

}

}

if ( uv.y < 0 || uv.y > 1 ) {

switch ( this.wrapT ) {

case RepeatWrapping:

uv.y = uv.y - Math.floor( uv.y ); break;

case ClampToEdgeWrapping:

uv.y = uv.y < 0 ? 0 : 1; break;

case MirroredRepeatWrapping:

if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {

uv.y = Math.ceil( uv.y ) - uv.y;

} else {

uv.y = uv.y - Math.floor( uv.y );

} break;

}

}

if ( this.flipY ) {

uv.y = 1 - uv.y;

}

return uv;

}

} );

Object.defineProperty( Texture.prototype, "needsUpdate", {

set: function ( value ) {

if ( value === true ) this.version ++;

}

} );

/** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */

function Vector4( x, y, z, w ) {

this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1;

}

Object.assign( Vector4.prototype, {

isVector4: true,

set: function ( x, y, z, w ) {

this.x = x; this.y = y; this.z = z; this.w = w;

return this;

},

setScalar: function ( scalar ) {

this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar;

return this;

},

setX: function ( x ) {

this.x = x;

return this;

},

setY: function ( y ) {

this.y = y;

return this;

},

setZ: function ( z ) {

this.z = z;

return this;

},

setW: function ( w ) {

this.w = w;

return this;

},

setComponent: function ( index, value ) {

switch ( index ) {

case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index );

}

return this;

},

getComponent: function ( index ) {

switch ( index ) {

case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index );

}

},

clone: function () {

return new this.constructor( this.x, this.y, this.z, this.w );

},

copy: function ( v ) {

this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1;

return this;

},

add: function ( v, w ) {

if ( w !== undefined ) {

console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w );

}

this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w;

return this;

},

addScalar: function ( s ) {

this.x += s; this.y += s; this.z += s; this.w += s;

return this;

},

addVectors: function ( a, b ) {

this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w;

return this;

},

addScaledVector: function ( v, s ) {

this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s;

return this;

},

sub: function ( v, w ) {

if ( w !== undefined ) {

console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w );

}

this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w;

return this;

},

subScalar: function ( s ) {

this.x -= s; this.y -= s; this.z -= s; this.w -= s;

return this;

},

subVectors: function ( a, b ) {

this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w;

return this;

},

multiplyScalar: function ( scalar ) {

this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar;

return this;

},

applyMatrix4: function ( m ) {

var x = this.x, y = this.y, z = this.z, w = this.w; var e = m.elements;

this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;

return this;

},

divideScalar: function ( scalar ) {

return this.multiplyScalar( 1 / scalar );

},

setAxisAngleFromQuaternion: function ( q ) {

// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm

// q is assumed to be normalized

this.w = 2 * Math.acos( q.w );

var s = Math.sqrt( 1 - q.w * q.w );

if ( s < 0.0001 ) {

this.x = 1; this.y = 0; this.z = 0;

} else {

this.x = q.x / s; this.y = q.y / s; this.z = q.z / s;

}

return this;

},

setAxisAngleFromRotationMatrix: function ( m ) {

// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm

// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

var angle, x, y, z, // variables for result epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees

te = m.elements,

m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];

if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) {

// singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms

if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {

// this singularity is identity matrix so angle = 0

this.set( 1, 0, 0, 0 );

return this; // zero angle, arbitrary axis

}

// otherwise this singularity is angle = 180

angle = Math.PI;

var xx = ( m11 + 1 ) / 2; var yy = ( m22 + 1 ) / 2; var zz = ( m33 + 1 ) / 2; var xy = ( m12 + m21 ) / 4; var xz = ( m13 + m31 ) / 4; var yz = ( m23 + m32 ) / 4;

if ( ( xx > yy ) && ( xx > zz ) ) {

// m11 is the largest diagonal term

if ( xx < epsilon ) {

x = 0; y = 0.707106781; z = 0.707106781;

} else {

x = Math.sqrt( xx ); y = xy / x; z = xz / x;

}

} else if ( yy > zz ) {

// m22 is the largest diagonal term

if ( yy < epsilon ) {

x = 0.707106781; y = 0; z = 0.707106781;

} else {

y = Math.sqrt( yy ); x = xy / y; z = yz / y;

}

} else {

// m33 is the largest diagonal term so base result on this

if ( zz < epsilon ) {

x = 0.707106781; y = 0.707106781; z = 0;

} else {

z = Math.sqrt( zz ); x = xz / z; y = yz / z;

}

}

this.set( x, y, z, angle );

return this; // return 180 deg rotation

}

// as we have reached here there are no singularities so we can handle normally

var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize

if ( Math.abs( s ) < 0.001 ) s = 1;

// prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case

this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );

return this;

},

min: function ( v ) {

this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); this.w = Math.min( this.w, v.w );

return this;

},

max: function ( v ) {

this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); this.w = Math.max( this.w, v.w );

return this;

},

clamp: function ( min, max ) {

// assumes min < max, componentwise

this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); this.w = Math.max( min.w, Math.min( max.w, this.w ) );

return this;

},

clampScalar: function () {

var min, max;

return function clampScalar( minVal, maxVal ) {

if ( min === undefined ) {

min = new Vector4(); max = new Vector4();

}

min.set( minVal, minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal, maxVal );

return this.clamp( min, max );

};

}(),

clampLength: function ( min, max ) {

var length = this.length();

return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

},

floor: function () {

this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w );

return this;

},

ceil: function () {

this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w );

return this;

},

round: function () {

this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w );

return this;

},

roundToZero: function () {

this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );

return this;

},

negate: function () {

this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w;

return this;

},

dot: function ( v ) {

return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;

},

lengthSq: function () {

return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;

},

length: function () {

return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );

},

manhattanLength: function () {

return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );

},

normalize: function () {

return this.divideScalar( this.length() || 1 );

},

setLength: function ( length ) {

return this.normalize().multiplyScalar( length );

},

lerp: function ( v, alpha ) {

this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha;

return this;

},

lerpVectors: function ( v1, v2, alpha ) {

return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

},

equals: function ( v ) {

return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );

},

fromArray: function ( array, offset ) {

if ( offset === undefined ) offset = 0;

this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; this.w = array[ offset + 3 ];

return this;

},

toArray: function ( array, offset ) {

if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0;

array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; array[ offset + 3 ] = this.w;

return array;

},

fromBufferAttribute: function ( attribute, index, offset ) {

if ( offset !== undefined ) {

console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );

}

this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); this.w = attribute.getW( index );

return this;

}

} );

/** * @author szimek / https://github.com/szimek/ * @author alteredq / http://alteredqualia.com/ * @author Marius Kintel / https://github.com/kintel */

/* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ function WebGLRenderTarget( width, height, options ) {

this.width = width; this.height = height;

this.scissor = new Vector4( 0, 0, width, height ); this.scissorTest = false;

this.viewport = new Vector4( 0, 0, width, height );

options = options || {};

if ( options.minFilter === undefined ) options.minFilter = LinearFilter;

this.texture = new Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );

this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : true;

this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true; this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;

}

WebGLRenderTarget.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

constructor: WebGLRenderTarget,

isWebGLRenderTarget: true,

setSize: function ( width, height ) {

if ( this.width !== width || this.height !== height ) {

this.width = width; this.height = height;

this.dispose();

}

this.viewport.set( 0, 0, width, height ); this.scissor.set( 0, 0, width, height );

},

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( source ) {

this.width = source.width; this.height = source.height;

this.viewport.copy( source.viewport );

this.texture = source.texture.clone();

this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.depthTexture = source.depthTexture;

return this;

},

dispose: function () {

this.dispatchEvent( { type: 'dispose' } );

}

} );

/** * @author alteredq / http://alteredqualia.com */

function WebGLRenderTargetCube( width, height, options ) {

WebGLRenderTarget.call( this, width, height, options );

this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5 this.activeMipMapLevel = 0;

}

WebGLRenderTargetCube.prototype = Object.create( WebGLRenderTarget.prototype ); WebGLRenderTargetCube.prototype.constructor = WebGLRenderTargetCube;

WebGLRenderTargetCube.prototype.isWebGLRenderTargetCube = true;

/** * @author alteredq / http://alteredqualia.com/ */

function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {

Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

this.image = { data: data, width: width, height: height };

this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;

this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1;

}

DataTexture.prototype = Object.create( Texture.prototype ); DataTexture.prototype.constructor = DataTexture;

DataTexture.prototype.isDataTexture = true;

/** * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */

function Box3( min, max ) {

this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );

}

Object.assign( Box3.prototype, {

isBox3: true,

set: function ( min, max ) {

this.min.copy( min ); this.max.copy( max );

return this;

},

setFromArray: function ( array ) {

var minX = + Infinity; var minY = + Infinity; var minZ = + Infinity;

var maxX = - Infinity; var maxY = - Infinity; var maxZ = - Infinity;

for ( var i = 0, l = array.length; i < l; i += 3 ) {

var x = array[ i ]; var y = array[ i + 1 ]; var z = array[ i + 2 ];

if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z;

if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z;

}

this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ );

return this;

},

setFromBufferAttribute: function ( attribute ) {

var minX = + Infinity; var minY = + Infinity; var minZ = + Infinity;

var maxX = - Infinity; var maxY = - Infinity; var maxZ = - Infinity;

for ( var i = 0, l = attribute.count; i < l; i ++ ) {

var x = attribute.getX( i ); var y = attribute.getY( i ); var z = attribute.getZ( i );

if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( z < minZ ) minZ = z;

if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; if ( z > maxZ ) maxZ = z;

}

this.min.set( minX, minY, minZ ); this.max.set( maxX, maxY, maxZ );

return this;

},

setFromPoints: function ( points ) {

this.makeEmpty();

for ( var i = 0, il = points.length; i < il; i ++ ) {

this.expandByPoint( points[ i ] );

}

return this;

},

setFromCenterAndSize: function () {

var v1 = new Vector3();

return function setFromCenterAndSize( center, size ) {

var halfSize = v1.copy( size ).multiplyScalar( 0.5 );

this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize );

return this;

};

}(),

setFromObject: function ( object ) {

this.makeEmpty();

return this.expandByObject( object );

},

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( box ) {

this.min.copy( box.min ); this.max.copy( box.max );

return this;

},

makeEmpty: function () {

this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity;

return this;

},

isEmpty: function () {

// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes

return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );

},

getCenter: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Box3: .getCenter() target is now required' ); target = new Vector3();

}

return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );

},

getSize: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Box3: .getSize() target is now required' ); target = new Vector3();

}

return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );

},

expandByPoint: function ( point ) {

this.min.min( point ); this.max.max( point );

return this;

},

expandByVector: function ( vector ) {

this.min.sub( vector ); this.max.add( vector );

return this;

},

expandByScalar: function ( scalar ) {

this.min.addScalar( - scalar ); this.max.addScalar( scalar );

return this;

},

expandByObject: function () {

// Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms

var scope, i, l;

var v1 = new Vector3();

function traverse( node ) {

var geometry = node.geometry;

if ( geometry !== undefined ) {

if ( geometry.isGeometry ) {

var vertices = geometry.vertices;

for ( i = 0, l = vertices.length; i < l; i ++ ) {

v1.copy( vertices[ i ] ); v1.applyMatrix4( node.matrixWorld );

scope.expandByPoint( v1 );

}

} else if ( geometry.isBufferGeometry ) {

var attribute = geometry.attributes.position;

if ( attribute !== undefined ) {

for ( i = 0, l = attribute.count; i < l; i ++ ) {

v1.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );

scope.expandByPoint( v1 );

}

}

}

}

}

return function expandByObject( object ) {

scope = this;

object.updateMatrixWorld( true );

object.traverse( traverse );

return this;

};

}(),

containsPoint: function ( point ) {

return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true;

},

containsBox: function ( box ) {

return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z;

},

getParameter: function ( point, target ) {

// This can potentially have a divide by zero if the box // has a size dimension of 0.

if ( target === undefined ) {

console.warn( 'THREE.Box3: .getParameter() target is now required' ); target = new Vector3();

}

return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) );

},

intersectsBox: function ( box ) {

// using 6 splitting planes to rule out intersections. return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true;

},

intersectsSphere: ( function () {

var closestPoint = new Vector3();

return function intersectsSphere( sphere ) {

// Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, closestPoint );

// If that point is inside the sphere, the AABB and sphere intersect. return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );

};

} )(),

intersectsPlane: function ( plane ) {

// We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection.

var min, max;

if ( plane.normal.x > 0 ) {

min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x;

} else {

min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x;

}

if ( plane.normal.y > 0 ) {

min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y;

} else {

min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y;

}

if ( plane.normal.z > 0 ) {

min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z;

} else {

min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z;

}

return ( min <= - plane.constant && max >= - plane.constant );

},

intersectsTriangle: ( function () {

// triangle centered vertices var v0 = new Vector3(); var v1 = new Vector3(); var v2 = new Vector3();

// triangle edge vectors var f0 = new Vector3(); var f1 = new Vector3(); var f2 = new Vector3();

var testAxis = new Vector3();

var center = new Vector3(); var extents = new Vector3();

var triangleNormal = new Vector3();

function satForAxes( axes ) {

var i, j;

for ( i = 0, j = axes.length - 3; i <= j; i += 3 ) {

testAxis.fromArray( axes, i ); // project the aabb onto the seperating axis var r = extents.x * Math.abs( testAxis.x ) + extents.y * Math.abs( testAxis.y ) + extents.z * Math.abs( testAxis.z ); // project all 3 vertices of the triangle onto the seperating axis var p0 = v0.dot( testAxis ); var p1 = v1.dot( testAxis ); var p2 = v2.dot( testAxis ); // actual test, basically see if either of the most extreme of the triangle points intersects r if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {

// points of the projected triangle are outside the projected half-length of the aabb // the axis is seperating and we can exit return false;

}

}

return true;

}

return function intersectsTriangle( triangle ) {

if ( this.isEmpty() ) {

return false;

}

// compute box center and extents this.getCenter( center ); extents.subVectors( this.max, center );

// translate triangle to aabb origin v0.subVectors( triangle.a, center ); v1.subVectors( triangle.b, center ); v2.subVectors( triangle.c, center );

// compute edge vectors for triangle f0.subVectors( v1, v0 ); f1.subVectors( v2, v1 ); f2.subVectors( v0, v2 );

// test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) var axes = [ 0, - f0.z, f0.y, 0, - f1.z, f1.y, 0, - f2.z, f2.y, f0.z, 0, - f0.x, f1.z, 0, - f1.x, f2.z, 0, - f2.x, - f0.y, f0.x, 0, - f1.y, f1.x, 0, - f2.y, f2.x, 0 ]; if ( ! satForAxes( axes ) ) {

return false;

}

// test 3 face normals from the aabb axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( ! satForAxes( axes ) ) {

return false;

}

// finally testing the face normal of the triangle // use already existing triangle edge vectors here triangleNormal.crossVectors( f0, f1 ); axes = [ triangleNormal.x, triangleNormal.y, triangleNormal.z ]; return satForAxes( axes );

};

} )(),

clampPoint: function ( point, target ) {

if ( target === undefined ) {

console.warn( 'THREE.Box3: .clampPoint() target is now required' ); target = new Vector3();

}

return target.copy( point ).clamp( this.min, this.max );

},

distanceToPoint: function () {

var v1 = new Vector3();

return function distanceToPoint( point ) {

var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length();

};

}(),

getBoundingSphere: function () {

var v1 = new Vector3();

return function getBoundingSphere( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Box3: .getBoundingSphere() target is now required' ); target = new Sphere();

}

this.getCenter( target.center );

target.radius = this.getSize( v1 ).length() * 0.5;

return target;

};

}(),

intersect: function ( box ) {

this.min.max( box.min ); this.max.min( box.max );

// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if ( this.isEmpty() ) this.makeEmpty();

return this;

},

union: function ( box ) {

this.min.min( box.min ); this.max.max( box.max );

return this;

},

applyMatrix4: function () {

var points = [ new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3() ];

return function applyMatrix4( matrix ) {

// transform of empty box is an empty box. if ( this.isEmpty() ) return this;

// NOTE: I am using a binary pattern to specify all 2^3 combinations below points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111

this.setFromPoints( points );

return this;

};

}(),

translate: function ( offset ) {

this.min.add( offset ); this.max.add( offset );

return this;

},

equals: function ( box ) {

return box.min.equals( this.min ) && box.max.equals( this.max );

}

} );

/** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */

function Sphere( center, radius ) {

this.center = ( center !== undefined ) ? center : new Vector3(); this.radius = ( radius !== undefined ) ? radius : 0;

}

Object.assign( Sphere.prototype, {

set: function ( center, radius ) {

this.center.copy( center ); this.radius = radius;

return this;

},

setFromPoints: function () {

var box = new Box3();

return function setFromPoints( points, optionalCenter ) {

var center = this.center;

if ( optionalCenter !== undefined ) {

center.copy( optionalCenter );

} else {

box.setFromPoints( points ).getCenter( center );

}

var maxRadiusSq = 0;

for ( var i = 0, il = points.length; i < il; i ++ ) {

maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );

}

this.radius = Math.sqrt( maxRadiusSq );

return this;

};

}(),

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( sphere ) {

this.center.copy( sphere.center ); this.radius = sphere.radius;

return this;

},

empty: function () {

return ( this.radius <= 0 );

},

containsPoint: function ( point ) {

return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );

},

distanceToPoint: function ( point ) {

return ( point.distanceTo( this.center ) - this.radius );

},

intersectsSphere: function ( sphere ) {

var radiusSum = this.radius + sphere.radius;

return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );

},

intersectsBox: function ( box ) {

return box.intersectsSphere( this );

},

intersectsPlane: function ( plane ) {

return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius;

},

clampPoint: function ( point, target ) {

var deltaLengthSq = this.center.distanceToSquared( point );

if ( target === undefined ) {

console.warn( 'THREE.Sphere: .clampPoint() target is now required' ); target = new Vector3();

}

target.copy( point );

if ( deltaLengthSq > ( this.radius * this.radius ) ) {

target.sub( this.center ).normalize(); target.multiplyScalar( this.radius ).add( this.center );

}

return target;

},

getBoundingBox: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Sphere: .getBoundingBox() target is now required' ); target = new Box3();

}

target.set( this.center, this.center ); target.expandByScalar( this.radius );

return target;

},

applyMatrix4: function ( matrix ) {

this.center.applyMatrix4( matrix ); this.radius = this.radius * matrix.getMaxScaleOnAxis();

return this;

},

translate: function ( offset ) {

this.center.add( offset );

return this;

},

equals: function ( sphere ) {

return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );

}

} );

/** * @author bhouston / http://clara.io */

function Plane( normal, constant ) {

// normal is assumed to be normalized

this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 ); this.constant = ( constant !== undefined ) ? constant : 0;

}

Object.assign( Plane.prototype, {

set: function ( normal, constant ) {

this.normal.copy( normal ); this.constant = constant;

return this;

},

setComponents: function ( x, y, z, w ) {

this.normal.set( x, y, z ); this.constant = w;

return this;

},

setFromNormalAndCoplanarPoint: function ( normal, point ) {

this.normal.copy( normal ); this.constant = - point.dot( this.normal );

return this;

},

setFromCoplanarPoints: function () {

var v1 = new Vector3(); var v2 = new Vector3();

return function setFromCoplanarPoints( a, b, c ) {

var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize();

// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?

this.setFromNormalAndCoplanarPoint( normal, a );

return this;

};

}(),

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( plane ) {

this.normal.copy( plane.normal ); this.constant = plane.constant;

return this;

},

normalize: function () {

// Note: will lead to a divide by zero if the plane is invalid.

var inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength;

return this;

},

negate: function () {

this.constant *= - 1; this.normal.negate();

return this;

},

distanceToPoint: function ( point ) {

return this.normal.dot( point ) + this.constant;

},

distanceToSphere: function ( sphere ) {

return this.distanceToPoint( sphere.center ) - sphere.radius;

},

projectPoint: function ( point, target ) {

if ( target === undefined ) {

console.warn( 'THREE.Plane: .projectPoint() target is now required' ); target = new Vector3();

}

return target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point );

},

intersectLine: function () {

var v1 = new Vector3();

return function intersectLine( line, target ) {

if ( target === undefined ) {

console.warn( 'THREE.Plane: .intersectLine() target is now required' ); target = new Vector3();

}

var direction = line.delta( v1 );

var denominator = this.normal.dot( direction );

if ( denominator === 0 ) {

// line is coplanar, return origin if ( this.distanceToPoint( line.start ) === 0 ) {

return target.copy( line.start );

}

// Unsure if this is the correct method to handle this case. return undefined;

}

var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;

if ( t < 0 || t > 1 ) {

return undefined;

}

return target.copy( direction ).multiplyScalar( t ).add( line.start );

};

}(),

intersectsLine: function ( line ) {

// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.

var startSign = this.distanceToPoint( line.start ); var endSign = this.distanceToPoint( line.end );

return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );

},

intersectsBox: function ( box ) {

return box.intersectsPlane( this );

},

intersectsSphere: function ( sphere ) {

return sphere.intersectsPlane( this );

},

coplanarPoint: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Plane: .coplanarPoint() target is now required' ); target = new Vector3();

}

return target.copy( this.normal ).multiplyScalar( - this.constant );

},

applyMatrix4: function () {

var v1 = new Vector3(); var m1 = new Matrix3();

return function applyMatrix4( matrix, optionalNormalMatrix ) {

var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix );

var referencePoint = this.coplanarPoint( v1 ).applyMatrix4( matrix );

var normal = this.normal.applyMatrix3( normalMatrix ).normalize();

this.constant = - referencePoint.dot( normal );

return this;

};

}(),

translate: function ( offset ) {

this.constant -= offset.dot( this.normal );

return this;

},

equals: function ( plane ) {

return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author bhouston / http://clara.io */

function Frustum( p0, p1, p2, p3, p4, p5 ) {

this.planes = [

( p0 !== undefined ) ? p0 : new Plane(), ( p1 !== undefined ) ? p1 : new Plane(), ( p2 !== undefined ) ? p2 : new Plane(), ( p3 !== undefined ) ? p3 : new Plane(), ( p4 !== undefined ) ? p4 : new Plane(), ( p5 !== undefined ) ? p5 : new Plane()

];

}

Object.assign( Frustum.prototype, {

set: function ( p0, p1, p2, p3, p4, p5 ) {

var planes = this.planes;

planes[ 0 ].copy( p0 ); planes[ 1 ].copy( p1 ); planes[ 2 ].copy( p2 ); planes[ 3 ].copy( p3 ); planes[ 4 ].copy( p4 ); planes[ 5 ].copy( p5 );

return this;

},

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( frustum ) {

var planes = this.planes;

for ( var i = 0; i < 6; i ++ ) {

planes[ i ].copy( frustum.planes[ i ] );

}

return this;

},

setFromMatrix: function ( m ) {

var planes = this.planes; var me = m.elements; var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];

planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();

return this;

},

intersectsObject: function () {

var sphere = new Sphere();

return function intersectsObject( object ) {

var geometry = object.geometry;

if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

sphere.copy( geometry.boundingSphere ) .applyMatrix4( object.matrixWorld );

return this.intersectsSphere( sphere );

};

}(),

intersectsSprite: function () {

var sphere = new Sphere();

return function intersectsSprite( sprite ) {

sphere.center.set( 0, 0, 0 ); sphere.radius = 0.7071067811865476; sphere.applyMatrix4( sprite.matrixWorld );

return this.intersectsSphere( sphere );

};

}(),

intersectsSphere: function ( sphere ) {

var planes = this.planes; var center = sphere.center; var negRadius = - sphere.radius;

for ( var i = 0; i < 6; i ++ ) {

var distance = planes[ i ].distanceToPoint( center );

if ( distance < negRadius ) {

return false;

}

}

return true;

},

intersectsBox: function () {

var p = new Vector3();

return function intersectsBox( box ) {

var planes = this.planes;

for ( var i = 0; i < 6; i ++ ) {

var plane = planes[ i ];

// corner at max distance

p.x = plane.normal.x > 0 ? box.max.x : box.min.x; p.y = plane.normal.y > 0 ? box.max.y : box.min.y; p.z = plane.normal.z > 0 ? box.max.z : box.min.z;

if ( plane.distanceToPoint( p ) < 0 ) {

return false;

}

}

return true;

};

}(),

containsPoint: function ( point ) {

var planes = this.planes;

for ( var i = 0; i < 6; i ++ ) {

if ( planes[ i ].distanceToPoint( point ) < 0 ) {

return false;

}

}

return true;

}

} );

var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif\n";

var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif\n";

var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif\n";

var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif\n";

var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";

var begin_vertex = "\nvec3 transformed = vec3( position );\n";

var beginnormal_vertex = "\nvec3 objectNormal = vec3( normal );\n";

var bsdfs = "float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n#else\n\tif( cutoffDistance > 0.0 ) {\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t}\n\treturn 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\n\treturn specularColor * AB.x + AB.y;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n";

var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tfDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif\n";

var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vViewPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\tif ( clipped ) discard;\n\t#endif\n#endif\n";

var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\t#if ! defined( PHYSICAL ) && ! defined( PHONG ) && ! defined( MATCAP )\n\t\tvarying vec3 vViewPosition;\n\t#endif\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif\n";

var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG ) && ! defined( MATCAP )\n\tvarying vec3 vViewPosition;\n#endif\n";

var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG ) && ! defined( MATCAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n";

var color_fragment = "#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif";

var color_pars_fragment = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif\n";

var color_pars_vertex = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";

var color_vertex = "#ifdef USE_COLOR\n\tvColor.xyz = color.xyz;\n#endif";

var common = "#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI_HALF 1.5707963267949\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n#define LOG2 1.442695\n#define EPSILON 1e-6\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\n";

var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n#define cubeUV_textureSize (1024.0)\nint getFaceFromDirection(vec3 direction) {\n\tvec3 absDirection = abs(direction);\n\tint face = -1;\n\tif( absDirection.x > absDirection.z ) {\n\t\tif(absDirection.x > absDirection.y )\n\t\t\tface = direction.x > 0.0 ? 0 : 3;\n\t\telse\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\n\t}\n\telse {\n\t\tif(absDirection.z > absDirection.y )\n\t\t\tface = direction.z > 0.0 ? 2 : 5;\n\t\telse\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\n\t}\n\treturn face;\n}\n#define cubeUV_maxLods1 (log2(cubeUV_textureSize*0.25) - 1.0)\n#define cubeUV_rangeClamp (exp2((6.0 - 1.0) * 2.0))\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\n\tfloat scale = exp2(cubeUV_maxLods1 - roughnessLevel);\n\tfloat dxRoughness = dFdx(roughness);\n\tfloat dyRoughness = dFdy(roughness);\n\tvec3 dx = dFdx( vec * scale * dxRoughness );\n\tvec3 dy = dFdy( vec * scale * dyRoughness );\n\tfloat d = max( dot( dx, dx ), dot( dy, dy ) );\n\td = clamp(d, 1.0, cubeUV_rangeClamp);\n\tfloat mipLevel = 0.5 * log2(d);\n\treturn vec2(floor(mipLevel), fract(mipLevel));\n}\n#define cubeUV_maxLods2 (log2(cubeUV_textureSize*0.25) - 2.0)\n#define cubeUV_rcpTextureSize (1.0 / cubeUV_textureSize)\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\n\tmipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\n\tfloat a = 16.0 * cubeUV_rcpTextureSize;\n\tvec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\n\tvec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\n\tfloat powScale = exp2_packed.x * exp2_packed.y;\n\tfloat scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\n\tfloat mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\n\tbool bRes = mipLevel == 0.0;\n\tscale = bRes && (scale < a) ? a : scale;\n\tvec3 r;\n\tvec2 offset;\n\tint face = getFaceFromDirection(direction);\n\tfloat rcpPowScale = 1.0 / powScale;\n\tif( face == 0) {\n\t\tr = vec3(direction.x, -direction.z, direction.y);\n\t\toffset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 1) {\n\t\tr = vec3(direction.y, direction.x, direction.z);\n\t\toffset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 2) {\n\t\tr = vec3(direction.z, direction.x, direction.y);\n\t\toffset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 3) {\n\t\tr = vec3(direction.x, direction.z, direction.y);\n\t\toffset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\telse if( face == 4) {\n\t\tr = vec3(direction.y, direction.x, -direction.z);\n\t\toffset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\telse {\n\t\tr = vec3(direction.z, -direction.x, direction.y);\n\t\toffset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\tr = normalize(r);\n\tfloat texelOffset = 0.5 * cubeUV_rcpTextureSize;\n\tvec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\n\tvec2 base = offset + vec2( texelOffset );\n\treturn base + s * ( scale - 2.0 * texelOffset );\n}\n#define cubeUV_maxLods3 (log2(cubeUV_textureSize*0.25) - 3.0)\nvec4 textureCubeUV( sampler2D envMap, vec3 reflectedDirection, float roughness ) {\n\tfloat roughnessVal = roughness* cubeUV_maxLods3;\n\tfloat r1 = floor(roughnessVal);\n\tfloat r2 = r1 + 1.0;\n\tfloat t = fract(roughnessVal);\n\tvec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\n\tfloat s = mipInfo.y;\n\tfloat level0 = mipInfo.x;\n\tfloat level1 = level0 + 1.0;\n\tlevel1 = level1 > 5.0 ? 5.0 : level1;\n\tlevel0 += min( floor( s + 0.5 ), 5.0 );\n\tvec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\n\tvec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\n\tvec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\n\tvec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\n\tvec4 result = mix(color10, color20, t);\n\treturn vec4(result.rgb, 1.0);\n}\n#endif\n";

var defaultnormal_vertex = "vec3 transformedNormal = normalMatrix * objectNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n";

var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif\n";

var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\n#endif\n";

var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif\n";

var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif\n";

var encodings_fragment = " gl_FragColor = linearToOutputTexel( gl_FragColor );\n";

var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = min( floor( D ) / 255.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}\n";

var envmap_fragment = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\tvec2 sampleUV;\n\t\treflectVec = normalize( reflectVec );\n\t\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\n\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\treflectVec = normalize( reflectVec );\n\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\n\t\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\tenvColor = envMapTexelToLinear( envColor );\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif\n";

var envmap_pars_fragment = "#if defined( USE_ENVMAP ) || defined( PHYSICAL )\n\tuniform float reflectivity;\n\tuniform float envMapIntensity;\n#endif\n#ifdef USE_ENVMAP\n\t#if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\n\t\tvarying vec3 vWorldPosition;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif\n";

var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif\n";

var envmap_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif\n";

var fog_vertex = "#ifdef USE_FOG\n\tfogDepth = -mvPosition.z;\n#endif\n";

var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float fogDepth;\n#endif\n";

var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 ) );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif\n";

var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif\n";

var gradientmap_pars_fragment = "#ifdef TOON\n\tuniform sampler2D gradientMap;\n\tvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\t\tfloat dotNL = dot( normal, lightDirection );\n\t\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t\t#ifdef USE_GRADIENTMAP\n\t\t\treturn texture2D( gradientMap, coord ).rgb;\n\t\t#else\n\t\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t\t#endif\n\t}\n#endif\n";

var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\treflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n#endif\n";

var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";

var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n#endif\n";

var lights_pars_begin = "uniform vec3 ambientLightColor;\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t\tfloat shadowCameraNear;\n\t\tfloat shadowCameraFar;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif\n";

var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, queryVec, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent ));\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\t\tvec2 sampleUV;\n\t\t\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\t\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif\n";

var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;\n";

var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3\tdiffuseColor;\n\tvec3\tspecularColor;\n\tfloat\tspecularShininess;\n\tfloat\tspecularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\t#ifdef TOON\n\t\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#else\n\t\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\t\tvec3 irradiance = dotNL * directLight.color;\n\t#endif\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)\n";

var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\n#ifdef STANDARD\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.clearCoat = saturate( clearCoat );\tmaterial.clearCoatRoughness = clamp( clearCoatRoughness, 0.04, 1.0 );\n#endif\n";

var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3\tdiffuseColor;\n\tfloat\tspecularRoughness;\n\tvec3\tspecularColor;\n\t#ifndef STANDARD\n\t\tfloat clearCoat;\n\t\tfloat clearCoatRoughness;\n\t#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearCoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos - halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos + halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos + halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos - halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifndef STANDARD\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\n\t#else\n\t\tfloat clearCoatDHR = 0.0;\n\t#endif\n\treflectedLight.directSpecular += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\n\treflectedLight.directDiffuse += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\t#ifndef STANDARD\n\t\treflectedLight.directSpecular += irradiance * material.clearCoat * BRDF_Specular_GGX( directLight, geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\n\t#endif\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 clearCoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t#ifndef STANDARD\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\tfloat dotNL = dotNV;\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\n\t#else\n\t\tfloat clearCoatDHR = 0.0;\n\t#endif\n\treflectedLight.indirectSpecular += ( 1.0 - clearCoatDHR ) * radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\n\t#ifndef STANDARD\n\t\treflectedLight.indirectSpecular += clearCoatRadiance * material.clearCoat * BRDF_Specular_GGX_Environment( geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\n\t#endif\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\n#define Material_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.specularRoughness )\n#define Material_ClearCoat_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.clearCoatRoughness )\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}\n";

var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = normalize( vViewPosition );\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearCoatRadiance = vec3( 0.0 );\n#endif\n";

var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tirradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), maxMipLevel );\n\t#ifndef STANDARD\n\t\tclearCoatRadiance += getLightProbeIndirectRadiance( geometry, Material_ClearCoat_BlinnShininessExponent( material ), maxMipLevel );\n\t#endif\n#endif\n";

var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, clearCoatRadiance, geometry, material, reflectedLight );\n#endif\n";

var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";

var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n#endif\n";

var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif\n";

var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t#else\n\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\tgl_Position.z *= gl_Position.w;\n\t#endif\n#endif\n";

var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif\n";

var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n";

var map_particle_fragment = "#ifdef USE_MAP\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n";

var map_particle_pars_fragment = "#ifdef USE_MAP\n\tuniform mat3 uvTransform;\n\tuniform sampler2D map;\n#endif\n";

var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif\n";

var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";

var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\n\tobjectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\n\tobjectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\n\tobjectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\n#endif\n";

var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\t#ifndef USE_MORPHNORMALS\n\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";

var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\n\ttransformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\n\ttransformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\n\ttransformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\ttransformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\n\ttransformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\n\ttransformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\n\ttransformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\n\t#endif\n#endif\n";

var normal_fragment_begin = "#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n#endif\n";

var normal_fragment_maps = "#ifdef USE_NORMALMAP\n\t#ifdef OBJECTSPACE_NORMALMAP\n\t\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t\t#ifdef FLIP_SIDED\n\t\t\tnormal = - normal;\n\t\t#endif\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t#endif\n\t\tnormal = normalize( normalMatrix * normal );\n\t#else\n\t\tnormal = perturbNormal2Arb( -vViewPosition, normal );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif\n";

var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n\t#ifdef OBJECTSPACE_NORMALMAP\n\t\tuniform mat3 normalMatrix;\n\t#else\n\t\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\n\t\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\t\tvec2 st0 = dFdx( vUv.st );\n\t\t\tvec2 st1 = dFdy( vUv.st );\n\t\t\tfloat scale = sign( st1.t * st0.s - st0.t * st1.s );\n\t\t\tvec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );\n\t\t\tvec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );\n\t\t\tvec3 N = normalize( surf_norm );\n\t\t\tmat3 tsn = mat3( S, T, N );\n\t\t\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t\t\tmapN.xy *= normalScale;\n\t\t\tmapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t\treturn normalize( tsn * mapN );\n\t\t}\n\t#endif\n#endif\n";

var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}\n";

var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif\n";

var project_vertex = "vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\ngl_Position = projectionMatrix * mvPosition;\n";

var dithering_fragment = "#if defined( DITHERING )\n gl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif\n";

var dithering_pars_fragment = "#if defined( DITHERING )\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif\n";

var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif\n";

var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";

var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tfloat texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\n\t\tconst vec2 offset = vec2( 0.0, 1.0 );\n\t\tvec2 texelSize = vec2( 1.0 ) / size;\n\t\tvec2 centroidUV = floor( uv * size + 0.5 ) / size;\n\t\tfloat lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\n\t\tfloat lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\n\t\tfloat rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\n\t\tfloat rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\n\t\tvec2 f = fract( uv * size + 0.5 );\n\t\tfloat a = mix( lb, lt, f.y );\n\t\tfloat b = mix( rb, rt, f.y );\n\t\tfloat c = mix( a, b, f.x );\n\t\treturn c;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tshadow = (\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif\n";

var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n\t#endif\n#endif\n";

var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n#endif\n";

var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\tDirectionalLight directionalLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tshadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\tSpotLight spotLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tshadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\tPointLight pointLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tshadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#endif\n\t#endif\n\treturn shadow;\n}\n";

var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";

var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif\n";

var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif\n";

var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n#endif\n";

var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";

var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";

var tonemapping_fragment = "#if defined( TONE_MAPPING )\n gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif\n";

var tonemapping_pars_fragment = "#ifndef saturate\n\t#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nuniform float toneMappingWhitePoint;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\nvec3 Uncharted2ToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\n";

var uv_pars_fragment = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvarying vec2 vUv;\n#endif";

var uv_pars_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvarying vec2 vUv;\n\tuniform mat3 uvTransform;\n#endif\n";

var uv_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";

var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";

var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n#endif";

var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = uv2;\n#endif";

var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\n\tvec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\n#endif\n";

var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tgl_FragColor = texture2D( t2D, vUv );\n}\n";

var background_vert = "varying vec2 vUv;\nvoid main() {\n\tvUv = uv;\n\tgl_Position = vec4( position, 1.0 );\n\tgl_Position.z = 1.0;\n}\n";

var cube_frag = "uniform samplerCube tCube;\nuniform float tFlip;\nuniform float opacity;\nvarying vec3 vWorldPosition;\nvoid main() {\n\tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\n\tgl_FragColor.a *= opacity;\n}\n";

var cube_vert = "varying vec3 vWorldPosition;\n#include <common>\nvoid main() {\n\tvWorldPosition = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}\n";

var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - gl_FragCoord.z ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( gl_FragCoord.z );\n\t#endif\n}\n";

var depth_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n}\n";

var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}\n";

var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}\n";

var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldPosition;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldPosition );\n\tvec2 sampleUV;\n\tsampleUV.y = asin( clamp( direction.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\n}\n";

var equirect_vert = "varying vec3 vWorldPosition;\n#include <common>\nvoid main() {\n\tvWorldPosition = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}\n";

var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <premultiplied_alpha_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}\n";

var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\tvLineDistance = scale * lineDistance;\n\tvec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}\n";

var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\treflectedLight.indirectDiffuse += texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <premultiplied_alpha_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}\n";

var meshbasic_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_ENVMAP\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}\n";

var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\treflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}\n";

var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";

var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\tvec4 matcapColor = texture2D( matcap, uv );\n\tmatcapColor = matcapTexelToLinear( matcapColor );\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <premultiplied_alpha_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}\n";

var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#ifndef FLAT_SHADED\n\t\tvNormal = normalize( transformedNormal );\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n\tvViewPosition = - mvPosition.xyz;\n}\n";

var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}\n";

var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";

var meshphysical_frag = "#define PHYSICAL\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifndef STANDARD\n\tuniform float clearCoat;\n\tuniform float clearCoatRoughness;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <envmap_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <lights_physical_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}\n";

var meshphysical_vert = "#define PHYSICAL\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";

var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || ( defined( USE_NORMALMAP ) && ! defined( OBJECTSPACE_NORMALMAP ) )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\nvoid main() {\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}\n";

var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || ( defined( USE_NORMALMAP ) && ! defined( OBJECTSPACE_NORMALMAP ) )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || ( defined( USE_NORMALMAP ) && ! defined( OBJECTSPACE_NORMALMAP ) )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}\n";

var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <premultiplied_alpha_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}\n";

var points_vert = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = ( projectionMatrix[ 2 ][ 3 ] == - 1.0 );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}\n";

var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <fog_fragment>\n}\n";

var shadow_vert = "#include <fog_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";

var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}\n";

var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include <common>\n#include <uv_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = ( projectionMatrix[ 2 ][ 3 ] == - 1.0 );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}\n";

var ShaderChunk = { alphamap_fragment: alphamap_fragment, alphamap_pars_fragment: alphamap_pars_fragment, alphatest_fragment: alphatest_fragment, aomap_fragment: aomap_fragment, aomap_pars_fragment: aomap_pars_fragment, begin_vertex: begin_vertex, beginnormal_vertex: beginnormal_vertex, bsdfs: bsdfs, bumpmap_pars_fragment: bumpmap_pars_fragment, clipping_planes_fragment: clipping_planes_fragment, clipping_planes_pars_fragment: clipping_planes_pars_fragment, clipping_planes_pars_vertex: clipping_planes_pars_vertex, clipping_planes_vertex: clipping_planes_vertex, color_fragment: color_fragment, color_pars_fragment: color_pars_fragment, color_pars_vertex: color_pars_vertex, color_vertex: color_vertex, common: common, cube_uv_reflection_fragment: cube_uv_reflection_fragment, defaultnormal_vertex: defaultnormal_vertex, displacementmap_pars_vertex: displacementmap_pars_vertex, displacementmap_vertex: displacementmap_vertex, emissivemap_fragment: emissivemap_fragment, emissivemap_pars_fragment: emissivemap_pars_fragment, encodings_fragment: encodings_fragment, encodings_pars_fragment: encodings_pars_fragment, envmap_fragment: envmap_fragment, envmap_pars_fragment: envmap_pars_fragment, envmap_pars_vertex: envmap_pars_vertex, envmap_physical_pars_fragment: envmap_physical_pars_fragment, envmap_vertex: envmap_vertex, fog_vertex: fog_vertex, fog_pars_vertex: fog_pars_vertex, fog_fragment: fog_fragment, fog_pars_fragment: fog_pars_fragment, gradientmap_pars_fragment: gradientmap_pars_fragment, lightmap_fragment: lightmap_fragment, lightmap_pars_fragment: lightmap_pars_fragment, lights_lambert_vertex: lights_lambert_vertex, lights_pars_begin: lights_pars_begin, lights_phong_fragment: lights_phong_fragment, lights_phong_pars_fragment: lights_phong_pars_fragment, lights_physical_fragment: lights_physical_fragment, lights_physical_pars_fragment: lights_physical_pars_fragment, lights_fragment_begin: lights_fragment_begin, lights_fragment_maps: lights_fragment_maps, lights_fragment_end: lights_fragment_end, logdepthbuf_fragment: logdepthbuf_fragment, logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, logdepthbuf_vertex: logdepthbuf_vertex, map_fragment: map_fragment, map_pars_fragment: map_pars_fragment, map_particle_fragment: map_particle_fragment, map_particle_pars_fragment: map_particle_pars_fragment, metalnessmap_fragment: metalnessmap_fragment, metalnessmap_pars_fragment: metalnessmap_pars_fragment, morphnormal_vertex: morphnormal_vertex, morphtarget_pars_vertex: morphtarget_pars_vertex, morphtarget_vertex: morphtarget_vertex, normal_fragment_begin: normal_fragment_begin, normal_fragment_maps: normal_fragment_maps, normalmap_pars_fragment: normalmap_pars_fragment, packing: packing, premultiplied_alpha_fragment: premultiplied_alpha_fragment, project_vertex: project_vertex, dithering_fragment: dithering_fragment, dithering_pars_fragment: dithering_pars_fragment, roughnessmap_fragment: roughnessmap_fragment, roughnessmap_pars_fragment: roughnessmap_pars_fragment, shadowmap_pars_fragment: shadowmap_pars_fragment, shadowmap_pars_vertex: shadowmap_pars_vertex, shadowmap_vertex: shadowmap_vertex, shadowmask_pars_fragment: shadowmask_pars_fragment, skinbase_vertex: skinbase_vertex, skinning_pars_vertex: skinning_pars_vertex, skinning_vertex: skinning_vertex, skinnormal_vertex: skinnormal_vertex, specularmap_fragment: specularmap_fragment, specularmap_pars_fragment: specularmap_pars_fragment, tonemapping_fragment: tonemapping_fragment, tonemapping_pars_fragment: tonemapping_pars_fragment, uv_pars_fragment: uv_pars_fragment, uv_pars_vertex: uv_pars_vertex, uv_vertex: uv_vertex, uv2_pars_fragment: uv2_pars_fragment, uv2_pars_vertex: uv2_pars_vertex, uv2_vertex: uv2_vertex, worldpos_vertex: worldpos_vertex,

background_frag: background_frag, background_vert: background_vert, cube_frag: cube_frag, cube_vert: cube_vert, depth_frag: depth_frag, depth_vert: depth_vert, distanceRGBA_frag: distanceRGBA_frag, distanceRGBA_vert: distanceRGBA_vert, equirect_frag: equirect_frag, equirect_vert: equirect_vert, linedashed_frag: linedashed_frag, linedashed_vert: linedashed_vert, meshbasic_frag: meshbasic_frag, meshbasic_vert: meshbasic_vert, meshlambert_frag: meshlambert_frag, meshlambert_vert: meshlambert_vert, meshmatcap_frag: meshmatcap_frag, meshmatcap_vert: meshmatcap_vert, meshphong_frag: meshphong_frag, meshphong_vert: meshphong_vert, meshphysical_frag: meshphysical_frag, meshphysical_vert: meshphysical_vert, normal_frag: normal_frag, normal_vert: normal_vert, points_frag: points_frag, points_vert: points_vert, shadow_frag: shadow_frag, shadow_vert: shadow_vert, sprite_frag: sprite_frag, sprite_vert: sprite_vert };

/** * Uniform Utilities */

var UniformsUtils = {

merge: function ( uniforms ) {

var merged = {};

for ( var u = 0; u < uniforms.length; u ++ ) {

var tmp = this.clone( uniforms[ u ] );

for ( var p in tmp ) {

merged[ p ] = tmp[ p ];

}

}

return merged;

},

clone: function ( uniforms_src ) {

var uniforms_dst = {};

for ( var u in uniforms_src ) {

uniforms_dst[ u ] = {};

for ( var p in uniforms_src[ u ] ) {

var parameter_src = uniforms_src[ u ][ p ];

if ( parameter_src && ( parameter_src.isColor || parameter_src.isMatrix3 || parameter_src.isMatrix4 || parameter_src.isVector2 || parameter_src.isVector3 || parameter_src.isVector4 || parameter_src.isTexture ) ) {

uniforms_dst[ u ][ p ] = parameter_src.clone();

} else if ( Array.isArray( parameter_src ) ) {

uniforms_dst[ u ][ p ] = parameter_src.slice();

} else {

uniforms_dst[ u ][ p ] = parameter_src;

}

}

}

return uniforms_dst;

}

};

/** * @author mrdoob / http://mrdoob.com/ */

var ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };

function Color( r, g, b ) {

if ( g === undefined && b === undefined ) {

// r is THREE.Color, hex or string return this.set( r );

}

return this.setRGB( r, g, b );

}

Object.assign( Color.prototype, {

isColor: true,

r: 1, g: 1, b: 1,

set: function ( value ) {

if ( value && value.isColor ) {

this.copy( value );

} else if ( typeof value === 'number' ) {

this.setHex( value );

} else if ( typeof value === 'string' ) {

this.setStyle( value );

}

return this;

},

setScalar: function ( scalar ) {

this.r = scalar; this.g = scalar; this.b = scalar;

return this;

},

setHex: function ( hex ) {

hex = Math.floor( hex );

this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255;

return this;

},

setRGB: function ( r, g, b ) {

this.r = r; this.g = g; this.b = b;

return this;

},

setHSL: function () {

function hue2rgb( p, q, t ) {

if ( t < 0 ) t += 1; if ( t > 1 ) t -= 1; if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; if ( t < 1 / 2 ) return q; if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); return p;

}

return function setHSL( h, s, l ) {

// h,s,l ranges are in 0.0 - 1.0 h = _Math.euclideanModulo( h, 1 ); s = _Math.clamp( s, 0, 1 ); l = _Math.clamp( l, 0, 1 );

if ( s === 0 ) {

this.r = this.g = this.b = l;

} else {

var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); var q = ( 2 * l ) - p;

this.r = hue2rgb( q, p, h + 1 / 3 ); this.g = hue2rgb( q, p, h ); this.b = hue2rgb( q, p, h - 1 / 3 );

}

return this;

};

}(),

setStyle: function ( style ) {

function handleAlpha( string ) {

if ( string === undefined ) return;

if ( parseFloat( string ) < 1 ) {

console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );

}

}


var m;

if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {

// rgb / hsl

var color; var name = m[ 1 ]; var components = m[ 2 ];

switch ( name ) {

case 'rgb': case 'rgba':

if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

// rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255; this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255; this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;

handleAlpha( color[ 5 ] );

return this;

}

if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100; this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100; this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;

handleAlpha( color[ 5 ] );

return this;

}

break;

case 'hsl': case 'hsla':

if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

// hsl(120,50%,50%) hsla(120,50%,50%,0.5) var h = parseFloat( color[ 1 ] ) / 360; var s = parseInt( color[ 2 ], 10 ) / 100; var l = parseInt( color[ 3 ], 10 ) / 100;

handleAlpha( color[ 5 ] );

return this.setHSL( h, s, l );

}

break;

}

} else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {

// hex color

var hex = m[ 1 ]; var size = hex.length;

if ( size === 3 ) {

// #ff0 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255; this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255; this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;

return this;

} else if ( size === 6 ) {

// #ff0000 this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255; this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255; this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;

return this;

}

}

if ( style && style.length > 0 ) {

// color keywords var hex = ColorKeywords[ style ];

if ( hex !== undefined ) {

// red this.setHex( hex );

} else {

// unknown color console.warn( 'THREE.Color: Unknown color ' + style );

}

}

return this;

},

clone: function () {

return new this.constructor( this.r, this.g, this.b );

},

copy: function ( color ) {

this.r = color.r; this.g = color.g; this.b = color.b;

return this;

},

copyGammaToLinear: function ( color, gammaFactor ) {

if ( gammaFactor === undefined ) gammaFactor = 2.0;

this.r = Math.pow( color.r, gammaFactor ); this.g = Math.pow( color.g, gammaFactor ); this.b = Math.pow( color.b, gammaFactor );

return this;

},

copyLinearToGamma: function ( color, gammaFactor ) {

if ( gammaFactor === undefined ) gammaFactor = 2.0;

var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;

this.r = Math.pow( color.r, safeInverse ); this.g = Math.pow( color.g, safeInverse ); this.b = Math.pow( color.b, safeInverse );

return this;

},

convertGammaToLinear: function ( gammaFactor ) {

this.copyGammaToLinear( this, gammaFactor );

return this;

},

convertLinearToGamma: function ( gammaFactor ) {

this.copyLinearToGamma( this, gammaFactor );

return this;

},

copySRGBToLinear: function () {

function SRGBToLinear( c ) {

return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 );

}

return function copySRGBToLinear( color ) {

this.r = SRGBToLinear( color.r ); this.g = SRGBToLinear( color.g ); this.b = SRGBToLinear( color.b );

return this;

};

}(),

copyLinearToSRGB: function () {

function LinearToSRGB( c ) {

return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055;

}

return function copyLinearToSRGB( color ) {

this.r = LinearToSRGB( color.r ); this.g = LinearToSRGB( color.g ); this.b = LinearToSRGB( color.b );

return this;

};

}(),

convertSRGBToLinear: function () {

this.copySRGBToLinear( this );

return this;

},

convertLinearToSRGB: function () {

this.copyLinearToSRGB( this );

return this;

},

getHex: function () {

return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;

},

getHexString: function () {

return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );

},

getHSL: function ( target ) {

// h,s,l ranges are in 0.0 - 1.0

if ( target === undefined ) {

console.warn( 'THREE.Color: .getHSL() target is now required' ); target = { h: 0, s: 0, l: 0 };

}

var r = this.r, g = this.g, b = this.b;

var max = Math.max( r, g, b ); var min = Math.min( r, g, b );

var hue, saturation; var lightness = ( min + max ) / 2.0;

if ( min === max ) {

hue = 0; saturation = 0;

} else {

var delta = max - min;

saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );

switch ( max ) {

case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; case g: hue = ( b - r ) / delta + 2; break; case b: hue = ( r - g ) / delta + 4; break;

}

hue /= 6;

}

target.h = hue; target.s = saturation; target.l = lightness;

return target;

},

getStyle: function () {

return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';

},

offsetHSL: function () {

var hsl = {};

return function ( h, s, l ) {

this.getHSL( hsl );

hsl.h += h; hsl.s += s; hsl.l += l;

this.setHSL( hsl.h, hsl.s, hsl.l );

return this;

};

}(),

add: function ( color ) {

this.r += color.r; this.g += color.g; this.b += color.b;

return this;

},

addColors: function ( color1, color2 ) {

this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b;

return this;

},

addScalar: function ( s ) {

this.r += s; this.g += s; this.b += s;

return this;

},

sub: function ( color ) {

this.r = Math.max( 0, this.r - color.r ); this.g = Math.max( 0, this.g - color.g ); this.b = Math.max( 0, this.b - color.b );

return this;

},

multiply: function ( color ) {

this.r *= color.r; this.g *= color.g; this.b *= color.b;

return this;

},

multiplyScalar: function ( s ) {

this.r *= s; this.g *= s; this.b *= s;

return this;

},

lerp: function ( color, alpha ) {

this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha;

return this;

},

lerpHSL: function () {

var hslA = { h: 0, s: 0, l: 0 }; var hslB = { h: 0, s: 0, l: 0 };

return function lerpHSL( color, alpha ) {

this.getHSL( hslA ); color.getHSL( hslB );

var h = _Math.lerp( hslA.h, hslB.h, alpha ); var s = _Math.lerp( hslA.s, hslB.s, alpha ); var l = _Math.lerp( hslA.l, hslB.l, alpha );

this.setHSL( h, s, l );

return this;

};

}(),

equals: function ( c ) {

return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );

},

fromArray: function ( array, offset ) {

if ( offset === undefined ) offset = 0;

this.r = array[ offset ]; this.g = array[ offset + 1 ]; this.b = array[ offset + 2 ];

return this;

},

toArray: function ( array, offset ) {

if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0;

array[ offset ] = this.r; array[ offset + 1 ] = this.g; array[ offset + 2 ] = this.b;

return array;

},

toJSON: function () {

return this.getHex();

}

} );

/** * Uniforms library for shared webgl shaders */

var UniformsLib = {

common: {

diffuse: { value: new Color( 0xeeeeee ) }, opacity: { value: 1.0 },

map: { value: null }, uvTransform: { value: new Matrix3() },

alphaMap: { value: null },

},

specularmap: {

specularMap: { value: null },

},

envmap: {

envMap: { value: null }, flipEnvMap: { value: - 1 }, reflectivity: { value: 1.0 }, refractionRatio: { value: 0.98 }, maxMipLevel: { value: 0 }

},

aomap: {

aoMap: { value: null }, aoMapIntensity: { value: 1 }

},

lightmap: {

lightMap: { value: null }, lightMapIntensity: { value: 1 }

},

emissivemap: {

emissiveMap: { value: null }

},

bumpmap: {

bumpMap: { value: null }, bumpScale: { value: 1 }

},

normalmap: {

normalMap: { value: null }, normalScale: { value: new Vector2( 1, 1 ) }

},

displacementmap: {

displacementMap: { value: null }, displacementScale: { value: 1 }, displacementBias: { value: 0 }

},

roughnessmap: {

roughnessMap: { value: null }

},

metalnessmap: {

metalnessMap: { value: null }

},

gradientmap: {

gradientMap: { value: null }

},

fog: {

fogDensity: { value: 0.00025 }, fogNear: { value: 1 }, fogFar: { value: 2000 }, fogColor: { value: new Color( 0xffffff ) }

},

lights: {

ambientLightColor: { value: [] },

directionalLights: { value: [], properties: { direction: {}, color: {},

shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {} } },

directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] },

spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {},

shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {} } },

spotShadowMap: { value: [] }, spotShadowMatrix: { value: [] },

pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {},

shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {}, shadowCameraNear: {}, shadowCameraFar: {} } },

pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] },

hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } },

// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src rectAreaLights: { value: [], properties: { color: {}, position: {}, width: {}, height: {} } }

},

points: {

diffuse: { value: new Color( 0xeeeeee ) }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, map: { value: null }, uvTransform: { value: new Matrix3() }

},

sprite: {

diffuse: { value: new Color( 0xeeeeee ) }, opacity: { value: 1.0 }, center: { value: new Vector2( 0.5, 0.5 ) }, rotation: { value: 0.0 }, map: { value: null }, uvTransform: { value: new Matrix3() }

}

};

/** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ */

var ShaderLib = {

basic: {

uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog ] ),

vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag

},

lambert: {

uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) } } ] ),

vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag

},

phong: {

uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) }, specular: { value: new Color( 0x111111 ) }, shininess: { value: 30 } } ] ),

vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag

},

standard: {

uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color( 0x000000 ) }, roughness: { value: 0.5 }, metalness: { value: 0.5 }, envMapIntensity: { value: 1 } // temporary } ] ),

vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag

},

matcap: {

uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, { matcap: { value: null } } ] ),

vertexShader: ShaderChunk.meshmatcap_vert, fragmentShader: ShaderChunk.meshmatcap_frag

},

points: {

uniforms: UniformsUtils.merge( [ UniformsLib.points, UniformsLib.fog ] ),

vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag

},

dashed: {

uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.fog, { scale: { value: 1 }, dashSize: { value: 1 }, totalSize: { value: 2 } } ] ),

vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag

},

depth: {

uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.displacementmap ] ),

vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag

},

normal: {

uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { opacity: { value: 1.0 } } ] ),

vertexShader: ShaderChunk.normal_vert, fragmentShader: ShaderChunk.normal_frag

},

sprite: {

uniforms: UniformsUtils.merge( [ UniformsLib.sprite, UniformsLib.fog ] ),

vertexShader: ShaderChunk.sprite_vert, fragmentShader: ShaderChunk.sprite_frag

},

background: {

uniforms: { t2D: { value: null }, },

vertexShader: ShaderChunk.background_vert, fragmentShader: ShaderChunk.background_frag

}, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */

cube: {

uniforms: { tCube: { value: null }, tFlip: { value: - 1 }, opacity: { value: 1.0 } },

vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag

},

equirect: {

uniforms: { tEquirect: { value: null }, },

vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag

},

distanceRGBA: {

uniforms: UniformsUtils.merge( [ UniformsLib.common, UniformsLib.displacementmap, { referencePosition: { value: new Vector3() }, nearDistance: { value: 1 }, farDistance: { value: 1000 } } ] ),

vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag

},

shadow: {

uniforms: UniformsUtils.merge( [ UniformsLib.lights, UniformsLib.fog, { color: { value: new Color( 0x00000 ) }, opacity: { value: 1.0 } }, ] ),

vertexShader: ShaderChunk.shadow_vert, fragmentShader: ShaderChunk.shadow_frag

}

};

ShaderLib.physical = {

uniforms: UniformsUtils.merge( [ ShaderLib.standard.uniforms, { clearCoat: { value: 0 }, clearCoatRoughness: { value: 0 } } ] ),

vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag

};

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLAnimation() {

var context = null; var isAnimating = false; var animationLoop = null;

function onAnimationFrame( time, frame ) {

if ( isAnimating === false ) return;

animationLoop( time, frame );

context.requestAnimationFrame( onAnimationFrame );

}

return {

start: function () {

if ( isAnimating === true ) return; if ( animationLoop === null ) return;

context.requestAnimationFrame( onAnimationFrame );

isAnimating = true;

},

stop: function () {

isAnimating = false;

},

setAnimationLoop: function ( callback ) {

animationLoop = callback;

},

setContext: function ( value ) {

context = value;

}

};

}

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLAttributes( gl ) {

var buffers = new WeakMap();

function createBuffer( attribute, bufferType ) {

var array = attribute.array; var usage = attribute.dynamic ? gl.DYNAMIC_DRAW : gl.STATIC_DRAW;

var buffer = gl.createBuffer();

gl.bindBuffer( bufferType, buffer ); gl.bufferData( bufferType, array, usage );

attribute.onUploadCallback();

var type = gl.FLOAT;

if ( array instanceof Float32Array ) {

type = gl.FLOAT;

} else if ( array instanceof Float64Array ) {

console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' );

} else if ( array instanceof Uint16Array ) {

type = gl.UNSIGNED_SHORT;

} else if ( array instanceof Int16Array ) {

type = gl.SHORT;

} else if ( array instanceof Uint32Array ) {

type = gl.UNSIGNED_INT;

} else if ( array instanceof Int32Array ) {

type = gl.INT;

} else if ( array instanceof Int8Array ) {

type = gl.BYTE;

} else if ( array instanceof Uint8Array ) {

type = gl.UNSIGNED_BYTE;

}

return { buffer: buffer, type: type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version };

}

function updateBuffer( buffer, attribute, bufferType ) {

var array = attribute.array; var updateRange = attribute.updateRange;

gl.bindBuffer( bufferType, buffer );

if ( attribute.dynamic === false ) {

gl.bufferData( bufferType, array, gl.STATIC_DRAW );

} else if ( updateRange.count === - 1 ) {

// Not using update ranges

gl.bufferSubData( bufferType, 0, array );

} else if ( updateRange.count === 0 ) {

console.error( 'THREE.WebGLObjects.updateBuffer: dynamic THREE.BufferAttribute marked as needsUpdate but updateRange.count is 0, ensure you are using set methods or updating manually.' );

} else {

gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) );

updateRange.count = - 1; // reset range

}

}

//

function get( attribute ) {

if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;

return buffers.get( attribute );

}

function remove( attribute ) {

if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;

var data = buffers.get( attribute );

if ( data ) {

gl.deleteBuffer( data.buffer );

buffers.delete( attribute );

}

}

function update( attribute, bufferType ) {

if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;

var data = buffers.get( attribute );

if ( data === undefined ) {

buffers.set( attribute, createBuffer( attribute, bufferType ) );

} else if ( data.version < attribute.version ) {

updateBuffer( data.buffer, attribute, bufferType );

data.version = attribute.version;

}

}

return {

get: get, remove: remove, update: update

};

}

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */

function Face3( a, b, c, normal, color, materialIndex ) {

this.a = a; this.b = b; this.c = c;

this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3(); this.vertexNormals = Array.isArray( normal ) ? normal : [];

this.color = ( color && color.isColor ) ? color : new Color(); this.vertexColors = Array.isArray( color ) ? color : [];

this.materialIndex = materialIndex !== undefined ? materialIndex : 0;

}

Object.assign( Face3.prototype, {

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( source ) {

this.a = source.a; this.b = source.b; this.c = source.c;

this.normal.copy( source.normal ); this.color.copy( source.color );

this.materialIndex = source.materialIndex;

for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) {

this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();

}

for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) {

this.vertexColors[ i ] = source.vertexColors[ i ].clone();

}

return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */

function Euler( x, y, z, order ) {

this._x = x || 0; this._y = y || 0; this._z = z || 0; this._order = order || Euler.DefaultOrder;

}

Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];

Euler.DefaultOrder = 'XYZ';

Object.defineProperties( Euler.prototype, {

x: {

get: function () {

return this._x;

},

set: function ( value ) {

this._x = value; this.onChangeCallback();

}

},

y: {

get: function () {

return this._y;

},

set: function ( value ) {

this._y = value; this.onChangeCallback();

}

},

z: {

get: function () {

return this._z;

},

set: function ( value ) {

this._z = value; this.onChangeCallback();

}

},

order: {

get: function () {

return this._order;

},

set: function ( value ) {

this._order = value; this.onChangeCallback();

}

}

} );

Object.assign( Euler.prototype, {

isEuler: true,

set: function ( x, y, z, order ) {

this._x = x; this._y = y; this._z = z; this._order = order || this._order;

this.onChangeCallback();

return this;

},

clone: function () {

return new this.constructor( this._x, this._y, this._z, this._order );

},

copy: function ( euler ) {

this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order;

this.onChangeCallback();

return this;

},

setFromRotationMatrix: function ( m, order, update ) {

var clamp = _Math.clamp;

// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

var te = m.elements; var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];

order = order || this._order;

if ( order === 'XYZ' ) {

this._y = Math.asin( clamp( m13, - 1, 1 ) );

if ( Math.abs( m13 ) < 0.99999 ) {

this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 );

} else {

this._x = Math.atan2( m32, m22 ); this._z = 0;

}

} else if ( order === 'YXZ' ) {

this._x = Math.asin( - clamp( m23, - 1, 1 ) );

if ( Math.abs( m23 ) < 0.99999 ) {

this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 );

} else {

this._y = Math.atan2( - m31, m11 ); this._z = 0;

}

} else if ( order === 'ZXY' ) {

this._x = Math.asin( clamp( m32, - 1, 1 ) );

if ( Math.abs( m32 ) < 0.99999 ) {

this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 );

} else {

this._y = 0; this._z = Math.atan2( m21, m11 );

}

} else if ( order === 'ZYX' ) {

this._y = Math.asin( - clamp( m31, - 1, 1 ) );

if ( Math.abs( m31 ) < 0.99999 ) {

this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 );

} else {

this._x = 0; this._z = Math.atan2( - m12, m22 );

}

} else if ( order === 'YZX' ) {

this._z = Math.asin( clamp( m21, - 1, 1 ) );

if ( Math.abs( m21 ) < 0.99999 ) {

this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 );

} else {

this._x = 0; this._y = Math.atan2( m13, m33 );

}

} else if ( order === 'XZY' ) {

this._z = Math.asin( - clamp( m12, - 1, 1 ) );

if ( Math.abs( m12 ) < 0.99999 ) {

this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 );

} else {

this._x = Math.atan2( - m23, m33 ); this._y = 0;

}

} else {

console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order );

}

this._order = order;

if ( update !== false ) this.onChangeCallback();

return this;

},

setFromQuaternion: function () {

var matrix = new Matrix4();

return function setFromQuaternion( q, order, update ) {

matrix.makeRotationFromQuaternion( q );

return this.setFromRotationMatrix( matrix, order, update );

};

}(),

setFromVector3: function ( v, order ) {

return this.set( v.x, v.y, v.z, order || this._order );

},

reorder: function () {

// WARNING: this discards revolution information -bhouston

var q = new Quaternion();

return function reorder( newOrder ) {

q.setFromEuler( this );

return this.setFromQuaternion( q, newOrder );

};

}(),

equals: function ( euler ) {

return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );

},

fromArray: function ( array ) {

this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];

this.onChangeCallback();

return this;

},

toArray: function ( array, offset ) {

if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0;

array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._order;

return array;

},

toVector3: function ( optionalResult ) {

if ( optionalResult ) {

return optionalResult.set( this._x, this._y, this._z );

} else {

return new Vector3( this._x, this._y, this._z );

}

},

onChange: function ( callback ) {

this.onChangeCallback = callback;

return this;

},

onChangeCallback: function () {}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function Layers() {

this.mask = 1 | 0;

}

Object.assign( Layers.prototype, {

set: function ( channel ) {

this.mask = 1 << channel | 0;

},

enable: function ( channel ) {

this.mask |= 1 << channel | 0;

},

toggle: function ( channel ) {

this.mask ^= 1 << channel | 0;

},

disable: function ( channel ) {

this.mask &= ~ ( 1 << channel | 0 );

},

test: function ( layers ) {

return ( this.mask & layers.mask ) !== 0;

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author elephantatwork / www.elephantatwork.ch */

var object3DId = 0;

function Object3D() {

Object.defineProperty( this, 'id', { value: object3DId ++ } );

this.uuid = _Math.generateUUID();

this.name = ; this.type = 'Object3D';

this.parent = null; this.children = [];

this.up = Object3D.DefaultUp.clone();

var position = new Vector3(); var rotation = new Euler(); var quaternion = new Quaternion(); var scale = new Vector3( 1, 1, 1 );

function onRotationChange() {

quaternion.setFromEuler( rotation, false );

}

function onQuaternionChange() {

rotation.setFromQuaternion( quaternion, undefined, false );

}

rotation.onChange( onRotationChange ); quaternion.onChange( onQuaternionChange );

Object.defineProperties( this, { position: { enumerable: true, value: position }, rotation: { enumerable: true, value: rotation }, quaternion: { enumerable: true, value: quaternion }, scale: { enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } } );

this.matrix = new Matrix4(); this.matrixWorld = new Matrix4();

this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate; this.matrixWorldNeedsUpdate = false;

this.layers = new Layers(); this.visible = true;

this.castShadow = false; this.receiveShadow = false;

this.frustumCulled = true; this.renderOrder = 0;

this.userData = {};

}

Object3D.DefaultUp = new Vector3( 0, 1, 0 ); Object3D.DefaultMatrixAutoUpdate = true;

Object3D.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

constructor: Object3D,

isObject3D: true,

onBeforeRender: function () {}, onAfterRender: function () {},

applyMatrix: function ( matrix ) {

this.matrix.multiplyMatrices( matrix, this.matrix );

this.matrix.decompose( this.position, this.quaternion, this.scale );

},

applyQuaternion: function ( q ) {

this.quaternion.premultiply( q );

return this;

},

setRotationFromAxisAngle: function ( axis, angle ) {

// assumes axis is normalized

this.quaternion.setFromAxisAngle( axis, angle );

},

setRotationFromEuler: function ( euler ) {

this.quaternion.setFromEuler( euler, true );

},

setRotationFromMatrix: function ( m ) {

// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

this.quaternion.setFromRotationMatrix( m );

},

setRotationFromQuaternion: function ( q ) {

// assumes q is normalized

this.quaternion.copy( q );

},

rotateOnAxis: function () {

// rotate object on axis in object space // axis is assumed to be normalized

var q1 = new Quaternion();

return function rotateOnAxis( axis, angle ) {

q1.setFromAxisAngle( axis, angle );

this.quaternion.multiply( q1 );

return this;

};

}(),

rotateOnWorldAxis: function () {

// rotate object on axis in world space // axis is assumed to be normalized // method assumes no rotated parent

var q1 = new Quaternion();

return function rotateOnWorldAxis( axis, angle ) {

q1.setFromAxisAngle( axis, angle );

this.quaternion.premultiply( q1 );

return this;

};

}(),

rotateX: function () {

var v1 = new Vector3( 1, 0, 0 );

return function rotateX( angle ) {

return this.rotateOnAxis( v1, angle );

};

}(),

rotateY: function () {

var v1 = new Vector3( 0, 1, 0 );

return function rotateY( angle ) {

return this.rotateOnAxis( v1, angle );

};

}(),

rotateZ: function () {

var v1 = new Vector3( 0, 0, 1 );

return function rotateZ( angle ) {

return this.rotateOnAxis( v1, angle );

};

}(),

translateOnAxis: function () {

// translate object by distance along axis in object space // axis is assumed to be normalized

var v1 = new Vector3();

return function translateOnAxis( axis, distance ) {

v1.copy( axis ).applyQuaternion( this.quaternion );

this.position.add( v1.multiplyScalar( distance ) );

return this;

};

}(),

translateX: function () {

var v1 = new Vector3( 1, 0, 0 );

return function translateX( distance ) {

return this.translateOnAxis( v1, distance );

};

}(),

translateY: function () {

var v1 = new Vector3( 0, 1, 0 );

return function translateY( distance ) {

return this.translateOnAxis( v1, distance );

};

}(),

translateZ: function () {

var v1 = new Vector3( 0, 0, 1 );

return function translateZ( distance ) {

return this.translateOnAxis( v1, distance );

};

}(),

localToWorld: function ( vector ) {

return vector.applyMatrix4( this.matrixWorld );

},

worldToLocal: function () {

var m1 = new Matrix4();

return function worldToLocal( vector ) {

return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) );

};

}(),

lookAt: function () {

// This method does not support objects having non-uniformly-scaled parent(s)

var q1 = new Quaternion(); var m1 = new Matrix4(); var target = new Vector3(); var position = new Vector3();

return function lookAt( x, y, z ) {

if ( x.isVector3 ) {

target.copy( x );

} else {

target.set( x, y, z );

}

var parent = this.parent;

this.updateWorldMatrix( true, false );

position.setFromMatrixPosition( this.matrixWorld );

if ( this.isCamera ) {

m1.lookAt( position, target, this.up );

} else {

m1.lookAt( target, position, this.up );

}

this.quaternion.setFromRotationMatrix( m1 );

if ( parent ) {

m1.extractRotation( parent.matrixWorld ); q1.setFromRotationMatrix( m1 ); this.quaternion.premultiply( q1.inverse() );

}

};

}(),

add: function ( object ) {

if ( arguments.length > 1 ) {

for ( var i = 0; i < arguments.length; i ++ ) {

this.add( arguments[ i ] );

}

return this;

}

if ( object === this ) {

console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object ); return this;

}

if ( ( object && object.isObject3D ) ) {

if ( object.parent !== null ) {

object.parent.remove( object );

}

object.parent = this; object.dispatchEvent( { type: 'added' } );

this.children.push( object );

} else {

console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );

}

return this;

},

remove: function ( object ) {

if ( arguments.length > 1 ) {

for ( var i = 0; i < arguments.length; i ++ ) {

this.remove( arguments[ i ] );

}

return this;

}

var index = this.children.indexOf( object );

if ( index !== - 1 ) {

object.parent = null;

object.dispatchEvent( { type: 'removed' } );

this.children.splice( index, 1 );

}

return this;

},

getObjectById: function ( id ) {

return this.getObjectByProperty( 'id', id );

},

getObjectByName: function ( name ) {

return this.getObjectByProperty( 'name', name );

},

getObjectByProperty: function ( name, value ) {

if ( this[ name ] === value ) return this;

for ( var i = 0, l = this.children.length; i < l; i ++ ) {

var child = this.children[ i ]; var object = child.getObjectByProperty( name, value );

if ( object !== undefined ) {

return object;

}

}

return undefined;

},

getWorldPosition: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Object3D: .getWorldPosition() target is now required' ); target = new Vector3();

}

this.updateMatrixWorld( true );

return target.setFromMatrixPosition( this.matrixWorld );

},

getWorldQuaternion: function () {

var position = new Vector3(); var scale = new Vector3();

return function getWorldQuaternion( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Object3D: .getWorldQuaternion() target is now required' ); target = new Quaternion();

}

this.updateMatrixWorld( true );

this.matrixWorld.decompose( position, target, scale );

return target;

};

}(),

getWorldScale: function () {

var position = new Vector3(); var quaternion = new Quaternion();

return function getWorldScale( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Object3D: .getWorldScale() target is now required' ); target = new Vector3();

}

this.updateMatrixWorld( true );

this.matrixWorld.decompose( position, quaternion, target );

return target;

};

}(),

getWorldDirection: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Object3D: .getWorldDirection() target is now required' ); target = new Vector3();

}

this.updateMatrixWorld( true );

var e = this.matrixWorld.elements;

return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize();

},

raycast: function () {},

traverse: function ( callback ) {

callback( this );

var children = this.children;

for ( var i = 0, l = children.length; i < l; i ++ ) {

children[ i ].traverse( callback );

}

},

traverseVisible: function ( callback ) {

if ( this.visible === false ) return;

callback( this );

var children = this.children;

for ( var i = 0, l = children.length; i < l; i ++ ) {

children[ i ].traverseVisible( callback );

}

},

traverseAncestors: function ( callback ) {

var parent = this.parent;

if ( parent !== null ) {

callback( parent );

parent.traverseAncestors( callback );

}

},

updateMatrix: function () {

this.matrix.compose( this.position, this.quaternion, this.scale );

this.matrixWorldNeedsUpdate = true;

},

updateMatrixWorld: function ( force ) {

if ( this.matrixAutoUpdate ) this.updateMatrix();

if ( this.matrixWorldNeedsUpdate || force ) {

if ( this.parent === null ) {

this.matrixWorld.copy( this.matrix );

} else {

this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );

}

this.matrixWorldNeedsUpdate = false;

force = true;

}

// update children

var children = this.children;

for ( var i = 0, l = children.length; i < l; i ++ ) {

children[ i ].updateMatrixWorld( force );

}

},

updateWorldMatrix: function ( updateParents, updateChildren ) {

var parent = this.parent;

if ( updateParents === true && parent !== null ) {

parent.updateWorldMatrix( true, false );

}

if ( this.matrixAutoUpdate ) this.updateMatrix();

if ( this.parent === null ) {

this.matrixWorld.copy( this.matrix );

} else {

this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );

}

// update children

if ( updateChildren === true ) {

var children = this.children;

for ( var i = 0, l = children.length; i < l; i ++ ) {

children[ i ].updateWorldMatrix( false, true );

}

}

},

toJSON: function ( meta ) {

// meta is a string when called from JSON.stringify var isRootObject = ( meta === undefined || typeof meta === 'string' );

var output = {};

// meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if ( isRootObject ) {

// initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {}, shapes: {} };

output.metadata = { version: 4.5, type: 'Object', generator: 'Object3D.toJSON' };

}

// standard Object3D serialization

var object = {};

object.uuid = this.uuid; object.type = this.type;

if ( this.name !== ) object.name = this.name; if ( this.castShadow === true ) object.castShadow = true; if ( this.receiveShadow === true ) object.receiveShadow = true; if ( this.visible === false ) object.visible = false; if ( this.frustumCulled === false ) object.frustumCulled = false; if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder; if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData;

object.layers = this.layers.mask; object.matrix = this.matrix.toArray();

if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false;

//

function serialize( library, element ) {

if ( library[ element.uuid ] === undefined ) {

library[ element.uuid ] = element.toJSON( meta );

}

return element.uuid;

}

if ( this.isMesh || this.isLine || this.isPoints ) {

object.geometry = serialize( meta.geometries, this.geometry );

var parameters = this.geometry.parameters;

if ( parameters !== undefined && parameters.shapes !== undefined ) {

var shapes = parameters.shapes;

if ( Array.isArray( shapes ) ) {

for ( var i = 0, l = shapes.length; i < l; i ++ ) {

var shape = shapes[ i ];

serialize( meta.shapes, shape );

}

} else {

serialize( meta.shapes, shapes );

}

}

}

if ( this.material !== undefined ) {

if ( Array.isArray( this.material ) ) {

var uuids = [];

for ( var i = 0, l = this.material.length; i < l; i ++ ) {

uuids.push( serialize( meta.materials, this.material[ i ] ) );

}

object.material = uuids;

} else {

object.material = serialize( meta.materials, this.material );

}

}

//

if ( this.children.length > 0 ) {

object.children = [];

for ( var i = 0; i < this.children.length; i ++ ) {

object.children.push( this.children[ i ].toJSON( meta ).object );

}

}

if ( isRootObject ) {

var geometries = extractFromCache( meta.geometries ); var materials = extractFromCache( meta.materials ); var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images ); var shapes = extractFromCache( meta.shapes );

if ( geometries.length > 0 ) output.geometries = geometries; if ( materials.length > 0 ) output.materials = materials; if ( textures.length > 0 ) output.textures = textures; if ( images.length > 0 ) output.images = images; if ( shapes.length > 0 ) output.shapes = shapes;

}

output.object = object;

return output;

// extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache( cache ) {

var values = []; for ( var key in cache ) {

var data = cache[ key ]; delete data.metadata; values.push( data );

} return values;

}

},

clone: function ( recursive ) {

return new this.constructor().copy( this, recursive );

},

copy: function ( source, recursive ) {

if ( recursive === undefined ) recursive = true;

this.name = source.name;

this.up.copy( source.up );

this.position.copy( source.position ); this.quaternion.copy( source.quaternion ); this.scale.copy( source.scale );

this.matrix.copy( source.matrix ); this.matrixWorld.copy( source.matrixWorld );

this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;

this.layers.mask = source.layers.mask; this.visible = source.visible;

this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow;

this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder;

this.userData = JSON.parse( JSON.stringify( source.userData ) );

if ( recursive === true ) {

for ( var i = 0; i < source.children.length; i ++ ) {

var child = source.children[ i ]; this.add( child.clone() );

}

}

return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author zz85 / http://www.lab4games.net/zz85/blog * @author bhouston / http://clara.io */

var geometryId = 0; // Geometry uses even numbers as Id

function Geometry() {

Object.defineProperty( this, 'id', { value: geometryId += 2 } );

this.uuid = _Math.generateUUID();

this.name = ; this.type = 'Geometry';

this.vertices = []; this.colors = []; this.faces = []; this.faceVertexUvs = [[]];

this.morphTargets = []; this.morphNormals = [];

this.skinWeights = []; this.skinIndices = [];

this.lineDistances = [];

this.boundingBox = null; this.boundingSphere = null;

// update flags

this.elementsNeedUpdate = false; this.verticesNeedUpdate = false; this.uvsNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.lineDistancesNeedUpdate = false; this.groupsNeedUpdate = false;

}

Geometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

constructor: Geometry,

isGeometry: true,

applyMatrix: function ( matrix ) {

var normalMatrix = new Matrix3().getNormalMatrix( matrix );

for ( var i = 0, il = this.vertices.length; i < il; i ++ ) {

var vertex = this.vertices[ i ]; vertex.applyMatrix4( matrix );

}

for ( var i = 0, il = this.faces.length; i < il; i ++ ) {

var face = this.faces[ i ]; face.normal.applyMatrix3( normalMatrix ).normalize();

for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {

face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();

}

}

if ( this.boundingBox !== null ) {

this.computeBoundingBox();

}

if ( this.boundingSphere !== null ) {

this.computeBoundingSphere();

}

this.verticesNeedUpdate = true; this.normalsNeedUpdate = true;

return this;

},

rotateX: function () {

// rotate geometry around world x-axis

var m1 = new Matrix4();

return function rotateX( angle ) {

m1.makeRotationX( angle );

this.applyMatrix( m1 );

return this;

};

}(),

rotateY: function () {

// rotate geometry around world y-axis

var m1 = new Matrix4();

return function rotateY( angle ) {

m1.makeRotationY( angle );

this.applyMatrix( m1 );

return this;

};

}(),

rotateZ: function () {

// rotate geometry around world z-axis

var m1 = new Matrix4();

return function rotateZ( angle ) {

m1.makeRotationZ( angle );

this.applyMatrix( m1 );

return this;

};

}(),

translate: function () {

// translate geometry

var m1 = new Matrix4();

return function translate( x, y, z ) {

m1.makeTranslation( x, y, z );

this.applyMatrix( m1 );

return this;

};

}(),

scale: function () {

// scale geometry

var m1 = new Matrix4();

return function scale( x, y, z ) {

m1.makeScale( x, y, z );

this.applyMatrix( m1 );

return this;

};

}(),

lookAt: function () {

var obj = new Object3D();

return function lookAt( vector ) {

obj.lookAt( vector );

obj.updateMatrix();

this.applyMatrix( obj.matrix );

};

}(),

fromBufferGeometry: function ( geometry ) {

var scope = this;

var indices = geometry.index !== null ? geometry.index.array : undefined; var attributes = geometry.attributes;

var positions = attributes.position.array; var normals = attributes.normal !== undefined ? attributes.normal.array : undefined; var colors = attributes.color !== undefined ? attributes.color.array : undefined; var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined; var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined;

if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = [];

var tempNormals = []; var tempUVs = []; var tempUVs2 = [];

for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) {

scope.vertices.push( new Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) );

if ( normals !== undefined ) {

tempNormals.push( new Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) );

}

if ( colors !== undefined ) {

scope.colors.push( new Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) );

}

if ( uvs !== undefined ) {

tempUVs.push( new Vector2( uvs[ j ], uvs[ j + 1 ] ) );

}

if ( uvs2 !== undefined ) {

tempUVs2.push( new Vector2( uvs2[ j ], uvs2[ j + 1 ] ) );

}

}

function addFace( a, b, c, materialIndex ) {

var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : []; var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : [];

var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex );

scope.faces.push( face );

if ( uvs !== undefined ) {

scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] );

}

if ( uvs2 !== undefined ) {

scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] );

}

}

var groups = geometry.groups;

if ( groups.length > 0 ) {

for ( var i = 0; i < groups.length; i ++ ) {

var group = groups[ i ];

var start = group.start; var count = group.count;

for ( var j = start, jl = start + count; j < jl; j += 3 ) {

if ( indices !== undefined ) {

addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex );

} else {

addFace( j, j + 1, j + 2, group.materialIndex );

}

}

}

} else {

if ( indices !== undefined ) {

for ( var i = 0; i < indices.length; i += 3 ) {

addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] );

}

} else {

for ( var i = 0; i < positions.length / 3; i += 3 ) {

addFace( i, i + 1, i + 2 );

}

}

}

this.computeFaceNormals();

if ( geometry.boundingBox !== null ) {

this.boundingBox = geometry.boundingBox.clone();

}

if ( geometry.boundingSphere !== null ) {

this.boundingSphere = geometry.boundingSphere.clone();

}

return this;

},

center: function () {

var offset = new Vector3();

return function center() {

this.computeBoundingBox();

this.boundingBox.getCenter( offset ).negate();

this.translate( offset.x, offset.y, offset.z );

return this;

};

}(),

normalize: function () {

this.computeBoundingSphere();

var center = this.boundingSphere.center; var radius = this.boundingSphere.radius;

var s = radius === 0 ? 1 : 1.0 / radius;

var matrix = new Matrix4(); matrix.set( s, 0, 0, - s * center.x, 0, s, 0, - s * center.y, 0, 0, s, - s * center.z, 0, 0, 0, 1 );

this.applyMatrix( matrix );

return this;

},

computeFaceNormals: function () {

var cb = new Vector3(), ab = new Vector3();

for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) {

var face = this.faces[ f ];

var vA = this.vertices[ face.a ]; var vB = this.vertices[ face.b ]; var vC = this.vertices[ face.c ];

cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab );

cb.normalize();

face.normal.copy( cb );

}

},

computeVertexNormals: function ( areaWeighted ) {

if ( areaWeighted === undefined ) areaWeighted = true;

var v, vl, f, fl, face, vertices;

vertices = new Array( this.vertices.length );

for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {

vertices[ v ] = new Vector3();

}

if ( areaWeighted ) {

// vertex normals weighted by triangle areas // http://www.iquilezles.org/www/articles/normals/normals.htm

var vA, vB, vC; var cb = new Vector3(), ab = new Vector3();

for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

face = this.faces[ f ];

vA = this.vertices[ face.a ]; vB = this.vertices[ face.b ]; vC = this.vertices[ face.c ];

cb.subVectors( vC, vB ); ab.subVectors( vA, vB ); cb.cross( ab );

vertices[ face.a ].add( cb ); vertices[ face.b ].add( cb ); vertices[ face.c ].add( cb );

}

} else {

this.computeFaceNormals();

for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

face = this.faces[ f ];

vertices[ face.a ].add( face.normal ); vertices[ face.b ].add( face.normal ); vertices[ face.c ].add( face.normal );

}

}

for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {

vertices[ v ].normalize();

}

for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

face = this.faces[ f ];

var vertexNormals = face.vertexNormals;

if ( vertexNormals.length === 3 ) {

vertexNormals[ 0 ].copy( vertices[ face.a ] ); vertexNormals[ 1 ].copy( vertices[ face.b ] ); vertexNormals[ 2 ].copy( vertices[ face.c ] );

} else {

vertexNormals[ 0 ] = vertices[ face.a ].clone(); vertexNormals[ 1 ] = vertices[ face.b ].clone(); vertexNormals[ 2 ] = vertices[ face.c ].clone();

}

}

if ( this.faces.length > 0 ) {

this.normalsNeedUpdate = true;

}

},

computeFlatVertexNormals: function () {

var f, fl, face;

this.computeFaceNormals();

for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

face = this.faces[ f ];

var vertexNormals = face.vertexNormals;

if ( vertexNormals.length === 3 ) {

vertexNormals[ 0 ].copy( face.normal ); vertexNormals[ 1 ].copy( face.normal ); vertexNormals[ 2 ].copy( face.normal );

} else {

vertexNormals[ 0 ] = face.normal.clone(); vertexNormals[ 1 ] = face.normal.clone(); vertexNormals[ 2 ] = face.normal.clone();

}

}

if ( this.faces.length > 0 ) {

this.normalsNeedUpdate = true;

}

},

computeMorphNormals: function () {

var i, il, f, fl, face;

// save original normals // - create temp variables on first access // otherwise just copy (for faster repeated calls)

for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

face = this.faces[ f ];

if ( ! face.__originalFaceNormal ) {

face.__originalFaceNormal = face.normal.clone();

} else {

face.__originalFaceNormal.copy( face.normal );

}

if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];

for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) {

if ( ! face.__originalVertexNormals[ i ] ) {

face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();

} else {

face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );

}

}

}

// use temp geometry to compute face and vertex normals for each morph

var tmpGeo = new Geometry(); tmpGeo.faces = this.faces;

for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) {

// create on first access

if ( ! this.morphNormals[ i ] ) {

this.morphNormals[ i ] = {}; this.morphNormals[ i ].faceNormals = []; this.morphNormals[ i ].vertexNormals = [];

var dstNormalsFace = this.morphNormals[ i ].faceNormals; var dstNormalsVertex = this.morphNormals[ i ].vertexNormals;

var faceNormal, vertexNormals;

for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

faceNormal = new Vector3(); vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() };

dstNormalsFace.push( faceNormal ); dstNormalsVertex.push( vertexNormals );

}

}

var morphNormals = this.morphNormals[ i ];

// set vertices to morph target

tmpGeo.vertices = this.morphTargets[ i ].vertices;

// compute morph normals

tmpGeo.computeFaceNormals(); tmpGeo.computeVertexNormals();

// store morph normals

var faceNormal, vertexNormals;

for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

face = this.faces[ f ];

faceNormal = morphNormals.faceNormals[ f ]; vertexNormals = morphNormals.vertexNormals[ f ];

faceNormal.copy( face.normal );

vertexNormals.a.copy( face.vertexNormals[ 0 ] ); vertexNormals.b.copy( face.vertexNormals[ 1 ] ); vertexNormals.c.copy( face.vertexNormals[ 2 ] );

}

}

// restore original normals

for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

face = this.faces[ f ];

face.normal = face.__originalFaceNormal; face.vertexNormals = face.__originalVertexNormals;

}

},

computeBoundingBox: function () {

if ( this.boundingBox === null ) {

this.boundingBox = new Box3();

}

this.boundingBox.setFromPoints( this.vertices );

},

computeBoundingSphere: function () {

if ( this.boundingSphere === null ) {

this.boundingSphere = new Sphere();

}

this.boundingSphere.setFromPoints( this.vertices );

},

merge: function ( geometry, matrix, materialIndexOffset ) {

if ( ! ( geometry && geometry.isGeometry ) ) {

console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry ); return;

}

var normalMatrix, vertexOffset = this.vertices.length, vertices1 = this.vertices, vertices2 = geometry.vertices, faces1 = this.faces, faces2 = geometry.faces, uvs1 = this.faceVertexUvs[ 0 ], uvs2 = geometry.faceVertexUvs[ 0 ], colors1 = this.colors, colors2 = geometry.colors;

if ( materialIndexOffset === undefined ) materialIndexOffset = 0;

if ( matrix !== undefined ) {

normalMatrix = new Matrix3().getNormalMatrix( matrix );

}

// vertices

for ( var i = 0, il = vertices2.length; i < il; i ++ ) {

var vertex = vertices2[ i ];

var vertexCopy = vertex.clone();

if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix );

vertices1.push( vertexCopy );

}

// colors

for ( var i = 0, il = colors2.length; i < il; i ++ ) {

colors1.push( colors2[ i ].clone() );

}

// faces

for ( i = 0, il = faces2.length; i < il; i ++ ) {

var face = faces2[ i ], faceCopy, normal, color, faceVertexNormals = face.vertexNormals, faceVertexColors = face.vertexColors;

faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset ); faceCopy.normal.copy( face.normal );

if ( normalMatrix !== undefined ) {

faceCopy.normal.applyMatrix3( normalMatrix ).normalize();

}

for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {

normal = faceVertexNormals[ j ].clone();

if ( normalMatrix !== undefined ) {

normal.applyMatrix3( normalMatrix ).normalize();

}

faceCopy.vertexNormals.push( normal );

}

faceCopy.color.copy( face.color );

for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {

color = faceVertexColors[ j ]; faceCopy.vertexColors.push( color.clone() );

}

faceCopy.materialIndex = face.materialIndex + materialIndexOffset;

faces1.push( faceCopy );

}

// uvs

for ( i = 0, il = uvs2.length; i < il; i ++ ) {

var uv = uvs2[ i ], uvCopy = [];

if ( uv === undefined ) {

continue;

}

for ( var j = 0, jl = uv.length; j < jl; j ++ ) {

uvCopy.push( uv[ j ].clone() );

}

uvs1.push( uvCopy );

}

},

mergeMesh: function ( mesh ) {

if ( ! ( mesh && mesh.isMesh ) ) {

console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh ); return;

}

if ( mesh.matrixAutoUpdate ) mesh.updateMatrix();

this.merge( mesh.geometry, mesh.matrix );

},

/* * Checks for duplicate vertices with hashmap. * Duplicated vertices are removed * and faces' vertices are updated. */

mergeVertices: function () {

var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique) var unique = [], changes = [];

var v, key; var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001 var precision = Math.pow( 10, precisionPoints ); var i, il, face; var indices, j, jl;

for ( i = 0, il = this.vertices.length; i < il; i ++ ) {

v = this.vertices[ i ]; key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );

if ( verticesMap[ key ] === undefined ) {

verticesMap[ key ] = i; unique.push( this.vertices[ i ] ); changes[ i ] = unique.length - 1;

} else {

//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]); changes[ i ] = changes[ verticesMap[ key ] ];

}

}


// if faces are completely degenerate after merging vertices, we // have to remove them from the geometry. var faceIndicesToRemove = [];

for ( i = 0, il = this.faces.length; i < il; i ++ ) {

face = this.faces[ i ];

face.a = changes[ face.a ]; face.b = changes[ face.b ]; face.c = changes[ face.c ];

indices = [ face.a, face.b, face.c ];

// if any duplicate vertices are found in a Face3 // we have to remove the face as nothing can be saved for ( var n = 0; n < 3; n ++ ) {

if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {

faceIndicesToRemove.push( i ); break;

}

}

}

for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {

var idx = faceIndicesToRemove[ i ];

this.faces.splice( idx, 1 );

for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {

this.faceVertexUvs[ j ].splice( idx, 1 );

}

}

// Use unique set of vertices

var diff = this.vertices.length - unique.length; this.vertices = unique; return diff;

},

setFromPoints: function ( points ) {

this.vertices = [];

for ( var i = 0, l = points.length; i < l; i ++ ) {

var point = points[ i ]; this.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );

}

return this;

},

sortFacesByMaterialIndex: function () {

var faces = this.faces; var length = faces.length;

// tag faces

for ( var i = 0; i < length; i ++ ) {

faces[ i ]._id = i;

}

// sort faces

function materialIndexSort( a, b ) {

return a.materialIndex - b.materialIndex;

}

faces.sort( materialIndexSort );

// sort uvs

var uvs1 = this.faceVertexUvs[ 0 ]; var uvs2 = this.faceVertexUvs[ 1 ];

var newUvs1, newUvs2;

if ( uvs1 && uvs1.length === length ) newUvs1 = []; if ( uvs2 && uvs2.length === length ) newUvs2 = [];

for ( var i = 0; i < length; i ++ ) {

var id = faces[ i ]._id;

if ( newUvs1 ) newUvs1.push( uvs1[ id ] ); if ( newUvs2 ) newUvs2.push( uvs2[ id ] );

}

if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1; if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2;

},

toJSON: function () {

var data = { metadata: { version: 4.5, type: 'Geometry', generator: 'Geometry.toJSON' } };

// standard Geometry serialization

data.uuid = this.uuid; data.type = this.type; if ( this.name !== ) data.name = this.name;

if ( this.parameters !== undefined ) {

var parameters = this.parameters;

for ( var key in parameters ) {

if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];

}

return data;

}

var vertices = [];

for ( var i = 0; i < this.vertices.length; i ++ ) {

var vertex = this.vertices[ i ]; vertices.push( vertex.x, vertex.y, vertex.z );

}

var faces = []; var normals = []; var normalsHash = {}; var colors = []; var colorsHash = {}; var uvs = []; var uvsHash = {};

for ( var i = 0; i < this.faces.length; i ++ ) {

var face = this.faces[ i ];

var hasMaterial = true; var hasFaceUv = false; // deprecated var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined; var hasFaceNormal = face.normal.length() > 0; var hasFaceVertexNormal = face.vertexNormals.length > 0; var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1; var hasFaceVertexColor = face.vertexColors.length > 0;

var faceType = 0;

faceType = setBit( faceType, 0, 0 ); // isQuad faceType = setBit( faceType, 1, hasMaterial ); faceType = setBit( faceType, 2, hasFaceUv ); faceType = setBit( faceType, 3, hasFaceVertexUv ); faceType = setBit( faceType, 4, hasFaceNormal ); faceType = setBit( faceType, 5, hasFaceVertexNormal ); faceType = setBit( faceType, 6, hasFaceColor ); faceType = setBit( faceType, 7, hasFaceVertexColor );

faces.push( faceType ); faces.push( face.a, face.b, face.c ); faces.push( face.materialIndex );

if ( hasFaceVertexUv ) {

var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];

faces.push( getUvIndex( faceVertexUvs[ 0 ] ), getUvIndex( faceVertexUvs[ 1 ] ), getUvIndex( faceVertexUvs[ 2 ] ) );

}

if ( hasFaceNormal ) {

faces.push( getNormalIndex( face.normal ) );

}

if ( hasFaceVertexNormal ) {

var vertexNormals = face.vertexNormals;

faces.push( getNormalIndex( vertexNormals[ 0 ] ), getNormalIndex( vertexNormals[ 1 ] ), getNormalIndex( vertexNormals[ 2 ] ) );

}

if ( hasFaceColor ) {

faces.push( getColorIndex( face.color ) );

}

if ( hasFaceVertexColor ) {

var vertexColors = face.vertexColors;

faces.push( getColorIndex( vertexColors[ 0 ] ), getColorIndex( vertexColors[ 1 ] ), getColorIndex( vertexColors[ 2 ] ) );

}

}

function setBit( value, position, enabled ) {

return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );

}

function getNormalIndex( normal ) {

var hash = normal.x.toString() + normal.y.toString() + normal.z.toString();

if ( normalsHash[ hash ] !== undefined ) {

return normalsHash[ hash ];

}

normalsHash[ hash ] = normals.length / 3; normals.push( normal.x, normal.y, normal.z );

return normalsHash[ hash ];

}

function getColorIndex( color ) {

var hash = color.r.toString() + color.g.toString() + color.b.toString();

if ( colorsHash[ hash ] !== undefined ) {

return colorsHash[ hash ];

}

colorsHash[ hash ] = colors.length; colors.push( color.getHex() );

return colorsHash[ hash ];

}

function getUvIndex( uv ) {

var hash = uv.x.toString() + uv.y.toString();

if ( uvsHash[ hash ] !== undefined ) {

return uvsHash[ hash ];

}

uvsHash[ hash ] = uvs.length / 2; uvs.push( uv.x, uv.y );

return uvsHash[ hash ];

}

data.data = {};

data.data.vertices = vertices; data.data.normals = normals; if ( colors.length > 0 ) data.data.colors = colors; if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility data.data.faces = faces;

return data;

},

clone: function () {

/* // Handle primitives

var parameters = this.parameters;

if ( parameters !== undefined ) {

var values = [];

for ( var key in parameters ) {

values.push( parameters[ key ] );

}

var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry;

}

return new this.constructor().copy( this ); */

return new Geometry().copy( this );

},

copy: function ( source ) {

var i, il, j, jl, k, kl;

// reset

this.vertices = []; this.colors = []; this.faces = []; this.faceVertexUvs = [[]]; this.morphTargets = []; this.morphNormals = []; this.skinWeights = []; this.skinIndices = []; this.lineDistances = []; this.boundingBox = null; this.boundingSphere = null;

// name

this.name = source.name;

// vertices

var vertices = source.vertices;

for ( i = 0, il = vertices.length; i < il; i ++ ) {

this.vertices.push( vertices[ i ].clone() );

}

// colors

var colors = source.colors;

for ( i = 0, il = colors.length; i < il; i ++ ) {

this.colors.push( colors[ i ].clone() );

}

// faces

var faces = source.faces;

for ( i = 0, il = faces.length; i < il; i ++ ) {

this.faces.push( faces[ i ].clone() );

}

// face vertex uvs

for ( i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {

var faceVertexUvs = source.faceVertexUvs[ i ];

if ( this.faceVertexUvs[ i ] === undefined ) {

this.faceVertexUvs[ i ] = [];

}

for ( j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {

var uvs = faceVertexUvs[ j ], uvsCopy = [];

for ( k = 0, kl = uvs.length; k < kl; k ++ ) {

var uv = uvs[ k ];

uvsCopy.push( uv.clone() );

}

this.faceVertexUvs[ i ].push( uvsCopy );

}

}

// morph targets

var morphTargets = source.morphTargets;

for ( i = 0, il = morphTargets.length; i < il; i ++ ) {

var morphTarget = {}; morphTarget.name = morphTargets[ i ].name;

// vertices

if ( morphTargets[ i ].vertices !== undefined ) {

morphTarget.vertices = [];

for ( j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) {

morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() );

}

}

// normals

if ( morphTargets[ i ].normals !== undefined ) {

morphTarget.normals = [];

for ( j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) {

morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() );

}

}

this.morphTargets.push( morphTarget );

}

// morph normals

var morphNormals = source.morphNormals;

for ( i = 0, il = morphNormals.length; i < il; i ++ ) {

var morphNormal = {};

// vertex normals

if ( morphNormals[ i ].vertexNormals !== undefined ) {

morphNormal.vertexNormals = [];

for ( j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) {

var srcVertexNormal = morphNormals[ i ].vertexNormals[ j ]; var destVertexNormal = {};

destVertexNormal.a = srcVertexNormal.a.clone(); destVertexNormal.b = srcVertexNormal.b.clone(); destVertexNormal.c = srcVertexNormal.c.clone();

morphNormal.vertexNormals.push( destVertexNormal );

}

}

// face normals

if ( morphNormals[ i ].faceNormals !== undefined ) {

morphNormal.faceNormals = [];

for ( j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) {

morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() );

}

}

this.morphNormals.push( morphNormal );

}

// skin weights

var skinWeights = source.skinWeights;

for ( i = 0, il = skinWeights.length; i < il; i ++ ) {

this.skinWeights.push( skinWeights[ i ].clone() );

}

// skin indices

var skinIndices = source.skinIndices;

for ( i = 0, il = skinIndices.length; i < il; i ++ ) {

this.skinIndices.push( skinIndices[ i ].clone() );

}

// line distances

var lineDistances = source.lineDistances;

for ( i = 0, il = lineDistances.length; i < il; i ++ ) {

this.lineDistances.push( lineDistances[ i ] );

}

// bounding box

var boundingBox = source.boundingBox;

if ( boundingBox !== null ) {

this.boundingBox = boundingBox.clone();

}

// bounding sphere

var boundingSphere = source.boundingSphere;

if ( boundingSphere !== null ) {

this.boundingSphere = boundingSphere.clone();

}

// update flags

this.elementsNeedUpdate = source.elementsNeedUpdate; this.verticesNeedUpdate = source.verticesNeedUpdate; this.uvsNeedUpdate = source.uvsNeedUpdate; this.normalsNeedUpdate = source.normalsNeedUpdate; this.colorsNeedUpdate = source.colorsNeedUpdate; this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate; this.groupsNeedUpdate = source.groupsNeedUpdate;

return this;

},

dispose: function () {

this.dispatchEvent( { type: 'dispose' } );

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function BufferAttribute( array, itemSize, normalized ) {

if ( Array.isArray( array ) ) {

throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );

}

this.name = ;

this.array = array; this.itemSize = itemSize; this.count = array !== undefined ? array.length / itemSize : 0; this.normalized = normalized === true;

this.dynamic = false; this.updateRange = { offset: 0, count: - 1 };

this.version = 0;

}

Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', {

set: function ( value ) {

if ( value === true ) this.version ++;

}

} );

Object.assign( BufferAttribute.prototype, {

isBufferAttribute: true,

onUploadCallback: function () {},

setArray: function ( array ) {

if ( Array.isArray( array ) ) {

throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );

}

this.count = array !== undefined ? array.length / this.itemSize : 0; this.array = array;

return this;

},

setDynamic: function ( value ) {

this.dynamic = value;

return this;

},

copy: function ( source ) {

this.name = source.name; this.array = new source.array.constructor( source.array ); this.itemSize = source.itemSize; this.count = source.count; this.normalized = source.normalized;

this.dynamic = source.dynamic;

return this;

},

copyAt: function ( index1, attribute, index2 ) {

index1 *= this.itemSize; index2 *= attribute.itemSize;

for ( var i = 0, l = this.itemSize; i < l; i ++ ) {

this.array[ index1 + i ] = attribute.array[ index2 + i ];

}

return this;

},

copyArray: function ( array ) {

this.array.set( array );

return this;

},

copyColorsArray: function ( colors ) {

var array = this.array, offset = 0;

for ( var i = 0, l = colors.length; i < l; i ++ ) {

var color = colors[ i ];

if ( color === undefined ) {

console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i ); color = new Color();

}

array[ offset ++ ] = color.r; array[ offset ++ ] = color.g; array[ offset ++ ] = color.b;

}

return this;

},

copyVector2sArray: function ( vectors ) {

var array = this.array, offset = 0;

for ( var i = 0, l = vectors.length; i < l; i ++ ) {

var vector = vectors[ i ];

if ( vector === undefined ) {

console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i ); vector = new Vector2();

}

array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y;

}

return this;

},

copyVector3sArray: function ( vectors ) {

var array = this.array, offset = 0;

for ( var i = 0, l = vectors.length; i < l; i ++ ) {

var vector = vectors[ i ];

if ( vector === undefined ) {

console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i ); vector = new Vector3();

}

array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z;

}

return this;

},

copyVector4sArray: function ( vectors ) {

var array = this.array, offset = 0;

for ( var i = 0, l = vectors.length; i < l; i ++ ) {

var vector = vectors[ i ];

if ( vector === undefined ) {

console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i ); vector = new Vector4();

}

array[ offset ++ ] = vector.x; array[ offset ++ ] = vector.y; array[ offset ++ ] = vector.z; array[ offset ++ ] = vector.w;

}

return this;

},

set: function ( value, offset ) {

if ( offset === undefined ) offset = 0;

this.array.set( value, offset );

return this;

},

getX: function ( index ) {

return this.array[ index * this.itemSize ];

},

setX: function ( index, x ) {

this.array[ index * this.itemSize ] = x;

return this;

},

getY: function ( index ) {

return this.array[ index * this.itemSize + 1 ];

},

setY: function ( index, y ) {

this.array[ index * this.itemSize + 1 ] = y;

return this;

},

getZ: function ( index ) {

return this.array[ index * this.itemSize + 2 ];

},

setZ: function ( index, z ) {

this.array[ index * this.itemSize + 2 ] = z;

return this;

},

getW: function ( index ) {

return this.array[ index * this.itemSize + 3 ];

},

setW: function ( index, w ) {

this.array[ index * this.itemSize + 3 ] = w;

return this;

},

setXY: function ( index, x, y ) {

index *= this.itemSize;

this.array[ index + 0 ] = x; this.array[ index + 1 ] = y;

return this;

},

setXYZ: function ( index, x, y, z ) {

index *= this.itemSize;

this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z;

return this;

},

setXYZW: function ( index, x, y, z, w ) {

index *= this.itemSize;

this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; this.array[ index + 3 ] = w;

return this;

},

onUpload: function ( callback ) {

this.onUploadCallback = callback;

return this;

},

clone: function () {

return new this.constructor( this.array, this.itemSize ).copy( this );

}

} );

//

function Int8BufferAttribute( array, itemSize, normalized ) {

BufferAttribute.call( this, new Int8Array( array ), itemSize, normalized );

}

Int8BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Int8BufferAttribute.prototype.constructor = Int8BufferAttribute;


function Uint8BufferAttribute( array, itemSize, normalized ) {

BufferAttribute.call( this, new Uint8Array( array ), itemSize, normalized );

}

Uint8BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Uint8BufferAttribute.prototype.constructor = Uint8BufferAttribute;


function Uint8ClampedBufferAttribute( array, itemSize, normalized ) {

BufferAttribute.call( this, new Uint8ClampedArray( array ), itemSize, normalized );

}

Uint8ClampedBufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Uint8ClampedBufferAttribute.prototype.constructor = Uint8ClampedBufferAttribute;


function Int16BufferAttribute( array, itemSize, normalized ) {

BufferAttribute.call( this, new Int16Array( array ), itemSize, normalized );

}

Int16BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Int16BufferAttribute.prototype.constructor = Int16BufferAttribute;


function Uint16BufferAttribute( array, itemSize, normalized ) {

BufferAttribute.call( this, new Uint16Array( array ), itemSize, normalized );

}

Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute;


function Int32BufferAttribute( array, itemSize, normalized ) {

BufferAttribute.call( this, new Int32Array( array ), itemSize, normalized );

}

Int32BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Int32BufferAttribute.prototype.constructor = Int32BufferAttribute;


function Uint32BufferAttribute( array, itemSize, normalized ) {

BufferAttribute.call( this, new Uint32Array( array ), itemSize, normalized );

}

Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute;


function Float32BufferAttribute( array, itemSize, normalized ) {

BufferAttribute.call( this, new Float32Array( array ), itemSize, normalized );

}

Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Float32BufferAttribute.prototype.constructor = Float32BufferAttribute;


function Float64BufferAttribute( array, itemSize, normalized ) {

BufferAttribute.call( this, new Float64Array( array ), itemSize, normalized );

}

Float64BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); Float64BufferAttribute.prototype.constructor = Float64BufferAttribute;

/** * @author mrdoob / http://mrdoob.com/ */

function DirectGeometry() {

this.vertices = []; this.normals = []; this.colors = []; this.uvs = []; this.uvs2 = [];

this.groups = [];

this.morphTargets = {};

this.skinWeights = []; this.skinIndices = [];

// this.lineDistances = [];

this.boundingBox = null; this.boundingSphere = null;

// update flags

this.verticesNeedUpdate = false; this.normalsNeedUpdate = false; this.colorsNeedUpdate = false; this.uvsNeedUpdate = false; this.groupsNeedUpdate = false;

}

Object.assign( DirectGeometry.prototype, {

computeGroups: function ( geometry ) {

var group; var groups = []; var materialIndex = undefined;

var faces = geometry.faces;

for ( var i = 0; i < faces.length; i ++ ) {

var face = faces[ i ];

// materials

if ( face.materialIndex !== materialIndex ) {

materialIndex = face.materialIndex;

if ( group !== undefined ) {

group.count = ( i * 3 ) - group.start; groups.push( group );

}

group = { start: i * 3, materialIndex: materialIndex };

}

}

if ( group !== undefined ) {

group.count = ( i * 3 ) - group.start; groups.push( group );

}

this.groups = groups;

},

fromGeometry: function ( geometry ) {

var faces = geometry.faces; var vertices = geometry.vertices; var faceVertexUvs = geometry.faceVertexUvs;

var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0; var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;

// morphs

var morphTargets = geometry.morphTargets; var morphTargetsLength = morphTargets.length;

var morphTargetsPosition;

if ( morphTargetsLength > 0 ) {

morphTargetsPosition = [];

for ( var i = 0; i < morphTargetsLength; i ++ ) {

morphTargetsPosition[ i ] = { name: morphTargets[ i ].name, data: [] };

}

this.morphTargets.position = morphTargetsPosition;

}

var morphNormals = geometry.morphNormals; var morphNormalsLength = morphNormals.length;

var morphTargetsNormal;

if ( morphNormalsLength > 0 ) {

morphTargetsNormal = [];

for ( var i = 0; i < morphNormalsLength; i ++ ) {

morphTargetsNormal[ i ] = { name: morphNormals[ i ].name, data: [] };

}

this.morphTargets.normal = morphTargetsNormal;

}

// skins

var skinIndices = geometry.skinIndices; var skinWeights = geometry.skinWeights;

var hasSkinIndices = skinIndices.length === vertices.length; var hasSkinWeights = skinWeights.length === vertices.length;

//

if ( vertices.length > 0 && faces.length === 0 ) {

console.error( 'THREE.DirectGeometry: Faceless geometries are not supported.' );

}

for ( var i = 0; i < faces.length; i ++ ) {

var face = faces[ i ];

this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );

var vertexNormals = face.vertexNormals;

if ( vertexNormals.length === 3 ) {

this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );

} else {

var normal = face.normal;

this.normals.push( normal, normal, normal );

}

var vertexColors = face.vertexColors;

if ( vertexColors.length === 3 ) {

this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );

} else {

var color = face.color;

this.colors.push( color, color, color );

}

if ( hasFaceVertexUv === true ) {

var vertexUvs = faceVertexUvs[ 0 ][ i ];

if ( vertexUvs !== undefined ) {

this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );

} else {

console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );

this.uvs.push( new Vector2(), new Vector2(), new Vector2() );

}

}

if ( hasFaceVertexUv2 === true ) {

var vertexUvs = faceVertexUvs[ 1 ][ i ];

if ( vertexUvs !== undefined ) {

this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );

} else {

console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );

this.uvs2.push( new Vector2(), new Vector2(), new Vector2() );

}

}

// morphs

for ( var j = 0; j < morphTargetsLength; j ++ ) {

var morphTarget = morphTargets[ j ].vertices;

morphTargetsPosition[ j ].data.push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );

}

for ( var j = 0; j < morphNormalsLength; j ++ ) {

var morphNormal = morphNormals[ j ].vertexNormals[ i ];

morphTargetsNormal[ j ].data.push( morphNormal.a, morphNormal.b, morphNormal.c );

}

// skins

if ( hasSkinIndices ) {

this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );

}

if ( hasSkinWeights ) {

this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );

}

}

this.computeGroups( geometry );

this.verticesNeedUpdate = geometry.verticesNeedUpdate; this.normalsNeedUpdate = geometry.normalsNeedUpdate; this.colorsNeedUpdate = geometry.colorsNeedUpdate; this.uvsNeedUpdate = geometry.uvsNeedUpdate; this.groupsNeedUpdate = geometry.groupsNeedUpdate;

return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function arrayMax( array ) {

if ( array.length === 0 ) return - Infinity;

var max = array[ 0 ];

for ( var i = 1, l = array.length; i < l; ++ i ) {

if ( array[ i ] > max ) max = array[ i ];

}

return max;

}

/** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */

var bufferGeometryId = 1; // BufferGeometry uses odd numbers as Id

function BufferGeometry() {

Object.defineProperty( this, 'id', { value: bufferGeometryId += 2 } );

this.uuid = _Math.generateUUID();

this.name = ; this.type = 'BufferGeometry';

this.index = null; this.attributes = {};

this.morphAttributes = {};

this.groups = [];

this.boundingBox = null; this.boundingSphere = null;

this.drawRange = { start: 0, count: Infinity };

this.userData = {};

}

BufferGeometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

constructor: BufferGeometry,

isBufferGeometry: true,

getIndex: function () {

return this.index;

},

setIndex: function ( index ) {

if ( Array.isArray( index ) ) {

this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );

} else {

this.index = index;

}

},

addAttribute: function ( name, attribute ) {

if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) {

console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' );

return this.addAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) );

}

if ( name === 'index' ) {

console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' ); this.setIndex( attribute );

return this;

}

this.attributes[ name ] = attribute;

return this;

},

getAttribute: function ( name ) {

return this.attributes[ name ];

},

removeAttribute: function ( name ) {

delete this.attributes[ name ];

return this;

},

addGroup: function ( start, count, materialIndex ) {

this.groups.push( {

start: start, count: count, materialIndex: materialIndex !== undefined ? materialIndex : 0

} );

},

clearGroups: function () {

this.groups = [];

},

setDrawRange: function ( start, count ) {

this.drawRange.start = start; this.drawRange.count = count;

},

applyMatrix: function ( matrix ) {

var position = this.attributes.position;

if ( position !== undefined ) {

matrix.applyToBufferAttribute( position ); position.needsUpdate = true;

}

var normal = this.attributes.normal;

if ( normal !== undefined ) {

var normalMatrix = new Matrix3().getNormalMatrix( matrix );

normalMatrix.applyToBufferAttribute( normal ); normal.needsUpdate = true;

}

if ( this.boundingBox !== null ) {

this.computeBoundingBox();

}

if ( this.boundingSphere !== null ) {

this.computeBoundingSphere();

}

return this;

},

rotateX: function () {

// rotate geometry around world x-axis

var m1 = new Matrix4();

return function rotateX( angle ) {

m1.makeRotationX( angle );

this.applyMatrix( m1 );

return this;

};

}(),

rotateY: function () {

// rotate geometry around world y-axis

var m1 = new Matrix4();

return function rotateY( angle ) {

m1.makeRotationY( angle );

this.applyMatrix( m1 );

return this;

};

}(),

rotateZ: function () {

// rotate geometry around world z-axis

var m1 = new Matrix4();

return function rotateZ( angle ) {

m1.makeRotationZ( angle );

this.applyMatrix( m1 );

return this;

};

}(),

translate: function () {

// translate geometry

var m1 = new Matrix4();

return function translate( x, y, z ) {

m1.makeTranslation( x, y, z );

this.applyMatrix( m1 );

return this;

};

}(),

scale: function () {

// scale geometry

var m1 = new Matrix4();

return function scale( x, y, z ) {

m1.makeScale( x, y, z );

this.applyMatrix( m1 );

return this;

};

}(),

lookAt: function () {

var obj = new Object3D();

return function lookAt( vector ) {

obj.lookAt( vector );

obj.updateMatrix();

this.applyMatrix( obj.matrix );

};

}(),

center: function () {

var offset = new Vector3();

return function center() {

this.computeBoundingBox();

this.boundingBox.getCenter( offset ).negate();

this.translate( offset.x, offset.y, offset.z );

return this;

};

}(),

setFromObject: function ( object ) {

// console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );

var geometry = object.geometry;

if ( object.isPoints || object.isLine ) {

var positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 ); var colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 );

this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) ); this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) );

if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {

var lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 );

this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );

}

if ( geometry.boundingSphere !== null ) {

this.boundingSphere = geometry.boundingSphere.clone();

}

if ( geometry.boundingBox !== null ) {

this.boundingBox = geometry.boundingBox.clone();

}

} else if ( object.isMesh ) {

if ( geometry && geometry.isGeometry ) {

this.fromGeometry( geometry );

}

}

return this;

},

setFromPoints: function ( points ) {

var position = [];

for ( var i = 0, l = points.length; i < l; i ++ ) {

var point = points[ i ]; position.push( point.x, point.y, point.z || 0 );

}

this.addAttribute( 'position', new Float32BufferAttribute( position, 3 ) );

return this;

},

updateFromObject: function ( object ) {

var geometry = object.geometry;

if ( object.isMesh ) {

var direct = geometry.__directGeometry;

if ( geometry.elementsNeedUpdate === true ) {

direct = undefined; geometry.elementsNeedUpdate = false;

}

if ( direct === undefined ) {

return this.fromGeometry( geometry );

}

direct.verticesNeedUpdate = geometry.verticesNeedUpdate; direct.normalsNeedUpdate = geometry.normalsNeedUpdate; direct.colorsNeedUpdate = geometry.colorsNeedUpdate; direct.uvsNeedUpdate = geometry.uvsNeedUpdate; direct.groupsNeedUpdate = geometry.groupsNeedUpdate;

geometry.verticesNeedUpdate = false; geometry.normalsNeedUpdate = false; geometry.colorsNeedUpdate = false; geometry.uvsNeedUpdate = false; geometry.groupsNeedUpdate = false;

geometry = direct;

}

var attribute;

if ( geometry.verticesNeedUpdate === true ) {

attribute = this.attributes.position;

if ( attribute !== undefined ) {

attribute.copyVector3sArray( geometry.vertices ); attribute.needsUpdate = true;

}

geometry.verticesNeedUpdate = false;

}

if ( geometry.normalsNeedUpdate === true ) {

attribute = this.attributes.normal;

if ( attribute !== undefined ) {

attribute.copyVector3sArray( geometry.normals ); attribute.needsUpdate = true;

}

geometry.normalsNeedUpdate = false;

}

if ( geometry.colorsNeedUpdate === true ) {

attribute = this.attributes.color;

if ( attribute !== undefined ) {

attribute.copyColorsArray( geometry.colors ); attribute.needsUpdate = true;

}

geometry.colorsNeedUpdate = false;

}

if ( geometry.uvsNeedUpdate ) {

attribute = this.attributes.uv;

if ( attribute !== undefined ) {

attribute.copyVector2sArray( geometry.uvs ); attribute.needsUpdate = true;

}

geometry.uvsNeedUpdate = false;

}

if ( geometry.lineDistancesNeedUpdate ) {

attribute = this.attributes.lineDistance;

if ( attribute !== undefined ) {

attribute.copyArray( geometry.lineDistances ); attribute.needsUpdate = true;

}

geometry.lineDistancesNeedUpdate = false;

}

if ( geometry.groupsNeedUpdate ) {

geometry.computeGroups( object.geometry ); this.groups = geometry.groups;

geometry.groupsNeedUpdate = false;

}

return this;

},

fromGeometry: function ( geometry ) {

geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry );

return this.fromDirectGeometry( geometry.__directGeometry );

},

fromDirectGeometry: function ( geometry ) {

var positions = new Float32Array( geometry.vertices.length * 3 ); this.addAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );

if ( geometry.normals.length > 0 ) {

var normals = new Float32Array( geometry.normals.length * 3 ); this.addAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );

}

if ( geometry.colors.length > 0 ) {

var colors = new Float32Array( geometry.colors.length * 3 ); this.addAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );

}

if ( geometry.uvs.length > 0 ) {

var uvs = new Float32Array( geometry.uvs.length * 2 ); this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );

}

if ( geometry.uvs2.length > 0 ) {

var uvs2 = new Float32Array( geometry.uvs2.length * 2 ); this.addAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );

}

// groups

this.groups = geometry.groups;

// morphs

for ( var name in geometry.morphTargets ) {

var array = []; var morphTargets = geometry.morphTargets[ name ];

for ( var i = 0, l = morphTargets.length; i < l; i ++ ) {

var morphTarget = morphTargets[ i ];

var attribute = new Float32BufferAttribute( morphTarget.data.length * 3, 3 ); attribute.name = morphTarget.name;

array.push( attribute.copyVector3sArray( morphTarget.data ) );

}

this.morphAttributes[ name ] = array;

}

// skinning

if ( geometry.skinIndices.length > 0 ) {

var skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 ); this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );

}

if ( geometry.skinWeights.length > 0 ) {

var skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 ); this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );

}

//

if ( geometry.boundingSphere !== null ) {

this.boundingSphere = geometry.boundingSphere.clone();

}

if ( geometry.boundingBox !== null ) {

this.boundingBox = geometry.boundingBox.clone();

}

return this;

},

computeBoundingBox: function () {

if ( this.boundingBox === null ) {

this.boundingBox = new Box3();

}

var position = this.attributes.position;

if ( position !== undefined ) {

this.boundingBox.setFromBufferAttribute( position );

} else {

this.boundingBox.makeEmpty();

}

if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {

console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );

}

},

computeBoundingSphere: function () {

var box = new Box3(); var vector = new Vector3();

return function computeBoundingSphere() {

if ( this.boundingSphere === null ) {

this.boundingSphere = new Sphere();

}

var position = this.attributes.position;

if ( position ) {

var center = this.boundingSphere.center;

box.setFromBufferAttribute( position ); box.getCenter( center );

// hoping to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case

var maxRadiusSq = 0;

for ( var i = 0, il = position.count; i < il; i ++ ) {

vector.x = position.getX( i ); vector.y = position.getY( i ); vector.z = position.getZ( i ); maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) );

}

this.boundingSphere.radius = Math.sqrt( maxRadiusSq );

if ( isNaN( this.boundingSphere.radius ) ) {

console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );

}

}

};

}(),

computeFaceNormals: function () {

// backwards compatibility

},

computeVertexNormals: function () {

var index = this.index; var attributes = this.attributes;

if ( attributes.position ) {

var positions = attributes.position.array;

if ( attributes.normal === undefined ) {

this.addAttribute( 'normal', new BufferAttribute( new Float32Array( positions.length ), 3 ) );

} else {

// reset existing normals to zero

var array = attributes.normal.array;

for ( var i = 0, il = array.length; i < il; i ++ ) {

array[ i ] = 0;

}

}

var normals = attributes.normal.array;

var vA, vB, vC; var pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); var cb = new Vector3(), ab = new Vector3();

// indexed elements

if ( index ) {

var indices = index.array;

for ( var i = 0, il = index.count; i < il; i += 3 ) {

vA = indices[ i + 0 ] * 3; vB = indices[ i + 1 ] * 3; vC = indices[ i + 2 ] * 3;

pA.fromArray( positions, vA ); pB.fromArray( positions, vB ); pC.fromArray( positions, vC );

cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab );

normals[ vA ] += cb.x; normals[ vA + 1 ] += cb.y; normals[ vA + 2 ] += cb.z;

normals[ vB ] += cb.x; normals[ vB + 1 ] += cb.y; normals[ vB + 2 ] += cb.z;

normals[ vC ] += cb.x; normals[ vC + 1 ] += cb.y; normals[ vC + 2 ] += cb.z;

}

} else {

// non-indexed elements (unconnected triangle soup)

for ( var i = 0, il = positions.length; i < il; i += 9 ) {

pA.fromArray( positions, i ); pB.fromArray( positions, i + 3 ); pC.fromArray( positions, i + 6 );

cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab );

normals[ i ] = cb.x; normals[ i + 1 ] = cb.y; normals[ i + 2 ] = cb.z;

normals[ i + 3 ] = cb.x; normals[ i + 4 ] = cb.y; normals[ i + 5 ] = cb.z;

normals[ i + 6 ] = cb.x; normals[ i + 7 ] = cb.y; normals[ i + 8 ] = cb.z;

}

}

this.normalizeNormals();

attributes.normal.needsUpdate = true;

}

},

merge: function ( geometry, offset ) {

if ( ! ( geometry && geometry.isBufferGeometry ) ) {

console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry ); return;

}

if ( offset === undefined ) {

offset = 0;

console.warn( 'THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.' );

}

var attributes = this.attributes;

for ( var key in attributes ) {

if ( geometry.attributes[ key ] === undefined ) continue;

var attribute1 = attributes[ key ]; var attributeArray1 = attribute1.array;

var attribute2 = geometry.attributes[ key ]; var attributeArray2 = attribute2.array;

var attributeSize = attribute2.itemSize;

for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) {

attributeArray1[ j ] = attributeArray2[ i ];

}

}

return this;

},

normalizeNormals: function () {

var vector = new Vector3();

return function normalizeNormals() {

var normals = this.attributes.normal;

for ( var i = 0, il = normals.count; i < il; i ++ ) {

vector.x = normals.getX( i ); vector.y = normals.getY( i ); vector.z = normals.getZ( i );

vector.normalize();

normals.setXYZ( i, vector.x, vector.y, vector.z );

}

};

}(),

toNonIndexed: function () {

if ( this.index === null ) {

console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' ); return this;

}

var geometry2 = new BufferGeometry();

var indices = this.index.array; var attributes = this.attributes;

for ( var name in attributes ) {

var attribute = attributes[ name ];

var array = attribute.array; var itemSize = attribute.itemSize;

var array2 = new array.constructor( indices.length * itemSize );

var index = 0, index2 = 0;

for ( var i = 0, l = indices.length; i < l; i ++ ) {

index = indices[ i ] * itemSize;

for ( var j = 0; j < itemSize; j ++ ) {

array2[ index2 ++ ] = array[ index ++ ];

}

}

geometry2.addAttribute( name, new BufferAttribute( array2, itemSize ) );

}

var groups = this.groups;

for ( var i = 0, l = groups.length; i < l; i ++ ) {

var group = groups[ i ]; geometry2.addGroup( group.start, group.count, group.materialIndex );

}

return geometry2;

},

toJSON: function () {

var data = { metadata: { version: 4.5, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } };

// standard BufferGeometry serialization

data.uuid = this.uuid; data.type = this.type; if ( this.name !== ) data.name = this.name; if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData;

if ( this.parameters !== undefined ) {

var parameters = this.parameters;

for ( var key in parameters ) {

if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];

}

return data;

}

data.data = { attributes: {} };

var index = this.index;

if ( index !== null ) {

var array = Array.prototype.slice.call( index.array );

data.data.index = { type: index.array.constructor.name, array: array };

}

var attributes = this.attributes;

for ( var key in attributes ) {

var attribute = attributes[ key ];

var array = Array.prototype.slice.call( attribute.array );

data.data.attributes[ key ] = { itemSize: attribute.itemSize, type: attribute.array.constructor.name, array: array, normalized: attribute.normalized };

}

var groups = this.groups;

if ( groups.length > 0 ) {

data.data.groups = JSON.parse( JSON.stringify( groups ) );

}

var boundingSphere = this.boundingSphere;

if ( boundingSphere !== null ) {

data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius };

}

return data;

},

clone: function () {

/* // Handle primitives

var parameters = this.parameters;

if ( parameters !== undefined ) {

var values = [];

for ( var key in parameters ) {

values.push( parameters[ key ] );

}

var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry;

}

return new this.constructor().copy( this ); */

return new BufferGeometry().copy( this );

},

copy: function ( source ) {

var name, i, l;

// reset

this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null;

// name

this.name = source.name;

// index

var index = source.index;

if ( index !== null ) {

this.setIndex( index.clone() );

}

// attributes

var attributes = source.attributes;

for ( name in attributes ) {

var attribute = attributes[ name ]; this.addAttribute( name, attribute.clone() );

}

// morph attributes

var morphAttributes = source.morphAttributes;

for ( name in morphAttributes ) {

var array = []; var morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes

for ( i = 0, l = morphAttribute.length; i < l; i ++ ) {

array.push( morphAttribute[ i ].clone() );

}

this.morphAttributes[ name ] = array;

}

// groups

var groups = source.groups;

for ( i = 0, l = groups.length; i < l; i ++ ) {

var group = groups[ i ]; this.addGroup( group.start, group.count, group.materialIndex );

}

// bounding box

var boundingBox = source.boundingBox;

if ( boundingBox !== null ) {

this.boundingBox = boundingBox.clone();

}

// bounding sphere

var boundingSphere = source.boundingSphere;

if ( boundingSphere !== null ) {

this.boundingSphere = boundingSphere.clone();

}

// draw range

this.drawRange.start = source.drawRange.start; this.drawRange.count = source.drawRange.count;

// user data

this.userData = source.userData;

return this;

},

dispose: function () {

this.dispatchEvent( { type: 'dispose' } );

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */

// BoxGeometry

function BoxGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {

Geometry.call( this );

this.type = 'BoxGeometry';

this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments };

this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) ); this.mergeVertices();

}

BoxGeometry.prototype = Object.create( Geometry.prototype ); BoxGeometry.prototype.constructor = BoxGeometry;

// BoxBufferGeometry

function BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {

BufferGeometry.call( this );

this.type = 'BoxBufferGeometry';

this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments };

var scope = this;

width = width || 1; height = height || 1; depth = depth || 1;

// segments

widthSegments = Math.floor( widthSegments ) || 1; heightSegments = Math.floor( heightSegments ) || 1; depthSegments = Math.floor( depthSegments ) || 1;

// buffers

var indices = []; var vertices = []; var normals = []; var uvs = [];

// helper variables

var numberOfVertices = 0; var groupStart = 0;

// build each side of the box geometry

buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {

var segmentWidth = width / gridX; var segmentHeight = height / gridY;

var widthHalf = width / 2; var heightHalf = height / 2; var depthHalf = depth / 2;

var gridX1 = gridX + 1; var gridY1 = gridY + 1;

var vertexCounter = 0; var groupCount = 0;

var ix, iy;

var vector = new Vector3();

// generate vertices, normals and uvs

for ( iy = 0; iy < gridY1; iy ++ ) {

var y = iy * segmentHeight - heightHalf;

for ( ix = 0; ix < gridX1; ix ++ ) {

var x = ix * segmentWidth - widthHalf;

// set values to correct vector component

vector[ u ] = x * udir; vector[ v ] = y * vdir; vector[ w ] = depthHalf;

// now apply vector to vertex buffer

vertices.push( vector.x, vector.y, vector.z );

// set values to correct vector component

vector[ u ] = 0; vector[ v ] = 0; vector[ w ] = depth > 0 ? 1 : - 1;

// now apply vector to normal buffer

normals.push( vector.x, vector.y, vector.z );

// uvs

uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) );

// counters

vertexCounter += 1;

}

}

// indices

// 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment

for ( iy = 0; iy < gridY; iy ++ ) {

for ( ix = 0; ix < gridX; ix ++ ) {

var a = numberOfVertices + ix + gridX1 * iy; var b = numberOfVertices + ix + gridX1 * ( iy + 1 ); var c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 ); var d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;

// faces

indices.push( a, b, d ); indices.push( b, c, d );

// increase counter

groupCount += 6;

}

}

// add a group to the geometry. this will ensure multi material support

scope.addGroup( groupStart, groupCount, materialIndex );

// calculate new start value for groups

groupStart += groupCount;

// update total number of vertices

numberOfVertices += vertexCounter;

}

}

BoxBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); BoxBufferGeometry.prototype.constructor = BoxBufferGeometry;

/** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */

// PlaneGeometry

function PlaneGeometry( width, height, widthSegments, heightSegments ) {

Geometry.call( this );

this.type = 'PlaneGeometry';

this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments };

this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) ); this.mergeVertices();

}

PlaneGeometry.prototype = Object.create( Geometry.prototype ); PlaneGeometry.prototype.constructor = PlaneGeometry;

// PlaneBufferGeometry

function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) {

BufferGeometry.call( this );

this.type = 'PlaneBufferGeometry';

this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments };

width = width || 1; height = height || 1;

var width_half = width / 2; var height_half = height / 2;

var gridX = Math.floor( widthSegments ) || 1; var gridY = Math.floor( heightSegments ) || 1;

var gridX1 = gridX + 1; var gridY1 = gridY + 1;

var segment_width = width / gridX; var segment_height = height / gridY;

var ix, iy;

// buffers

var indices = []; var vertices = []; var normals = []; var uvs = [];

// generate vertices, normals and uvs

for ( iy = 0; iy < gridY1; iy ++ ) {

var y = iy * segment_height - height_half;

for ( ix = 0; ix < gridX1; ix ++ ) {

var x = ix * segment_width - width_half;

vertices.push( x, - y, 0 );

normals.push( 0, 0, 1 );

uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) );

}

}

// indices

for ( iy = 0; iy < gridY; iy ++ ) {

for ( ix = 0; ix < gridX; ix ++ ) {

var a = ix + gridX1 * iy; var b = ix + gridX1 * ( iy + 1 ); var c = ( ix + 1 ) + gridX1 * ( iy + 1 ); var d = ( ix + 1 ) + gridX1 * iy;

// faces

indices.push( a, b, d ); indices.push( b, c, d );

}

}

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry;

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */

var materialId = 0;

function Material() {

Object.defineProperty( this, 'id', { value: materialId ++ } );

this.uuid = _Math.generateUUID();

this.name = ; this.type = 'Material';

this.fog = true; this.lights = true;

this.blending = NormalBlending; this.side = FrontSide; this.flatShading = false; this.vertexColors = NoColors; // THREE.NoColors, THREE.VertexColors, THREE.FaceColors

this.opacity = 1; this.transparent = false;

this.blendSrc = SrcAlphaFactor; this.blendDst = OneMinusSrcAlphaFactor; this.blendEquation = AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null;

this.depthFunc = LessEqualDepth; this.depthTest = true; this.depthWrite = true;

this.clippingPlanes = null; this.clipIntersection = false; this.clipShadows = false;

this.shadowSide = null;

this.colorWrite = true;

this.precision = null; // override the renderer's default precision for this material

this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0;

this.dithering = false;

this.alphaTest = 0; this.premultipliedAlpha = false;

this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer

this.visible = true;

this.userData = {};

this.needsUpdate = true;

}

Material.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

constructor: Material,

isMaterial: true,

onBeforeCompile: function () {},

setValues: function ( values ) {

if ( values === undefined ) return;

for ( var key in values ) {

var newValue = values[ key ];

if ( newValue === undefined ) {

console.warn( "THREE.Material: '" + key + "' parameter is undefined." ); continue;

}

// for backward compatability if shading is set in the constructor if ( key === 'shading' ) {

console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); this.flatShading = ( newValue === FlatShading ) ? true : false; continue;

}

var currentValue = this[ key ];

if ( currentValue === undefined ) {

console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." ); continue;

}

if ( currentValue && currentValue.isColor ) {

currentValue.set( newValue );

} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {

currentValue.copy( newValue );

} else if ( key === 'overdraw' ) {

// ensure overdraw is backwards-compatible with legacy boolean type this[ key ] = Number( newValue );

} else {

this[ key ] = newValue;

}

}

},

toJSON: function ( meta ) {

var isRoot = ( meta === undefined || typeof meta === 'string' );

if ( isRoot ) {

meta = { textures: {}, images: {} };

}

var data = { metadata: { version: 4.5, type: 'Material', generator: 'Material.toJSON' } };

// standard Material serialization data.uuid = this.uuid; data.type = this.type;

if ( this.name !== ) data.name = this.name;

if ( this.color && this.color.isColor ) data.color = this.color.getHex();

if ( this.roughness !== undefined ) data.roughness = this.roughness; if ( this.metalness !== undefined ) data.metalness = this.metalness;

if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex(); if ( this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity;

if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex(); if ( this.shininess !== undefined ) data.shininess = this.shininess; if ( this.clearCoat !== undefined ) data.clearCoat = this.clearCoat; if ( this.clearCoatRoughness !== undefined ) data.clearCoatRoughness = this.clearCoatRoughness;

if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid; if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid; if ( this.lightMap && this.lightMap.isTexture ) data.lightMap = this.lightMap.toJSON( meta ).uuid;

if ( this.aoMap && this.aoMap.isTexture ) {

data.aoMap = this.aoMap.toJSON( meta ).uuid; data.aoMapIntensity = this.aoMapIntensity;

}

if ( this.bumpMap && this.bumpMap.isTexture ) {

data.bumpMap = this.bumpMap.toJSON( meta ).uuid; data.bumpScale = this.bumpScale;

}

if ( this.normalMap && this.normalMap.isTexture ) {

data.normalMap = this.normalMap.toJSON( meta ).uuid; data.normalMapType = this.normalMapType; data.normalScale = this.normalScale.toArray();

}

if ( this.displacementMap && this.displacementMap.isTexture ) {

data.displacementMap = this.displacementMap.toJSON( meta ).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias;

}

if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;

if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;

if ( this.envMap && this.envMap.isTexture ) {

data.envMap = this.envMap.toJSON( meta ).uuid; data.reflectivity = this.reflectivity; // Scale behind envMap

if ( this.combine !== undefined ) data.combine = this.combine; if ( this.envMapIntensity !== undefined ) data.envMapIntensity = this.envMapIntensity;

}

if ( this.gradientMap && this.gradientMap.isTexture ) {

data.gradientMap = this.gradientMap.toJSON( meta ).uuid;

}

if ( this.size !== undefined ) data.size = this.size; if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;

if ( this.blending !== NormalBlending ) data.blending = this.blending; if ( this.flatShading === true ) data.flatShading = this.flatShading; if ( this.side !== FrontSide ) data.side = this.side; if ( this.vertexColors !== NoColors ) data.vertexColors = this.vertexColors;

if ( this.opacity < 1 ) data.opacity = this.opacity; if ( this.transparent === true ) data.transparent = this.transparent;

data.depthFunc = this.depthFunc; data.depthTest = this.depthTest; data.depthWrite = this.depthWrite;

// rotation (SpriteMaterial) if ( this.rotation !== 0 ) data.rotation = this.rotation;

if ( this.polygonOffset === true ) data.polygonOffset = true; if ( this.polygonOffsetFactor !== 0 ) data.polygonOffsetFactor = this.polygonOffsetFactor; if ( this.polygonOffsetUnits !== 0 ) data.polygonOffsetUnits = this.polygonOffsetUnits;

if ( this.linewidth !== 1 ) data.linewidth = this.linewidth; if ( this.dashSize !== undefined ) data.dashSize = this.dashSize; if ( this.gapSize !== undefined ) data.gapSize = this.gapSize; if ( this.scale !== undefined ) data.scale = this.scale;

if ( this.dithering === true ) data.dithering = true;

if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest; if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;

if ( this.wireframe === true ) data.wireframe = this.wireframe; if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth; if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap; if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin;

if ( this.morphTargets === true ) data.morphTargets = true; if ( this.skinning === true ) data.skinning = true;

if ( this.visible === false ) data.visible = false; if ( JSON.stringify( this.userData ) !== '{}' ) data.userData = this.userData;

// TODO: Copied from Object3D.toJSON

function extractFromCache( cache ) {

var values = [];

for ( var key in cache ) {

var data = cache[ key ]; delete data.metadata; values.push( data );

}

return values;

}

if ( isRoot ) {

var textures = extractFromCache( meta.textures ); var images = extractFromCache( meta.images );

if ( textures.length > 0 ) data.textures = textures; if ( images.length > 0 ) data.images = images;

}

return data;

},

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( source ) {

this.name = source.name;

this.fog = source.fog; this.lights = source.lights;

this.blending = source.blending; this.side = source.side; this.flatShading = source.flatShading; this.vertexColors = source.vertexColors;

this.opacity = source.opacity; this.transparent = source.transparent;

this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha;

this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite;

this.colorWrite = source.colorWrite;

this.precision = source.precision;

this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits;

this.dithering = source.dithering;

this.alphaTest = source.alphaTest; this.premultipliedAlpha = source.premultipliedAlpha;

this.overdraw = source.overdraw;

this.visible = source.visible; this.userData = JSON.parse( JSON.stringify( source.userData ) );

this.clipShadows = source.clipShadows; this.clipIntersection = source.clipIntersection;

var srcPlanes = source.clippingPlanes, dstPlanes = null;

if ( srcPlanes !== null ) {

var n = srcPlanes.length; dstPlanes = new Array( n );

for ( var i = 0; i !== n; ++ i ) dstPlanes[ i ] = srcPlanes[ i ].clone();

}

this.clippingPlanes = dstPlanes;

this.shadowSide = source.shadowSide;

return this;

},

dispose: function () {

this.dispatchEvent( { type: 'dispose' } );

}

} );

/** * @author alteredq / http://alteredqualia.com/ * * parameters = { * defines: { "label" : "value" }, * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } }, * * fragmentShader: <string>, * vertexShader: <string>, * * wireframe: <boolean>, * wireframeLinewidth: <float>, * * lights: <bool>, * * skinning: <bool>, * morphTargets: <bool>, * morphNormals: <bool> * } */

function ShaderMaterial( parameters ) {

Material.call( this );

this.type = 'ShaderMaterial';

this.defines = {}; this.uniforms = {};

this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}'; this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}';

this.linewidth = 1;

this.wireframe = false; this.wireframeLinewidth = 1;

this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.clipping = false; // set to use user-defined clipping planes

this.skinning = false; // set to use skinning attribute streams this.morphTargets = false; // set to use morph targets this.morphNormals = false; // set to use morph normals

this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD };

// When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [ 1, 1, 1 ], 'uv': [ 0, 0 ], 'uv2': [ 0, 0 ] };

this.index0AttributeName = undefined; this.uniformsNeedUpdate = false;

if ( parameters !== undefined ) {

if ( parameters.attributes !== undefined ) {

console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );

}

this.setValues( parameters );

}

}

ShaderMaterial.prototype = Object.create( Material.prototype ); ShaderMaterial.prototype.constructor = ShaderMaterial;

ShaderMaterial.prototype.isShaderMaterial = true;

ShaderMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader;

this.uniforms = UniformsUtils.clone( source.uniforms );

this.defines = Object.assign( {}, source.defines );

this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth;

this.lights = source.lights; this.clipping = source.clipping;

this.skinning = source.skinning;

this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals;

this.extensions = source.extensions;

return this;

};

ShaderMaterial.prototype.toJSON = function ( meta ) {

var data = Material.prototype.toJSON.call( this, meta );

data.uniforms = {};

for ( var name in this.uniforms ) {

var uniform = this.uniforms[ name ]; var value = uniform.value;

if ( value.isTexture ) {

data.uniforms[ name ] = { type: 't', value: value.toJSON( meta ).uuid };

} else if ( value.isColor ) {

data.uniforms[ name ] = { type: 'c', value: value.getHex() };

} else if ( value.isVector2 ) {

data.uniforms[ name ] = { type: 'v2', value: value.toArray() };

} else if ( value.isVector3 ) {

data.uniforms[ name ] = { type: 'v3', value: value.toArray() };

} else if ( value.isVector4 ) {

data.uniforms[ name ] = { type: 'v4', value: value.toArray() };

} else if ( value.isMatrix4 ) {

data.uniforms[ name ] = { type: 'm4', value: value.toArray() };

} else {

data.uniforms[ name ] = { value: value };

// note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far

}

}

if ( Object.keys( this.defines ).length > 0 ) data.defines = this.defines;

data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader;

return data;

};

/** * @author bhouston / http://clara.io */

function Ray( origin, direction ) {

this.origin = ( origin !== undefined ) ? origin : new Vector3(); this.direction = ( direction !== undefined ) ? direction : new Vector3();

}

Object.assign( Ray.prototype, {

set: function ( origin, direction ) {

this.origin.copy( origin ); this.direction.copy( direction );

return this;

},

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( ray ) {

this.origin.copy( ray.origin ); this.direction.copy( ray.direction );

return this;

},

at: function ( t, target ) {

if ( target === undefined ) {

console.warn( 'THREE.Ray: .at() target is now required' ); target = new Vector3();

}

return target.copy( this.direction ).multiplyScalar( t ).add( this.origin );

},

lookAt: function ( v ) {

this.direction.copy( v ).sub( this.origin ).normalize();

return this;

},

recast: function () {

var v1 = new Vector3();

return function recast( t ) {

this.origin.copy( this.at( t, v1 ) );

return this;

};

}(),

closestPointToPoint: function ( point, target ) {

if ( target === undefined ) {

console.warn( 'THREE.Ray: .closestPointToPoint() target is now required' ); target = new Vector3();

}

target.subVectors( point, this.origin );

var directionDistance = target.dot( this.direction );

if ( directionDistance < 0 ) {

return target.copy( this.origin );

}

return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );

},

distanceToPoint: function ( point ) {

return Math.sqrt( this.distanceSqToPoint( point ) );

},

distanceSqToPoint: function () {

var v1 = new Vector3();

return function distanceSqToPoint( point ) {

var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction );

// point behind the ray

if ( directionDistance < 0 ) {

return this.origin.distanceToSquared( point );

}

v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );

return v1.distanceToSquared( point );

};

}(),

distanceSqToSegment: function () {

var segCenter = new Vector3(); var segDir = new Vector3(); var diff = new Vector3();

return function distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {

// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment

segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 ); segDir.copy( v1 ).sub( v0 ).normalize(); diff.copy( this.origin ).sub( segCenter );

var segExtent = v0.distanceTo( v1 ) * 0.5; var a01 = - this.direction.dot( segDir ); var b0 = diff.dot( this.direction ); var b1 = - diff.dot( segDir ); var c = diff.lengthSq(); var det = Math.abs( 1 - a01 * a01 ); var s0, s1, sqrDist, extDet;

if ( det > 0 ) {

// The ray and segment are not parallel.

s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det;

if ( s0 >= 0 ) {

if ( s1 >= - extDet ) {

if ( s1 <= extDet ) {

// region 0 // Minimum at interior points of ray and segment.

var invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;

} else {

// region 1

s1 = segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

}

} else {

// region 5

s1 = - segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

}

} else {

if ( s1 <= - extDet ) {

// region 4

s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

} else if ( s1 <= extDet ) {

// region 3

s0 = 0; s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = s1 * ( s1 + 2 * b1 ) + c;

} else {

// region 2

s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

}

}

} else {

// Ray and segment are parallel.

s1 = ( a01 > 0 ) ? - segExtent : segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

}

if ( optionalPointOnRay ) {

optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );

}

if ( optionalPointOnSegment ) {

optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter );

}

return sqrDist;

};

}(),

intersectSphere: function () {

var v1 = new Vector3();

return function intersectSphere( sphere, target ) {

v1.subVectors( sphere.center, this.origin ); var tca = v1.dot( this.direction ); var d2 = v1.dot( v1 ) - tca * tca; var radius2 = sphere.radius * sphere.radius;

if ( d2 > radius2 ) return null;

var thc = Math.sqrt( radius2 - d2 );

// t0 = first intersect point - entrance on front of sphere var t0 = tca - thc;

// t1 = second intersect point - exit point on back of sphere var t1 = tca + thc;

// test to see if both t0 and t1 are behind the ray - if so, return null if ( t0 < 0 && t1 < 0 ) return null;

// test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if ( t0 < 0 ) return this.at( t1, target );

// else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at( t0, target );

};

}(),

intersectsSphere: function ( sphere ) {

return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius );

},

distanceToPlane: function ( plane ) {

var denominator = plane.normal.dot( this.direction );

if ( denominator === 0 ) {

// line is coplanar, return origin if ( plane.distanceToPoint( this.origin ) === 0 ) {

return 0;

}

// Null is preferable to undefined since undefined means.... it is undefined

return null;

}

var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;

// Return if the ray never intersects the plane

return t >= 0 ? t : null;

},

intersectPlane: function ( plane, target ) {

var t = this.distanceToPlane( plane );

if ( t === null ) {

return null;

}

return this.at( t, target );

},

intersectsPlane: function ( plane ) {

// check if the ray lies on the plane first

var distToPoint = plane.distanceToPoint( this.origin );

if ( distToPoint === 0 ) {

return true;

}

var denominator = plane.normal.dot( this.direction );

if ( denominator * distToPoint < 0 ) {

return true;

}

// ray origin is behind the plane (and is pointing behind it)

return false;

},

intersectBox: function ( box, target ) {

var tmin, tmax, tymin, tymax, tzmin, tzmax;

var invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z;

var origin = this.origin;

if ( invdirx >= 0 ) {

tmin = ( box.min.x - origin.x ) * invdirx; tmax = ( box.max.x - origin.x ) * invdirx;

} else {

tmin = ( box.max.x - origin.x ) * invdirx; tmax = ( box.min.x - origin.x ) * invdirx;

}

if ( invdiry >= 0 ) {

tymin = ( box.min.y - origin.y ) * invdiry; tymax = ( box.max.y - origin.y ) * invdiry;

} else {

tymin = ( box.max.y - origin.y ) * invdiry; tymax = ( box.min.y - origin.y ) * invdiry;

}

if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;

// These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN

if ( tymin > tmin || tmin !== tmin ) tmin = tymin;

if ( tymax < tmax || tmax !== tmax ) tmax = tymax;

if ( invdirz >= 0 ) {

tzmin = ( box.min.z - origin.z ) * invdirz; tzmax = ( box.max.z - origin.z ) * invdirz;

} else {

tzmin = ( box.max.z - origin.z ) * invdirz; tzmax = ( box.min.z - origin.z ) * invdirz;

}

if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;

if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;

if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;

//return point closest to the ray (positive side)

if ( tmax < 0 ) return null;

return this.at( tmin >= 0 ? tmin : tmax, target );

},

intersectsBox: ( function () {

var v = new Vector3();

return function intersectsBox( box ) {

return this.intersectBox( box, v ) !== null;

};

} )(),

intersectTriangle: function () {

// Compute the offset origin, edges, and normal. var diff = new Vector3(); var edge1 = new Vector3(); var edge2 = new Vector3(); var normal = new Vector3();

return function intersectTriangle( a, b, c, backfaceCulling, target ) {

// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h

edge1.subVectors( b, a ); edge2.subVectors( c, a ); normal.crossVectors( edge1, edge2 );

// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) var DdN = this.direction.dot( normal ); var sign;

if ( DdN > 0 ) {

if ( backfaceCulling ) return null; sign = 1;

} else if ( DdN < 0 ) {

sign = - 1; DdN = - DdN;

} else {

return null;

}

diff.subVectors( this.origin, a ); var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) );

// b1 < 0, no intersection if ( DdQxE2 < 0 ) {

return null;

}

var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) );

// b2 < 0, no intersection if ( DdE1xQ < 0 ) {

return null;

}

// b1+b2 > 1, no intersection if ( DdQxE2 + DdE1xQ > DdN ) {

return null;

}

// Line intersects triangle, check if ray does. var QdN = - sign * diff.dot( normal );

// t < 0, no intersection if ( QdN < 0 ) {

return null;

}

// Ray intersects triangle. return this.at( QdN / DdN, target );

};

}(),

applyMatrix4: function ( matrix4 ) {

this.origin.applyMatrix4( matrix4 ); this.direction.transformDirection( matrix4 );

return this;

},

equals: function ( ray ) {

return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );

}

} );

/** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */

function Triangle( a, b, c ) {

this.a = ( a !== undefined ) ? a : new Vector3(); this.b = ( b !== undefined ) ? b : new Vector3(); this.c = ( c !== undefined ) ? c : new Vector3();

}

Object.assign( Triangle, {

getNormal: function () {

var v0 = new Vector3();

return function getNormal( a, b, c, target ) {

if ( target === undefined ) {

console.warn( 'THREE.Triangle: .getNormal() target is now required' ); target = new Vector3();

}

target.subVectors( c, b ); v0.subVectors( a, b ); target.cross( v0 );

var targetLengthSq = target.lengthSq(); if ( targetLengthSq > 0 ) {

return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) );

}

return target.set( 0, 0, 0 );

};

}(),

// static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html getBarycoord: function () {

var v0 = new Vector3(); var v1 = new Vector3(); var v2 = new Vector3();

return function getBarycoord( point, a, b, c, target ) {

v0.subVectors( c, a ); v1.subVectors( b, a ); v2.subVectors( point, a );

var dot00 = v0.dot( v0 ); var dot01 = v0.dot( v1 ); var dot02 = v0.dot( v2 ); var dot11 = v1.dot( v1 ); var dot12 = v1.dot( v2 );

var denom = ( dot00 * dot11 - dot01 * dot01 );

if ( target === undefined ) {

console.warn( 'THREE.Triangle: .getBarycoord() target is now required' ); target = new Vector3();

}

// collinear or singular triangle if ( denom === 0 ) {

// arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return target.set( - 2, - 1, - 1 );

}

var invDenom = 1 / denom; var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;

// barycentric coordinates must always sum to 1 return target.set( 1 - u - v, v, u );

};

}(),

containsPoint: function () {

var v1 = new Vector3();

return function containsPoint( point, a, b, c ) {

Triangle.getBarycoord( point, a, b, c, v1 );

return ( v1.x >= 0 ) && ( v1.y >= 0 ) && ( ( v1.x + v1.y ) <= 1 );

};

}(),

getUV: function () {

var barycoord = new Vector3();

return function getUV( point, p1, p2, p3, uv1, uv2, uv3, target ) {

this.getBarycoord( point, p1, p2, p3, barycoord );

target.set( 0, 0 ); target.addScaledVector( uv1, barycoord.x ); target.addScaledVector( uv2, barycoord.y ); target.addScaledVector( uv3, barycoord.z );

return target;

};

}()

} );

Object.assign( Triangle.prototype, {

set: function ( a, b, c ) {

this.a.copy( a ); this.b.copy( b ); this.c.copy( c );

return this;

},

setFromPointsAndIndices: function ( points, i0, i1, i2 ) {

this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] );

return this;

},

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( triangle ) {

this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c );

return this;

},

getArea: function () {

var v0 = new Vector3(); var v1 = new Vector3();

return function getArea() {

v0.subVectors( this.c, this.b ); v1.subVectors( this.a, this.b );

return v0.cross( v1 ).length() * 0.5;

};

}(),

getMidpoint: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Triangle: .getMidpoint() target is now required' ); target = new Vector3();

}

return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );

},

getNormal: function ( target ) {

return Triangle.getNormal( this.a, this.b, this.c, target );

},

getPlane: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Triangle: .getPlane() target is now required' ); target = new Vector3();

}

return target.setFromCoplanarPoints( this.a, this.b, this.c );

},

getBarycoord: function ( point, target ) {

return Triangle.getBarycoord( point, this.a, this.b, this.c, target );

},

containsPoint: function ( point ) {

return Triangle.containsPoint( point, this.a, this.b, this.c );

},

getUV: function ( point, uv1, uv2, uv3, result ) {

return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, result );

},

intersectsBox: function ( box ) {

return box.intersectsTriangle( this );

},

closestPointToPoint: function () {

var vab = new Vector3(); var vac = new Vector3(); var vbc = new Vector3(); var vap = new Vector3(); var vbp = new Vector3(); var vcp = new Vector3();

return function closestPointToPoint( p, target ) {

if ( target === undefined ) {

console.warn( 'THREE.Triangle: .closestPointToPoint() target is now required' ); target = new Vector3();

}

var a = this.a, b = this.b, c = this.c; var v, w;

// algorithm thanks to Real-Time Collision Detection by Christer Ericson, // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., // under the accompanying license; see chapter 5.1.5 for detailed explanation. // basically, we're distinguishing which of the voronoi regions of the triangle // the point lies in with the minimum amount of redundant computation.

vab.subVectors( b, a ); vac.subVectors( c, a ); vap.subVectors( p, a ); var d1 = vab.dot( vap ); var d2 = vac.dot( vap ); if ( d1 <= 0 && d2 <= 0 ) {

// vertex region of A; barycentric coords (1, 0, 0) return target.copy( a );

}

vbp.subVectors( p, b ); var d3 = vab.dot( vbp ); var d4 = vac.dot( vbp ); if ( d3 >= 0 && d4 <= d3 ) {

// vertex region of B; barycentric coords (0, 1, 0) return target.copy( b );

}

var vc = d1 * d4 - d3 * d2; if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) {

v = d1 / ( d1 - d3 ); // edge region of AB; barycentric coords (1-v, v, 0) return target.copy( a ).addScaledVector( vab, v );

}

vcp.subVectors( p, c ); var d5 = vab.dot( vcp ); var d6 = vac.dot( vcp ); if ( d6 >= 0 && d5 <= d6 ) {

// vertex region of C; barycentric coords (0, 0, 1) return target.copy( c );

}

var vb = d5 * d2 - d1 * d6; if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) {

w = d2 / ( d2 - d6 ); // edge region of AC; barycentric coords (1-w, 0, w) return target.copy( a ).addScaledVector( vac, w );

}

var va = d3 * d6 - d5 * d4; if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) {

vbc.subVectors( c, b ); w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) ); // edge region of BC; barycentric coords (0, 1-w, w) return target.copy( b ).addScaledVector( vbc, w ); // edge region of BC

}

// face region var denom = 1 / ( va + vb + vc ); // u = va * denom v = vb * denom; w = vc * denom; return target.copy( a ).addScaledVector( vab, v ).addScaledVector( vac, w );

};

}(),

equals: function ( triangle ) {

return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: <hex>, * opacity: <float>, * map: new THREE.Texture( <Image> ), * * lightMap: new THREE.Texture( <Image> ), * lightMapIntensity: <float> * * aoMap: new THREE.Texture( <Image> ), * aoMapIntensity: <float> * * specularMap: new THREE.Texture( <Image> ), * * alphaMap: new THREE.Texture( <Image> ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: <float>, * refractionRatio: <float>, * * depthTest: <bool>, * depthWrite: <bool>, * * wireframe: <boolean>, * wireframeLinewidth: <float>, * * skinning: <bool>, * morphTargets: <bool> * } */

function MeshBasicMaterial( parameters ) {

Material.call( this );

this.type = 'MeshBasicMaterial';

this.color = new Color( 0xffffff ); // emissive

this.map = null;

this.lightMap = null; this.lightMapIntensity = 1.0;

this.aoMap = null; this.aoMapIntensity = 1.0;

this.specularMap = null;

this.alphaMap = null;

this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98;

this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round';

this.skinning = false; this.morphTargets = false;

this.lights = false;

this.setValues( parameters );

}

MeshBasicMaterial.prototype = Object.create( Material.prototype ); MeshBasicMaterial.prototype.constructor = MeshBasicMaterial;

MeshBasicMaterial.prototype.isMeshBasicMaterial = true;

MeshBasicMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.color.copy( source.color );

this.map = source.map;

this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity;

this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity;

this.specularMap = source.specularMap;

this.alphaMap = source.alphaMap;

this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio;

this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin;

this.skinning = source.skinning; this.morphTargets = source.morphTargets;

return this;

};

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author jonobr1 / http://jonobr1.com/ */

function Mesh( geometry, material ) {

Object3D.call( this );

this.type = 'Mesh';

this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new MeshBasicMaterial( { color: Math.random() * 0xffffff } );

this.drawMode = TrianglesDrawMode;

this.updateMorphTargets();

}

Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: Mesh,

isMesh: true,

setDrawMode: function ( value ) {

this.drawMode = value;

},

copy: function ( source ) {

Object3D.prototype.copy.call( this, source );

this.drawMode = source.drawMode;

if ( source.morphTargetInfluences !== undefined ) {

this.morphTargetInfluences = source.morphTargetInfluences.slice();

}

if ( source.morphTargetDictionary !== undefined ) {

this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary );

}

return this;

},

updateMorphTargets: function () {

var geometry = this.geometry; var m, ml, name;

if ( geometry.isBufferGeometry ) {

var morphAttributes = geometry.morphAttributes; var keys = Object.keys( morphAttributes );

if ( keys.length > 0 ) {

var morphAttribute = morphAttributes[ keys[ 0 ] ];

if ( morphAttribute !== undefined ) {

this.morphTargetInfluences = []; this.morphTargetDictionary = {};

for ( m = 0, ml = morphAttribute.length; m < ml; m ++ ) {

name = morphAttribute[ m ].name || String( m );

this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m;

}

}

}

} else {

var morphTargets = geometry.morphTargets;

if ( morphTargets !== undefined && morphTargets.length > 0 ) {

this.morphTargetInfluences = []; this.morphTargetDictionary = {};

for ( m = 0, ml = morphTargets.length; m < ml; m ++ ) {

name = morphTargets[ m ].name || String( m );

this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m;

}

}

}

},

raycast: ( function () {

var inverseMatrix = new Matrix4(); var ray = new Ray(); var sphere = new Sphere();

var vA = new Vector3(); var vB = new Vector3(); var vC = new Vector3();

var tempA = new Vector3(); var tempB = new Vector3(); var tempC = new Vector3();

var uvA = new Vector2(); var uvB = new Vector2(); var uvC = new Vector2();

var intersectionPoint = new Vector3(); var intersectionPointWorld = new Vector3();

function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) {

var intersect;

if ( material.side === BackSide ) {

intersect = ray.intersectTriangle( pC, pB, pA, true, point );

} else {

intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point );

}

if ( intersect === null ) return null;

intersectionPointWorld.copy( point ); intersectionPointWorld.applyMatrix4( object.matrixWorld );

var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld );

if ( distance < raycaster.near || distance > raycaster.far ) return null;

return { distance: distance, point: intersectionPointWorld.clone(), object: object };

}

function checkBufferGeometryIntersection( object, material, raycaster, ray, position, uv, a, b, c ) {

vA.fromBufferAttribute( position, a ); vB.fromBufferAttribute( position, b ); vC.fromBufferAttribute( position, c );

var intersection = checkIntersection( object, material, raycaster, ray, vA, vB, vC, intersectionPoint );

if ( intersection ) {

if ( uv ) {

uvA.fromBufferAttribute( uv, a ); uvB.fromBufferAttribute( uv, b ); uvC.fromBufferAttribute( uv, c );

intersection.uv = Triangle.getUV( intersectionPoint, vA, vB, vC, uvA, uvB, uvC, new Vector2() );

}

var face = new Face3( a, b, c ); Triangle.getNormal( vA, vB, vC, face.normal );

intersection.face = face;

}

return intersection;

}

return function raycast( raycaster, intersects ) {

var geometry = this.geometry; var material = this.material; var matrixWorld = this.matrixWorld;

if ( material === undefined ) return;

// Checking boundingSphere distance to ray

if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld );

if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;

//

inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );

// Check boundingBox before continuing

if ( geometry.boundingBox !== null ) {

if ( ray.intersectsBox( geometry.boundingBox ) === false ) return;

}

var intersection;

if ( geometry.isBufferGeometry ) {

var a, b, c; var index = geometry.index; var position = geometry.attributes.position; var uv = geometry.attributes.uv; var groups = geometry.groups; var drawRange = geometry.drawRange; var i, j, il, jl; var group, groupMaterial; var start, end;

if ( index !== null ) {

// indexed buffer geometry

if ( Array.isArray( material ) ) {

for ( i = 0, il = groups.length; i < il; i ++ ) {

group = groups[ i ]; groupMaterial = material[ group.materialIndex ];

start = Math.max( group.start, drawRange.start ); end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );

for ( j = start, jl = end; j < jl; j += 3 ) {

a = index.getX( j ); b = index.getX( j + 1 ); c = index.getX( j + 2 );

intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, ray, position, uv, a, b, c );

if ( intersection ) {

intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics intersects.push( intersection );

}

}

}

} else {

start = Math.max( 0, drawRange.start ); end = Math.min( index.count, ( drawRange.start + drawRange.count ) );

for ( i = start, il = end; i < il; i += 3 ) {

a = index.getX( i ); b = index.getX( i + 1 ); c = index.getX( i + 2 );

intersection = checkBufferGeometryIntersection( this, material, raycaster, ray, position, uv, a, b, c );

if ( intersection ) {

intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics intersects.push( intersection );

}

}

}

} else if ( position !== undefined ) {

// non-indexed buffer geometry

if ( Array.isArray( material ) ) {

for ( i = 0, il = groups.length; i < il; i ++ ) {

group = groups[ i ]; groupMaterial = material[ group.materialIndex ];

start = Math.max( group.start, drawRange.start ); end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );

for ( j = start, jl = end; j < jl; j += 3 ) {

a = j; b = j + 1; c = j + 2;

intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, ray, position, uv, a, b, c );

if ( intersection ) {

intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics intersects.push( intersection );

}

}

}

} else {

start = Math.max( 0, drawRange.start ); end = Math.min( position.count, ( drawRange.start + drawRange.count ) );

for ( i = start, il = end; i < il; i += 3 ) {

a = i; b = i + 1; c = i + 2;

intersection = checkBufferGeometryIntersection( this, material, raycaster, ray, position, uv, a, b, c );

if ( intersection ) {

intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics intersects.push( intersection );

}

}

}

}

} else if ( geometry.isGeometry ) {

var fvA, fvB, fvC; var isMultiMaterial = Array.isArray( material );

var vertices = geometry.vertices; var faces = geometry.faces; var uvs;

var faceVertexUvs = geometry.faceVertexUvs[ 0 ]; if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs;

for ( var f = 0, fl = faces.length; f < fl; f ++ ) {

var face = faces[ f ]; var faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material;

if ( faceMaterial === undefined ) continue;

fvA = vertices[ face.a ]; fvB = vertices[ face.b ]; fvC = vertices[ face.c ];

if ( faceMaterial.morphTargets === true ) {

var morphTargets = geometry.morphTargets; var morphInfluences = this.morphTargetInfluences;

vA.set( 0, 0, 0 ); vB.set( 0, 0, 0 ); vC.set( 0, 0, 0 );

for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) {

var influence = morphInfluences[ t ];

if ( influence === 0 ) continue;

var targets = morphTargets[ t ].vertices;

vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence ); vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence ); vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence );

}

vA.add( fvA ); vB.add( fvB ); vC.add( fvC );

fvA = vA; fvB = vB; fvC = vC;

}

intersection = checkIntersection( this, faceMaterial, raycaster, ray, fvA, fvB, fvC, intersectionPoint );

if ( intersection ) {

if ( uvs && uvs[ f ] ) {

var uvs_f = uvs[ f ]; uvA.copy( uvs_f[ 0 ] ); uvB.copy( uvs_f[ 1 ] ); uvC.copy( uvs_f[ 2 ] );

intersection.uv = Triangle.getUV( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC, new Vector2() );

}

intersection.face = face; intersection.faceIndex = f; intersects.push( intersection );

}

}

}

};

}() ),

clone: function () {

return new this.constructor( this.geometry, this.material ).copy( this );

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLBackground( renderer, state, objects, premultipliedAlpha ) {

var clearColor = new Color( 0x000000 ); var clearAlpha = 0;

var planeMesh; var boxMesh;

function render( renderList, scene, camera, forceClear ) {

var background = scene.background;

if ( background === null ) {

setClear( clearColor, clearAlpha );

} else if ( background && background.isColor ) {

setClear( background, 1 ); forceClear = true;

}

if ( renderer.autoClear || forceClear ) {

renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil );

}

if ( background && background.isCubeTexture ) {

if ( boxMesh === undefined ) {

boxMesh = new Mesh( new BoxBufferGeometry( 1, 1, 1 ), new ShaderMaterial( { uniforms: UniformsUtils.clone( ShaderLib.cube.uniforms ), vertexShader: ShaderLib.cube.vertexShader, fragmentShader: ShaderLib.cube.fragmentShader, side: BackSide, depthTest: true, depthWrite: false, fog: false } ) );

boxMesh.geometry.removeAttribute( 'normal' ); boxMesh.geometry.removeAttribute( 'uv' );

boxMesh.onBeforeRender = function ( renderer, scene, camera ) {

this.matrixWorld.copyPosition( camera.matrixWorld );

};

objects.update( boxMesh );

}

boxMesh.material.uniforms.tCube.value = background;

renderList.push( boxMesh, boxMesh.geometry, boxMesh.material, 0, null );

} else if ( background && background.isTexture ) {

if ( planeMesh === undefined ) {

planeMesh = new Mesh( new PlaneBufferGeometry( 2, 2 ), new ShaderMaterial( { uniforms: UniformsUtils.clone( ShaderLib.background.uniforms ), vertexShader: ShaderLib.background.vertexShader, fragmentShader: ShaderLib.background.fragmentShader, side: FrontSide, depthTest: true, depthWrite: false, fog: false } ) );

planeMesh.geometry.removeAttribute( 'normal' );

objects.update( planeMesh );

}

planeMesh.material.uniforms.t2D.value = background;

renderList.push( planeMesh, planeMesh.geometry, planeMesh.material, 0, null );

}

}

function setClear( color, alpha ) {

state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha );

}

return {

getClearColor: function () {

return clearColor;

}, setClearColor: function ( color, alpha ) {

clearColor.set( color ); clearAlpha = alpha !== undefined ? alpha : 1; setClear( clearColor, clearAlpha );

}, getClearAlpha: function () {

return clearAlpha;

}, setClearAlpha: function ( alpha ) {

clearAlpha = alpha; setClear( clearColor, clearAlpha );

}, render: render

};

}

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLBufferRenderer( gl, extensions, info, capabilities ) {

var mode;

function setMode( value ) {

mode = value;

}

function render( start, count ) {

gl.drawArrays( mode, start, count );

info.update( count, mode );

}

function renderInstances( geometry, start, count ) {

var extension;

if ( capabilities.isWebGL2 ) {

extension = gl;

} else {

extension = extensions.get( 'ANGLE_instanced_arrays' );

if ( extension === null ) {

console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return;

}

}

extension[ capabilities.isWebGL2 ? 'drawArraysInstanced' : 'drawArraysInstancedANGLE' ]( mode, start, count, geometry.maxInstancedCount );

info.update( count, mode, geometry.maxInstancedCount );

}

//

this.setMode = setMode; this.render = render; this.renderInstances = renderInstances;

}

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLCapabilities( gl, extensions, parameters ) {

var maxAnisotropy;

function getMaxAnisotropy() {

if ( maxAnisotropy !== undefined ) return maxAnisotropy;

var extension = extensions.get( 'EXT_texture_filter_anisotropic' );

if ( extension !== null ) {

maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );

} else {

maxAnisotropy = 0;

}

return maxAnisotropy;

}

function getMaxPrecision( precision ) {

if ( precision === 'highp' ) {

if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) {

return 'highp';

}

precision = 'mediump';

}

if ( precision === 'mediump' ) {

if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) {

return 'mediump';

}

}

return 'lowp';

}

var isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext;

var precision = parameters.precision !== undefined ? parameters.precision : 'highp'; var maxPrecision = getMaxPrecision( precision );

if ( maxPrecision !== precision ) {

console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' ); precision = maxPrecision;

}

var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;

var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS ); var maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ); var maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE ); var maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE );

var maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); var maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS ); var maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS ); var maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS );

var vertexTextures = maxVertexTextures > 0; var floatFragmentTextures = isWebGL2 || !! extensions.get( 'OES_texture_float' ); var floatVertexTextures = vertexTextures && floatFragmentTextures;

return {

isWebGL2: isWebGL2,

getMaxAnisotropy: getMaxAnisotropy, getMaxPrecision: getMaxPrecision,

precision: precision, logarithmicDepthBuffer: logarithmicDepthBuffer,

maxTextures: maxTextures, maxVertexTextures: maxVertexTextures, maxTextureSize: maxTextureSize, maxCubemapSize: maxCubemapSize,

maxAttributes: maxAttributes, maxVertexUniforms: maxVertexUniforms, maxVaryings: maxVaryings, maxFragmentUniforms: maxFragmentUniforms,

vertexTextures: vertexTextures, floatFragmentTextures: floatFragmentTextures, floatVertexTextures: floatVertexTextures

};

}

/** * @author tschw */

function WebGLClipping() {

var scope = this,

globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false,

plane = new Plane(), viewNormalMatrix = new Matrix3(),

uniform = { value: null, needsUpdate: false };

this.uniform = uniform; this.numPlanes = 0; this.numIntersection = 0;

this.init = function ( planes, enableLocalClipping, camera ) {

var enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled;

localClippingEnabled = enableLocalClipping;

globalState = projectPlanes( planes, camera, 0 ); numGlobalPlanes = planes.length;

return enabled;

};

this.beginShadows = function () {

renderingShadows = true; projectPlanes( null );

};

this.endShadows = function () {

renderingShadows = false; resetGlobalState();

};

this.setState = function ( planes, clipIntersection, clipShadows, camera, cache, fromCache ) {

if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) {

// there's no local clipping

if ( renderingShadows ) {

// there's no global clipping

projectPlanes( null );

} else {

resetGlobalState();

}

} else {

var nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4,

dstArray = cache.clippingState || null;

uniform.value = dstArray; // ensure unique state

dstArray = projectPlanes( planes, camera, lGlobal, fromCache );

for ( var i = 0; i !== lGlobal; ++ i ) {

dstArray[ i ] = globalState[ i ];

}

cache.clippingState = dstArray; this.numIntersection = clipIntersection ? this.numPlanes : 0; this.numPlanes += nGlobal;

}


};

function resetGlobalState() {

if ( uniform.value !== globalState ) {

uniform.value = globalState; uniform.needsUpdate = numGlobalPlanes > 0;

}

scope.numPlanes = numGlobalPlanes; scope.numIntersection = 0;

}

function projectPlanes( planes, camera, dstOffset, skipTransform ) {

var nPlanes = planes !== null ? planes.length : 0, dstArray = null;

if ( nPlanes !== 0 ) {

dstArray = uniform.value;

if ( skipTransform !== true || dstArray === null ) {

var flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse;

viewNormalMatrix.getNormalMatrix( viewMatrix );

if ( dstArray === null || dstArray.length < flatSize ) {

dstArray = new Float32Array( flatSize );

}

for ( var i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) {

plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix );

plane.normal.toArray( dstArray, i4 ); dstArray[ i4 + 3 ] = plane.constant;

}

}

uniform.value = dstArray; uniform.needsUpdate = true;

}

scope.numPlanes = nPlanes;

return dstArray;

}

}

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLExtensions( gl ) {

var extensions = {};

return {

get: function ( name ) {

if ( extensions[ name ] !== undefined ) {

return extensions[ name ];

}

var extension;

switch ( name ) {

case 'WEBGL_depth_texture': extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' ); break;

case 'EXT_texture_filter_anisotropic': extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); break;

case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); break;

case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); break;

default: extension = gl.getExtension( name );

}

if ( extension === null ) {

console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );

}

extensions[ name ] = extension;

return extension;

}

};

}

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLGeometries( gl, attributes, info ) {

var geometries = {}; var wireframeAttributes = {};

function onGeometryDispose( event ) {

var geometry = event.target; var buffergeometry = geometries[ geometry.id ];

if ( buffergeometry.index !== null ) {

attributes.remove( buffergeometry.index );

}

for ( var name in buffergeometry.attributes ) {

attributes.remove( buffergeometry.attributes[ name ] );

}

geometry.removeEventListener( 'dispose', onGeometryDispose );

delete geometries[ geometry.id ];

var attribute = wireframeAttributes[ buffergeometry.id ];

if ( attribute ) {

attributes.remove( attribute ); delete wireframeAttributes[ buffergeometry.id ];

}

//

info.memory.geometries --;

}

function get( object, geometry ) {

var buffergeometry = geometries[ geometry.id ];

if ( buffergeometry ) return buffergeometry;

geometry.addEventListener( 'dispose', onGeometryDispose );

if ( geometry.isBufferGeometry ) {

buffergeometry = geometry;

} else if ( geometry.isGeometry ) {

if ( geometry._bufferGeometry === undefined ) {

geometry._bufferGeometry = new BufferGeometry().setFromObject( object );

}

buffergeometry = geometry._bufferGeometry;

}

geometries[ geometry.id ] = buffergeometry;

info.memory.geometries ++;

return buffergeometry;

}

function update( geometry ) {

var index = geometry.index; var geometryAttributes = geometry.attributes;

if ( index !== null ) {

attributes.update( index, gl.ELEMENT_ARRAY_BUFFER );

}

for ( var name in geometryAttributes ) {

attributes.update( geometryAttributes[ name ], gl.ARRAY_BUFFER );

}

// morph targets

var morphAttributes = geometry.morphAttributes;

for ( var name in morphAttributes ) {

var array = morphAttributes[ name ];

for ( var i = 0, l = array.length; i < l; i ++ ) {

attributes.update( array[ i ], gl.ARRAY_BUFFER );

}

}

}

function getWireframeAttribute( geometry ) {

var attribute = wireframeAttributes[ geometry.id ];

if ( attribute ) return attribute;

var indices = [];

var geometryIndex = geometry.index; var geometryAttributes = geometry.attributes;

// console.time( 'wireframe' );

if ( geometryIndex !== null ) {

var array = geometryIndex.array;

for ( var i = 0, l = array.length; i < l; i += 3 ) {

var a = array[ i + 0 ]; var b = array[ i + 1 ]; var c = array[ i + 2 ];

indices.push( a, b, b, c, c, a );

}

} else {

var array = geometryAttributes.position.array;

for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) {

var a = i + 0; var b = i + 1; var c = i + 2;

indices.push( a, b, b, c, c, a );

}

}

// console.timeEnd( 'wireframe' );

attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 );

attributes.update( attribute, gl.ELEMENT_ARRAY_BUFFER );

wireframeAttributes[ geometry.id ] = attribute;

return attribute;

}

return {

get: get, update: update,

getWireframeAttribute: getWireframeAttribute

};

}

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLIndexedBufferRenderer( gl, extensions, info, capabilities ) {

var mode;

function setMode( value ) {

mode = value;

}

var type, bytesPerElement;

function setIndex( value ) {

type = value.type; bytesPerElement = value.bytesPerElement;

}

function render( start, count ) {

gl.drawElements( mode, count, type, start * bytesPerElement );

info.update( count, mode );

}

function renderInstances( geometry, start, count ) {

var extension;

if ( capabilities.isWebGL2 ) {

extension = gl;

} else {

var extension = extensions.get( 'ANGLE_instanced_arrays' );

if ( extension === null ) {

console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return;

}

}

extension[ capabilities.isWebGL2 ? 'drawElementsInstanced' : 'drawElementsInstancedANGLE' ]( mode, count, type, start * bytesPerElement, geometry.maxInstancedCount );

info.update( count, mode, geometry.maxInstancedCount );

}

//

this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances;

}

/** * @author Mugen87 / https://github.com/Mugen87 */

function WebGLInfo( gl ) {

var memory = { geometries: 0, textures: 0 };

var render = { frame: 0, calls: 0, triangles: 0, points: 0, lines: 0 };

function update( count, mode, instanceCount ) {

instanceCount = instanceCount || 1;

render.calls ++;

switch ( mode ) {

case gl.TRIANGLES: render.triangles += instanceCount * ( count / 3 ); break;

case gl.TRIANGLE_STRIP: case gl.TRIANGLE_FAN: render.triangles += instanceCount * ( count - 2 ); break;

case gl.LINES: render.lines += instanceCount * ( count / 2 ); break;

case gl.LINE_STRIP: render.lines += instanceCount * ( count - 1 ); break;

case gl.LINE_LOOP: render.lines += instanceCount * count; break;

case gl.POINTS: render.points += instanceCount * count; break;

default: console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode ); break;

}

}

function reset() {

render.frame ++; render.calls = 0; render.triangles = 0; render.points = 0; render.lines = 0;

}

return { memory: memory, render: render, programs: null, autoReset: true, reset: reset, update: update };

}

/** * @author mrdoob / http://mrdoob.com/ */

function absNumericalSort( a, b ) {

return Math.abs( b[ 1 ] ) - Math.abs( a[ 1 ] );

}

function WebGLMorphtargets( gl ) {

var influencesList = {}; var morphInfluences = new Float32Array( 8 );

function update( object, geometry, material, program ) {

var objectInfluences = object.morphTargetInfluences;

var length = objectInfluences.length;

var influences = influencesList[ geometry.id ];

if ( influences === undefined ) {

// initialise list

influences = [];

for ( var i = 0; i < length; i ++ ) {

influences[ i ] = [ i, 0 ];

}

influencesList[ geometry.id ] = influences;

}

var morphTargets = material.morphTargets && geometry.morphAttributes.position; var morphNormals = material.morphNormals && geometry.morphAttributes.normal;

// Remove current morphAttributes

for ( var i = 0; i < length; i ++ ) {

var influence = influences[ i ];

if ( influence[ 1 ] !== 0 ) {

if ( morphTargets ) geometry.removeAttribute( 'morphTarget' + i ); if ( morphNormals ) geometry.removeAttribute( 'morphNormal' + i );

}

}

// Collect influences

for ( var i = 0; i < length; i ++ ) {

var influence = influences[ i ];

influence[ 0 ] = i; influence[ 1 ] = objectInfluences[ i ];

}

influences.sort( absNumericalSort );

// Add morphAttributes

for ( var i = 0; i < 8; i ++ ) {

var influence = influences[ i ];

if ( influence ) {

var index = influence[ 0 ]; var value = influence[ 1 ];

if ( value ) {

if ( morphTargets ) geometry.addAttribute( 'morphTarget' + i, morphTargets[ index ] ); if ( morphNormals ) geometry.addAttribute( 'morphNormal' + i, morphNormals[ index ] );

morphInfluences[ i ] = value; continue;

}

}

morphInfluences[ i ] = 0;

}

program.getUniforms().setValue( gl, 'morphTargetInfluences', morphInfluences );

}

return {

update: update

};

}

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLObjects( geometries, info ) {

var updateList = {};

function update( object ) {

var frame = info.render.frame;

var geometry = object.geometry; var buffergeometry = geometries.get( object, geometry );

// Update once per frame

if ( updateList[ buffergeometry.id ] !== frame ) {

if ( geometry.isGeometry ) {

buffergeometry.updateFromObject( object );

}

geometries.update( buffergeometry );

updateList[ buffergeometry.id ] = frame;

}

return buffergeometry;

}

function dispose() {

updateList = {};

}

return {

update: update, dispose: dispose

};

}

/** * @author mrdoob / http://mrdoob.com/ */

function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {

images = images !== undefined ? images : []; mapping = mapping !== undefined ? mapping : CubeReflectionMapping;

Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

this.flipY = false;

}

CubeTexture.prototype = Object.create( Texture.prototype ); CubeTexture.prototype.constructor = CubeTexture;

CubeTexture.prototype.isCubeTexture = true;

Object.defineProperty( CubeTexture.prototype, 'images', {

get: function () {

return this.image;

},

set: function ( value ) {

this.image = value;

}

} );

/** * @author Artur Trzesiok */

function DataTexture3D( data, width, height, depth ) {

// We're going to add .setXXX() methods for setting properties later. // Users can still set in DataTexture3D directly. // // var texture = new THREE.DataTexture3D( data, width, height, depth ); // texture.anisotropy = 16; // // See #14839

Texture.call( this, null );

this.image = { data: data, width: width, height: height, depth: depth };

this.magFilter = NearestFilter; this.minFilter = NearestFilter;

this.generateMipmaps = false; this.flipY = false;

}

DataTexture3D.prototype = Object.create( Texture.prototype ); DataTexture3D.prototype.constructor = DataTexture3D; DataTexture3D.prototype.isDataTexture3D = true;

/** * @author tschw * @author Mugen87 / https://github.com/Mugen87 * @author mrdoob / http://mrdoob.com/ * * Uniforms of a program. * Those form a tree structure with a special top-level container for the root, * which you get by calling 'new WebGLUniforms( gl, program, renderer )'. * * * Properties of inner nodes including the top-level container: * * .seq - array of nested uniforms * .map - nested uniforms by name * * * Methods of all nodes except the top-level container: * * .setValue( gl, value, [renderer] ) * * uploads a uniform value(s) * the 'renderer' parameter is needed for sampler uniforms * * * Static methods of the top-level container (renderer factorizations): * * .upload( gl, seq, values, renderer ) * * sets uniforms in 'seq' to 'values[id].value' * * .seqWithValue( seq, values ) : filteredSeq * * filters 'seq' entries with corresponding entry in values * * * Methods of the top-level container (renderer factorizations): * * .setValue( gl, name, value ) * * sets uniform with name 'name' to 'value' * * .set( gl, obj, prop ) * * sets uniform from object and property with same name than uniform * * .setOptional( gl, obj, prop ) * * like .set for an optional property of the object * */

var emptyTexture = new Texture(); var emptyTexture3d = new DataTexture3D(); var emptyCubeTexture = new CubeTexture();

// --- Base for inner nodes (including the root) ---

function UniformContainer() {

this.seq = []; this.map = {};

}

// --- Utilities ---

// Array Caches (provide typed arrays for temporary by size)

var arrayCacheF32 = []; var arrayCacheI32 = [];

// Float32Array caches used for uploading Matrix uniforms

var mat4array = new Float32Array( 16 ); var mat3array = new Float32Array( 9 ); var mat2array = new Float32Array( 4 );

// Flattening for arrays of vectors and matrices

function flatten( array, nBlocks, blockSize ) {

var firstElem = array[ 0 ];

if ( firstElem <= 0 || firstElem > 0 ) return array; // unoptimized: ! isNaN( firstElem ) // see http://jacksondunstan.com/articles/983

var n = nBlocks * blockSize, r = arrayCacheF32[ n ];

if ( r === undefined ) {

r = new Float32Array( n ); arrayCacheF32[ n ] = r;

}

if ( nBlocks !== 0 ) {

firstElem.toArray( r, 0 );

for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) {

offset += blockSize; array[ i ].toArray( r, offset );

}

}

return r;

}

function arraysEqual( a, b ) {

if ( a.length !== b.length ) return false;

for ( var i = 0, l = a.length; i < l; i ++ ) {

if ( a[ i ] !== b[ i ] ) return false;

}

return true;

}

function copyArray( a, b ) {

for ( var i = 0, l = b.length; i < l; i ++ ) {

a[ i ] = b[ i ];

}

}

// Texture unit allocation

function allocTexUnits( renderer, n ) {

var r = arrayCacheI32[ n ];

if ( r === undefined ) {

r = new Int32Array( n ); arrayCacheI32[ n ] = r;

}

for ( var i = 0; i !== n; ++ i ) r[ i ] = renderer.allocTextureUnit();

return r;

}

// --- Setters ---

// Note: Defining these methods externally, because they come in a bunch // and this way their names minify.

// Single scalar

function setValue1f( gl, v ) {

var cache = this.cache;

if ( cache[ 0 ] === v ) return;

gl.uniform1f( this.addr, v );

cache[ 0 ] = v;

}

function setValue1i( gl, v ) {

var cache = this.cache;

if ( cache[ 0 ] === v ) return;

gl.uniform1i( this.addr, v );

cache[ 0 ] = v;

}

// Single float vector (from flat array or THREE.VectorN)

function setValue2fv( gl, v ) {

var cache = this.cache;

if ( v.x !== undefined ) {

if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) {

gl.uniform2f( this.addr, v.x, v.y );

cache[ 0 ] = v.x; cache[ 1 ] = v.y;

}

} else {

if ( arraysEqual( cache, v ) ) return;

gl.uniform2fv( this.addr, v );

copyArray( cache, v );

}

}

function setValue3fv( gl, v ) {

var cache = this.cache;

if ( v.x !== undefined ) {

if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) {

gl.uniform3f( this.addr, v.x, v.y, v.z );

cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z;

}

} else if ( v.r !== undefined ) {

if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) {

gl.uniform3f( this.addr, v.r, v.g, v.b );

cache[ 0 ] = v.r; cache[ 1 ] = v.g; cache[ 2 ] = v.b;

}

} else {

if ( arraysEqual( cache, v ) ) return;

gl.uniform3fv( this.addr, v );

copyArray( cache, v );

}

}

function setValue4fv( gl, v ) {

var cache = this.cache;

if ( v.x !== undefined ) {

if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) {

gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );

cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; cache[ 3 ] = v.w;

}

} else {

if ( arraysEqual( cache, v ) ) return;

gl.uniform4fv( this.addr, v );

copyArray( cache, v );

}

}

// Single matrix (from flat array or MatrixN)

function setValue2fm( gl, v ) {

var cache = this.cache; var elements = v.elements;

if ( elements === undefined ) {

if ( arraysEqual( cache, v ) ) return;

gl.uniformMatrix2fv( this.addr, false, v );

copyArray( cache, v );

} else {

if ( arraysEqual( cache, elements ) ) return;

mat2array.set( elements );

gl.uniformMatrix2fv( this.addr, false, mat2array );

copyArray( cache, elements );

}

}

function setValue3fm( gl, v ) {

var cache = this.cache; var elements = v.elements;

if ( elements === undefined ) {

if ( arraysEqual( cache, v ) ) return;

gl.uniformMatrix3fv( this.addr, false, v );

copyArray( cache, v );

} else {

if ( arraysEqual( cache, elements ) ) return;

mat3array.set( elements );

gl.uniformMatrix3fv( this.addr, false, mat3array );

copyArray( cache, elements );

}

}

function setValue4fm( gl, v ) {

var cache = this.cache; var elements = v.elements;

if ( elements === undefined ) {

if ( arraysEqual( cache, v ) ) return;

gl.uniformMatrix4fv( this.addr, false, v );

copyArray( cache, v );

} else {

if ( arraysEqual( cache, elements ) ) return;

mat4array.set( elements );

gl.uniformMatrix4fv( this.addr, false, mat4array );

copyArray( cache, elements );

}

}

// Single texture (2D / Cube)

function setValueT1( gl, v, renderer ) {

var cache = this.cache; var unit = renderer.allocTextureUnit();

if ( cache[ 0 ] !== unit ) {

gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit;

}

renderer.setTexture2D( v || emptyTexture, unit );

}

function setValueT3D1( gl, v, renderer ) {

var cache = this.cache; var unit = renderer.allocTextureUnit();

if ( cache[ 0 ] !== unit ) {

gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit;

}

renderer.setTexture3D( v || emptyTexture3d, unit );

}

function setValueT6( gl, v, renderer ) {

var cache = this.cache; var unit = renderer.allocTextureUnit();

if ( cache[ 0 ] !== unit ) {

gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit;

}

renderer.setTextureCube( v || emptyCubeTexture, unit );

}

// Integer / Boolean vectors or arrays thereof (always flat arrays)

function setValue2iv( gl, v ) {

var cache = this.cache;

if ( arraysEqual( cache, v ) ) return;

gl.uniform2iv( this.addr, v );

copyArray( cache, v );

}

function setValue3iv( gl, v ) {

var cache = this.cache;

if ( arraysEqual( cache, v ) ) return;

gl.uniform3iv( this.addr, v );

copyArray( cache, v );

}

function setValue4iv( gl, v ) {

var cache = this.cache;

if ( arraysEqual( cache, v ) ) return;

gl.uniform4iv( this.addr, v );

copyArray( cache, v );

}

// Helper to pick the right setter for the singular case

function getSingularSetter( type ) {

switch ( type ) {

case 0x1406: return setValue1f; // FLOAT case 0x8b50: return setValue2fv; // _VEC2 case 0x8b51: return setValue3fv; // _VEC3 case 0x8b52: return setValue4fv; // _VEC4

case 0x8b5a: return setValue2fm; // _MAT2 case 0x8b5b: return setValue3fm; // _MAT3 case 0x8b5c: return setValue4fm; // _MAT4

case 0x8b5e: case 0x8d66: return setValueT1; // SAMPLER_2D, SAMPLER_EXTERNAL_OES case 0x8B5F: return setValueT3D1; // SAMPLER_3D case 0x8b60: return setValueT6; // SAMPLER_CUBE

case 0x1404: case 0x8b56: return setValue1i; // INT, BOOL case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2 case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3 case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4

}

}

// Array of scalars

function setValue1fv( gl, v ) {

var cache = this.cache;

if ( arraysEqual( cache, v ) ) return;

gl.uniform1fv( this.addr, v );

copyArray( cache, v );

} function setValue1iv( gl, v ) {

var cache = this.cache;

if ( arraysEqual( cache, v ) ) return;

gl.uniform1iv( this.addr, v );

copyArray( cache, v );

}

// Array of vectors (flat or from THREE classes)

function setValueV2a( gl, v ) {

var cache = this.cache; var data = flatten( v, this.size, 2 );

if ( arraysEqual( cache, data ) ) return;

gl.uniform2fv( this.addr, data );

this.updateCache( data );

}

function setValueV3a( gl, v ) {

var cache = this.cache; var data = flatten( v, this.size, 3 );

if ( arraysEqual( cache, data ) ) return;

gl.uniform3fv( this.addr, data );

this.updateCache( data );

}

function setValueV4a( gl, v ) {

var cache = this.cache; var data = flatten( v, this.size, 4 );

if ( arraysEqual( cache, data ) ) return;

gl.uniform4fv( this.addr, data );

this.updateCache( data );

}

// Array of matrices (flat or from THREE clases)

function setValueM2a( gl, v ) {

var cache = this.cache; var data = flatten( v, this.size, 4 );

if ( arraysEqual( cache, data ) ) return;

gl.uniformMatrix2fv( this.addr, false, data );

this.updateCache( data );

}

function setValueM3a( gl, v ) {

var cache = this.cache; var data = flatten( v, this.size, 9 );

if ( arraysEqual( cache, data ) ) return;

gl.uniformMatrix3fv( this.addr, false, data );

this.updateCache( data );

}

function setValueM4a( gl, v ) {

var cache = this.cache; var data = flatten( v, this.size, 16 );

if ( arraysEqual( cache, data ) ) return;

gl.uniformMatrix4fv( this.addr, false, data );

this.updateCache( data );

}

// Array of textures (2D / Cube)

function setValueT1a( gl, v, renderer ) {

var cache = this.cache; var n = v.length;

var units = allocTexUnits( renderer, n );

if ( arraysEqual( cache, units ) === false ) {

gl.uniform1iv( this.addr, units ); copyArray( cache, units );

}

for ( var i = 0; i !== n; ++ i ) {

renderer.setTexture2D( v[ i ] || emptyTexture, units[ i ] );

}

}

function setValueT6a( gl, v, renderer ) {

var cache = this.cache; var n = v.length;

var units = allocTexUnits( renderer, n );

if ( arraysEqual( cache, units ) === false ) {

gl.uniform1iv( this.addr, units ); copyArray( cache, units );

}

for ( var i = 0; i !== n; ++ i ) {

renderer.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] );

}

}

// Helper to pick the right setter for a pure (bottom-level) array

function getPureArraySetter( type ) {

switch ( type ) {

case 0x1406: return setValue1fv; // FLOAT case 0x8b50: return setValueV2a; // _VEC2 case 0x8b51: return setValueV3a; // _VEC3 case 0x8b52: return setValueV4a; // _VEC4

case 0x8b5a: return setValueM2a; // _MAT2 case 0x8b5b: return setValueM3a; // _MAT3 case 0x8b5c: return setValueM4a; // _MAT4

case 0x8b5e: return setValueT1a; // SAMPLER_2D case 0x8b60: return setValueT6a; // SAMPLER_CUBE

case 0x1404: case 0x8b56: return setValue1iv; // INT, BOOL case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2 case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3 case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4

}

}

// --- Uniform Classes ---

function SingleUniform( id, activeInfo, addr ) {

this.id = id; this.addr = addr; this.cache = []; this.setValue = getSingularSetter( activeInfo.type );

// this.path = activeInfo.name; // DEBUG

}

function PureArrayUniform( id, activeInfo, addr ) {

this.id = id; this.addr = addr; this.cache = []; this.size = activeInfo.size; this.setValue = getPureArraySetter( activeInfo.type );

// this.path = activeInfo.name; // DEBUG

}

PureArrayUniform.prototype.updateCache = function ( data ) {

var cache = this.cache;

if ( data instanceof Float32Array && cache.length !== data.length ) {

this.cache = new Float32Array( data.length );

}

copyArray( cache, data );

};

function StructuredUniform( id ) {

this.id = id;

UniformContainer.call( this ); // mix-in

}

StructuredUniform.prototype.setValue = function ( gl, value, renderer ) {

var seq = this.seq;

for ( var i = 0, n = seq.length; i !== n; ++ i ) {

var u = seq[ i ]; u.setValue( gl, value[ u.id ], renderer );

}

};

// --- Top-level ---

// Parser - builds up the property tree from the path strings

var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g;

// extracts // - the identifier (member name or array index) // - followed by an optional right bracket (found when array index) // - followed by an optional left bracket or dot (type of subscript) // // Note: These portions can be read in a non-overlapping fashion and // allow straightforward parsing of the hierarchy that WebGL encodes // in the uniform names.

function addUniform( container, uniformObject ) {

container.seq.push( uniformObject ); container.map[ uniformObject.id ] = uniformObject;

}

function parseUniform( activeInfo, addr, container ) {

var path = activeInfo.name, pathLength = path.length;

// reset RegExp object, because of the early exit of a previous run RePathPart.lastIndex = 0;

while ( true ) {

var match = RePathPart.exec( path ), matchEnd = RePathPart.lastIndex,

id = match[ 1 ], idIsIndex = match[ 2 ] === ']', subscript = match[ 3 ];

if ( idIsIndex ) id = id | 0; // convert to integer

if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) {

// bare name or "pure" bottom-level array "[0]" suffix

addUniform( container, subscript === undefined ? new SingleUniform( id, activeInfo, addr ) : new PureArrayUniform( id, activeInfo, addr ) );

break;

} else {

// step into inner node / create it in case it doesn't exist

var map = container.map, next = map[ id ];

if ( next === undefined ) {

next = new StructuredUniform( id ); addUniform( container, next );

}

container = next;

}

}

}

// Root Container

function WebGLUniforms( gl, program, renderer ) {

UniformContainer.call( this );

this.renderer = renderer;

var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS );

for ( var i = 0; i < n; ++ i ) {

var info = gl.getActiveUniform( program, i ), addr = gl.getUniformLocation( program, info.name );

parseUniform( info, addr, this );

}

}

WebGLUniforms.prototype.setValue = function ( gl, name, value ) {

var u = this.map[ name ];

if ( u !== undefined ) u.setValue( gl, value, this.renderer );

};

WebGLUniforms.prototype.setOptional = function ( gl, object, name ) {

var v = object[ name ];

if ( v !== undefined ) this.setValue( gl, name, v );

};


// Static interface

WebGLUniforms.upload = function ( gl, seq, values, renderer ) {

for ( var i = 0, n = seq.length; i !== n; ++ i ) {

var u = seq[ i ], v = values[ u.id ];

if ( v.needsUpdate !== false ) {

// note: always updating when .needsUpdate is undefined u.setValue( gl, v.value, renderer );

}

}

};

WebGLUniforms.seqWithValue = function ( seq, values ) {

var r = [];

for ( var i = 0, n = seq.length; i !== n; ++ i ) {

var u = seq[ i ]; if ( u.id in values ) r.push( u );

}

return r;

};

/** * @author mrdoob / http://mrdoob.com/ */

function addLineNumbers( string ) {

var lines = string.split( '\n' );

for ( var i = 0; i < lines.length; i ++ ) {

lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];

}

return lines.join( '\n' );

}

function WebGLShader( gl, type, string ) {

var shader = gl.createShader( type );

gl.shaderSource( shader, string ); gl.compileShader( shader );

if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) {

console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' );

}

if ( gl.getShaderInfoLog( shader ) !== ) {

console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) );

}

// --enable-privileged-webgl-extension // console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );

return shader;

}

/** * @author mrdoob / http://mrdoob.com/ */

var programIdCount = 0;

function getEncodingComponents( encoding ) {

switch ( encoding ) {

case LinearEncoding: return [ 'Linear', '( value )' ]; case sRGBEncoding: return [ 'sRGB', '( value )' ]; case RGBEEncoding: return [ 'RGBE', '( value )' ]; case RGBM7Encoding: return [ 'RGBM', '( value, 7.0 )' ]; case RGBM16Encoding: return [ 'RGBM', '( value, 16.0 )' ]; case RGBDEncoding: return [ 'RGBD', '( value, 256.0 )' ]; case GammaEncoding: return [ 'Gamma', '( value, float( GAMMA_FACTOR ) )' ]; default: throw new Error( 'unsupported encoding: ' + encoding );

}

}

function getTexelDecodingFunction( functionName, encoding ) {

var components = getEncodingComponents( encoding ); return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[ 0 ] + 'ToLinear' + components[ 1 ] + '; }';

}

function getTexelEncodingFunction( functionName, encoding ) {

var components = getEncodingComponents( encoding ); return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[ 0 ] + components[ 1 ] + '; }';

}

function getToneMappingFunction( functionName, toneMapping ) {

var toneMappingName;

switch ( toneMapping ) {

case LinearToneMapping: toneMappingName = 'Linear'; break;

case ReinhardToneMapping: toneMappingName = 'Reinhard'; break;

case Uncharted2ToneMapping: toneMappingName = 'Uncharted2'; break;

case CineonToneMapping: toneMappingName = 'OptimizedCineon'; break;

default: throw new Error( 'unsupported toneMapping: ' + toneMapping );

}

return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';

}

function generateExtensions( extensions, parameters, rendererExtensions ) {

extensions = extensions || {};

var chunks = [ ( extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || ( parameters.normalMap && ! parameters.objectSpaceNormalMap ) || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : , ( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : , ( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : , ( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : ];

return chunks.filter( filterEmptyLine ).join( '\n' );

}

function generateDefines( defines ) {

var chunks = [];

for ( var name in defines ) {

var value = defines[ name ];

if ( value === false ) continue;

chunks.push( '#define ' + name + ' ' + value );

}

return chunks.join( '\n' );

}

function fetchAttributeLocations( gl, program ) {

var attributes = {};

var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES );

for ( var i = 0; i < n; i ++ ) {

var info = gl.getActiveAttrib( program, i ); var name = info.name;

// console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );

attributes[ name ] = gl.getAttribLocation( program, name );

}

return attributes;

}

function filterEmptyLine( string ) {

return string !== ;

}

function replaceLightNums( string, parameters ) {

return string .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) .replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights ) .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights );

}

function replaceClippingPlaneNums( string, parameters ) {

return string .replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes ) .replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) );

}

function parseIncludes( string ) {

var pattern = /^[ \t]*#include +<([\w\d./]+)>/gm;

function replace( match, include ) {

var replace = ShaderChunk[ include ];

if ( replace === undefined ) {

throw new Error( 'Can not resolve #include <' + include + '>' );

}

return parseIncludes( replace );

}

return string.replace( pattern, replace );

}

function unrollLoops( string ) {

var pattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;

function replace( match, start, end, snippet ) {

var unroll = ;

for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) {

unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' );

}

return unroll;

}

return string.replace( pattern, replace );

}

function WebGLProgram( renderer, extensions, code, material, shader, parameters, capabilities ) {

var gl = renderer.context;

var defines = material.defines;

var vertexShader = shader.vertexShader; var fragmentShader = shader.fragmentShader;

var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';

if ( parameters.shadowMapType === PCFShadowMap ) {

shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';

} else if ( parameters.shadowMapType === PCFSoftShadowMap ) {

shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';

}

var envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; var envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';

if ( parameters.envMap ) {

switch ( material.envMap.mapping ) {

case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; break;

case CubeUVReflectionMapping: case CubeUVRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; break;

case EquirectangularReflectionMapping: case EquirectangularRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC'; break;

case SphericalReflectionMapping: envMapTypeDefine = 'ENVMAP_TYPE_SPHERE'; break;

}

switch ( material.envMap.mapping ) {

case CubeRefractionMapping: case EquirectangularRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; break;

}

switch ( material.combine ) {

case MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; break;

case MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; break;

case AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; break;

}

}

var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;

// console.log( 'building new program ' );

//

var customExtensions = capabilities.isWebGL2 ?  : generateExtensions( material.extensions, parameters, extensions );

var customDefines = generateDefines( defines );

//

var program = gl.createProgram();

var prefixVertex, prefixFragment;

if ( material.isRawShaderMaterial ) {

prefixVertex = [

customDefines

].filter( filterEmptyLine ).join( '\n' );

if ( prefixVertex.length > 0 ) {

prefixVertex += '\n';

}

prefixFragment = [

customExtensions, customDefines

].filter( filterEmptyLine ).join( '\n' );

if ( prefixFragment.length > 0 ) {

prefixFragment += '\n';

}

} else {

prefixVertex = [

'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;',

'#define SHADER_NAME ' + shader.name,

customDefines,

parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : ,

'#define GAMMA_FACTOR ' + gammaFactorDefine,

'#define MAX_BONES ' + parameters.maxBones, ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : , ( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : ,

parameters.map ? '#define USE_MAP' : , parameters.envMap ? '#define USE_ENVMAP' : , parameters.envMap ? '#define ' + envMapModeDefine : , parameters.lightMap ? '#define USE_LIGHTMAP' : , parameters.aoMap ? '#define USE_AOMAP' : , parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : , parameters.bumpMap ? '#define USE_BUMPMAP' : , parameters.normalMap ? '#define USE_NORMALMAP' : , ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : , parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : , parameters.specularMap ? '#define USE_SPECULARMAP' : , parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : , parameters.metalnessMap ? '#define USE_METALNESSMAP' : , parameters.alphaMap ? '#define USE_ALPHAMAP' : , parameters.vertexColors ? '#define USE_COLOR' : ,

parameters.flatShading ? '#define FLAT_SHADED' : ,

parameters.skinning ? '#define USE_SKINNING' : , parameters.useVertexTexture ? '#define BONE_TEXTURE' : ,

parameters.morphTargets ? '#define USE_MORPHTARGETS' : , parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : , parameters.doubleSided ? '#define DOUBLE_SIDED' : , parameters.flipSided ? '#define FLIP_SIDED' : ,

parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : , parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : ,

parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : ,

parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : , parameters.logarithmicDepthBuffer && ( capabilities.isWebGL2 || extensions.get( 'EXT_frag_depth' ) ) ? '#define USE_LOGDEPTHBUF_EXT' : ,

'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;',

'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;',

'#ifdef USE_COLOR',

' attribute vec3 color;',

'#endif',

'#ifdef USE_MORPHTARGETS',

' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;',

' #ifdef USE_MORPHNORMALS',

' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;',

' #else',

' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;',

' #endif',

'#endif',

'#ifdef USE_SKINNING',

' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;',

'#endif',

'\n'

].filter( filterEmptyLine ).join( '\n' );

prefixFragment = [

customExtensions,

'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;',

'#define SHADER_NAME ' + shader.name,

customDefines,

parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest + ( parameters.alphaTest % 1 ?  : '.0' ) : , // add '.0' if integer

'#define GAMMA_FACTOR ' + gammaFactorDefine,

( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : , ( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : ,

parameters.map ? '#define USE_MAP' : , parameters.envMap ? '#define USE_ENVMAP' : , parameters.envMap ? '#define ' + envMapTypeDefine : , parameters.envMap ? '#define ' + envMapModeDefine : , parameters.envMap ? '#define ' + envMapBlendingDefine : , parameters.lightMap ? '#define USE_LIGHTMAP' : , parameters.aoMap ? '#define USE_AOMAP' : , parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : , parameters.bumpMap ? '#define USE_BUMPMAP' : , parameters.normalMap ? '#define USE_NORMALMAP' : , ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : , parameters.specularMap ? '#define USE_SPECULARMAP' : , parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : , parameters.metalnessMap ? '#define USE_METALNESSMAP' : , parameters.alphaMap ? '#define USE_ALPHAMAP' : , parameters.vertexColors ? '#define USE_COLOR' : ,

parameters.gradientMap ? '#define USE_GRADIENTMAP' : ,

parameters.flatShading ? '#define FLAT_SHADED' : ,

parameters.doubleSided ? '#define DOUBLE_SIDED' : , parameters.flipSided ? '#define FLIP_SIDED' : ,

parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : , parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : ,

parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : ,

parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : ,

parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : , parameters.logarithmicDepthBuffer && ( capabilities.isWebGL2 || extensions.get( 'EXT_frag_depth' ) ) ? '#define USE_LOGDEPTHBUF_EXT' : ,

parameters.envMap && ( capabilities.isWebGL2 || extensions.get( 'EXT_shader_texture_lod' ) ) ? '#define TEXTURE_LOD_EXT' : ,

'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;',

( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : , ( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : , // this code is required here because it is used by the toneMapping() function defined below ( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : ,

parameters.dithering ? '#define DITHERING' : ,

( parameters.outputEncoding || parameters.mapEncoding || parameters.matcapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ) ? ShaderChunk[ 'encodings_pars_fragment' ] : , // this code is required here because it is used by the various encoding/decoding function defined below parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : , parameters.matcapEncoding ? getTexelDecodingFunction( 'matcapTexelToLinear', parameters.matcapEncoding ) : , parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : , parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : , parameters.outputEncoding ? getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputEncoding ) : ,

parameters.depthPacking ? '#define DEPTH_PACKING ' + material.depthPacking : ,

'\n'

].filter( filterEmptyLine ).join( '\n' );

}

vertexShader = parseIncludes( vertexShader ); vertexShader = replaceLightNums( vertexShader, parameters ); vertexShader = replaceClippingPlaneNums( vertexShader, parameters );

fragmentShader = parseIncludes( fragmentShader ); fragmentShader = replaceLightNums( fragmentShader, parameters ); fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters );

vertexShader = unrollLoops( vertexShader ); fragmentShader = unrollLoops( fragmentShader );

if ( capabilities.isWebGL2 && ! material.isRawShaderMaterial ) {

var isGLSL3ShaderMaterial = false;

var versionRegex = /^\s*#version\s+300\s+es\s*\n/;

if ( material.isShaderMaterial && vertexShader.match( versionRegex ) !== null && fragmentShader.match( versionRegex ) !== null ) {

isGLSL3ShaderMaterial = true;

vertexShader = vertexShader.replace( versionRegex, ); fragmentShader = fragmentShader.replace( versionRegex, );

}

// GLSL 3.0 conversion prefixVertex = [ '#version 300 es\n', '#define attribute in', '#define varying out', '#define texture2D texture' ].join( '\n' ) + '\n' + prefixVertex;

prefixFragment = [ '#version 300 es\n', '#define varying in', isGLSL3ShaderMaterial ?  : 'out highp vec4 pc_fragColor;', isGLSL3ShaderMaterial ?  : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad' ].join( '\n' ) + '\n' + prefixFragment;

}

var vertexGlsl = prefixVertex + vertexShader; var fragmentGlsl = prefixFragment + fragmentShader;

// console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl );

var glVertexShader = WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl ); var glFragmentShader = WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl );

gl.attachShader( program, glVertexShader ); gl.attachShader( program, glFragmentShader );

// Force a particular attribute to index 0.

if ( material.index0AttributeName !== undefined ) {

gl.bindAttribLocation( program, 0, material.index0AttributeName );

} else if ( parameters.morphTargets === true ) {

// programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation( program, 0, 'position' );

}

gl.linkProgram( program );

var programLog = gl.getProgramInfoLog( program ).trim(); var vertexLog = gl.getShaderInfoLog( glVertexShader ).trim(); var fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim();

var runnable = true; var haveDiagnostics = true;

// console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) ); // console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) );

if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) {

runnable = false;

console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog );

} else if ( programLog !== ) {

console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );

} else if ( vertexLog === || fragmentLog === ) {

haveDiagnostics = false;

}

if ( haveDiagnostics ) {

this.diagnostics = {

runnable: runnable, material: material,

programLog: programLog,

vertexShader: {

log: vertexLog, prefix: prefixVertex

},

fragmentShader: {

log: fragmentLog, prefix: prefixFragment

}

};

}

// clean up

gl.deleteShader( glVertexShader ); gl.deleteShader( glFragmentShader );

// set up caching for uniform locations

var cachedUniforms;

this.getUniforms = function () {

if ( cachedUniforms === undefined ) {

cachedUniforms = new WebGLUniforms( gl, program, renderer );

}

return cachedUniforms;

};

// set up caching for attribute locations

var cachedAttributes;

this.getAttributes = function () {

if ( cachedAttributes === undefined ) {

cachedAttributes = fetchAttributeLocations( gl, program );

}

return cachedAttributes;

};

// free resource

this.destroy = function () {

gl.deleteProgram( program ); this.program = undefined;

};

// DEPRECATED

Object.defineProperties( this, {

uniforms: { get: function () {

console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' ); return this.getUniforms();

} },

attributes: { get: function () {

console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' ); return this.getAttributes();

} }

} );


//

this.name = shader.name; this.id = programIdCount ++; this.code = code; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader;

return this;

}

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLPrograms( renderer, extensions, capabilities ) {

var programs = [];

var shaderIDs = { MeshDepthMaterial: 'depth', MeshDistanceMaterial: 'distanceRGBA', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshToonMaterial: 'phong', MeshStandardMaterial: 'physical', MeshPhysicalMaterial: 'physical', MeshMatcapMaterial: 'matcap', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points', ShadowMaterial: 'shadow', SpriteMaterial: 'sprite' };

var parameterNames = [ "precision", "supportsVertexTextures", "map", "mapEncoding", "matcapEncoding", "envMap", "envMapMode", "envMapEncoding", "lightMap", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "objectSpaceNormalMap", "displacementMap", "specularMap", "roughnessMap", "metalnessMap", "gradientMap", "alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp", "flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning", "maxBones", "useVertexTexture", "morphTargets", "morphNormals", "maxMorphTargets", "maxMorphNormals", "premultipliedAlpha", "numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights", "shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights', "alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering" ];


function allocateBones( object ) {

var skeleton = object.skeleton; var bones = skeleton.bones;

if ( capabilities.floatVertexTextures ) {

return 1024;

} else {

// default for when object is not specified // ( for example when prebuilding shader to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe)

var nVertexUniforms = capabilities.maxVertexUniforms; var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );

var maxBones = Math.min( nVertexMatrices, bones.length );

if ( maxBones < bones.length ) {

console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' ); return 0;

}

return maxBones;

}

}

function getTextureEncodingFromMap( map, gammaOverrideLinear ) {

var encoding;

if ( ! map ) {

encoding = LinearEncoding;

} else if ( map.isTexture ) {

encoding = map.encoding;

} else if ( map.isWebGLRenderTarget ) {

console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." ); encoding = map.texture.encoding;

}

// add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point. if ( encoding === LinearEncoding && gammaOverrideLinear ) {

encoding = GammaEncoding;

}

return encoding;

}

this.getParameters = function ( material, lights, shadows, fog, nClipPlanes, nClipIntersection, object ) {

var shaderID = shaderIDs[ material.type ];

// heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget)

var maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0; var precision = capabilities.precision;

if ( material.precision !== null ) {

precision = capabilities.getMaxPrecision( material.precision );

if ( precision !== material.precision ) {

console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );

}

}

var currentRenderTarget = renderer.getRenderTarget();

var parameters = {

shaderID: shaderID,

precision: precision, supportsVertexTextures: capabilities.vertexTextures, outputEncoding: getTextureEncodingFromMap( ( ! currentRenderTarget ) ? null : currentRenderTarget.texture, renderer.gammaOutput ), map: !! material.map, mapEncoding: getTextureEncodingFromMap( material.map, renderer.gammaInput ), matcap: !! material.matcap, matcapEncoding: getTextureEncodingFromMap( material.matcap, renderer.gammaInput ), envMap: !! material.envMap, envMapMode: material.envMap && material.envMap.mapping, envMapEncoding: getTextureEncodingFromMap( material.envMap, renderer.gammaInput ), envMapCubeUV: ( !! material.envMap ) && ( ( material.envMap.mapping === CubeUVReflectionMapping ) || ( material.envMap.mapping === CubeUVRefractionMapping ) ), lightMap: !! material.lightMap, aoMap: !! material.aoMap, emissiveMap: !! material.emissiveMap, emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap, renderer.gammaInput ), bumpMap: !! material.bumpMap, normalMap: !! material.normalMap, objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap, displacementMap: !! material.displacementMap, roughnessMap: !! material.roughnessMap, metalnessMap: !! material.metalnessMap, specularMap: !! material.specularMap, alphaMap: !! material.alphaMap,

gradientMap: !! material.gradientMap,

combine: material.combine,

vertexColors: material.vertexColors,

fog: !! fog, useFog: material.fog, fogExp: ( fog && fog.isFogExp2 ),

flatShading: material.flatShading,

sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer,

skinning: material.skinning && maxBones > 0, maxBones: maxBones, useVertexTexture: capabilities.floatVertexTextures,

morphTargets: material.morphTargets, morphNormals: material.morphNormals, maxMorphTargets: renderer.maxMorphTargets, maxMorphNormals: renderer.maxMorphNormals,

numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length,

numClippingPlanes: nClipPlanes, numClipIntersection: nClipIntersection,

dithering: material.dithering,

shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && shadows.length > 0, shadowMapType: renderer.shadowMap.type,

toneMapping: renderer.toneMapping, physicallyCorrectLights: renderer.physicallyCorrectLights,

premultipliedAlpha: material.premultipliedAlpha,

alphaTest: material.alphaTest, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide,

depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false

};

return parameters;

};

this.getProgramCode = function ( material, parameters ) {

var array = [];

if ( parameters.shaderID ) {

array.push( parameters.shaderID );

} else {

array.push( material.fragmentShader ); array.push( material.vertexShader );

}

if ( material.defines !== undefined ) {

for ( var name in material.defines ) {

array.push( name ); array.push( material.defines[ name ] );

}

}

for ( var i = 0; i < parameterNames.length; i ++ ) {

array.push( parameters[ parameterNames[ i ] ] );

}

array.push( material.onBeforeCompile.toString() );

array.push( renderer.gammaOutput );

return array.join();

};

this.acquireProgram = function ( material, shader, parameters, code ) {

var program;

// Check if code has been already compiled for ( var p = 0, pl = programs.length; p < pl; p ++ ) {

var programInfo = programs[ p ];

if ( programInfo.code === code ) {

program = programInfo; ++ program.usedTimes;

break;

}

}

if ( program === undefined ) {

program = new WebGLProgram( renderer, extensions, code, material, shader, parameters, capabilities ); programs.push( program );

}

return program;

};

this.releaseProgram = function ( program ) {

if ( -- program.usedTimes === 0 ) {

// Remove from unordered set var i = programs.indexOf( program ); programs[ i ] = programs[ programs.length - 1 ]; programs.pop();

// Free WebGL resources program.destroy();

}

};

// Exposed for resource monitoring & error feedback via renderer.info: this.programs = programs;

}

/** * @author fordacious / fordacious.github.io */

function WebGLProperties() {

var properties = new WeakMap();

function get( object ) {

var map = properties.get( object );

if ( map === undefined ) {

map = {}; properties.set( object, map );

}

return map;

}

function remove( object ) {

properties.delete( object );

}

function update( object, key, value ) {

properties.get( object )[ key ] = value;

}

function dispose() {

properties = new WeakMap();

}

return { get: get, remove: remove, update: update, dispose: dispose };

}

/** * @author mrdoob / http://mrdoob.com/ */

function painterSortStable( a, b ) {

if ( a.renderOrder !== b.renderOrder ) {

return a.renderOrder - b.renderOrder;

} else if ( a.program && b.program && a.program !== b.program ) {

return a.program.id - b.program.id;

} else if ( a.material.id !== b.material.id ) {

return a.material.id - b.material.id;

} else if ( a.z !== b.z ) {

return a.z - b.z;

} else {

return a.id - b.id;

}

}

function reversePainterSortStable( a, b ) {

if ( a.renderOrder !== b.renderOrder ) {

return a.renderOrder - b.renderOrder;

} if ( a.z !== b.z ) {

return b.z - a.z;

} else {

return a.id - b.id;

}

}


function WebGLRenderList() {

var renderItems = []; var renderItemsIndex = 0;

var opaque = []; var transparent = [];

function init() {

renderItemsIndex = 0;

opaque.length = 0; transparent.length = 0;

}

function push( object, geometry, material, z, group ) {

var renderItem = renderItems[ renderItemsIndex ];

if ( renderItem === undefined ) {

renderItem = { id: object.id, object: object, geometry: geometry, material: material, program: material.program, renderOrder: object.renderOrder, z: z, group: group };

renderItems[ renderItemsIndex ] = renderItem;

} else {

renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.program = material.program; renderItem.renderOrder = object.renderOrder; renderItem.z = z; renderItem.group = group;

}


( material.transparent === true ? transparent : opaque ).push( renderItem );

renderItemsIndex ++;

}

function sort() {

if ( opaque.length > 1 ) opaque.sort( painterSortStable ); if ( transparent.length > 1 ) transparent.sort( reversePainterSortStable );

}

return { opaque: opaque, transparent: transparent,

init: init, push: push,

sort: sort };

}

function WebGLRenderLists() {

var lists = {};

function get( scene, camera ) {

var hash = scene.id + ',' + camera.id; var list = lists[ hash ];

if ( list === undefined ) {

// console.log( 'THREE.WebGLRenderLists:', hash );

list = new WebGLRenderList(); lists[ hash ] = list;

}

return list;

}

function dispose() {

lists = {};

}

return { get: get, dispose: dispose };

}

/** * @author mrdoob / http://mrdoob.com/ */

function UniformsCache() {

var lights = {};

return {

get: function ( light ) {

if ( lights[ light.id ] !== undefined ) {

return lights[ light.id ];

}

var uniforms;

switch ( light.type ) {

case 'DirectionalLight': uniforms = { direction: new Vector3(), color: new Color(),

shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break;

case 'SpotLight': uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0,

shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break;

case 'PointLight': uniforms = { position: new Vector3(), color: new Color(), distance: 0, decay: 0,

shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2(), shadowCameraNear: 1, shadowCameraFar: 1000 }; break;

case 'HemisphereLight': uniforms = { direction: new Vector3(), skyColor: new Color(), groundColor: new Color() }; break;

case 'RectAreaLight': uniforms = { color: new Color(), position: new Vector3(), halfWidth: new Vector3(), halfHeight: new Vector3() // TODO (abelnation): set RectAreaLight shadow uniforms }; break;

}

lights[ light.id ] = uniforms;

return uniforms;

}

};

}

var count = 0;

function WebGLLights() {

var cache = new UniformsCache();

var state = {

id: count ++,

hash: { stateID: - 1, directionalLength: - 1, pointLength: - 1, spotLength: - 1, rectAreaLength: - 1, hemiLength: - 1, shadowsLength: - 1 },

ambient: [ 0, 0, 0 ], directional: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotShadowMap: [], spotShadowMatrix: [], rectArea: [], point: [], pointShadowMap: [], pointShadowMatrix: [], hemi: []

};

var vector3 = new Vector3(); var matrix4 = new Matrix4(); var matrix42 = new Matrix4();

function setup( lights, shadows, camera ) {

var r = 0, g = 0, b = 0;

var directionalLength = 0; var pointLength = 0; var spotLength = 0; var rectAreaLength = 0; var hemiLength = 0;

var viewMatrix = camera.matrixWorldInverse;

for ( var i = 0, l = lights.length; i < l; i ++ ) {

var light = lights[ i ];

var color = light.color; var intensity = light.intensity; var distance = light.distance;

var shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null;

if ( light.isAmbientLight ) {

r += color.r * intensity; g += color.g * intensity; b += color.b * intensity;

} else if ( light.isDirectionalLight ) {

var uniforms = cache.get( light );

uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( vector3 ); uniforms.direction.transformDirection( viewMatrix );

uniforms.shadow = light.castShadow;

if ( light.castShadow ) {

var shadow = light.shadow;

uniforms.shadowBias = shadow.bias; uniforms.shadowRadius = shadow.radius; uniforms.shadowMapSize = shadow.mapSize;

}

state.directionalShadowMap[ directionalLength ] = shadowMap; state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; state.directional[ directionalLength ] = uniforms;

directionalLength ++;

} else if ( light.isSpotLight ) {

var uniforms = cache.get( light );

uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix );

uniforms.color.copy( color ).multiplyScalar( intensity ); uniforms.distance = distance;

uniforms.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( vector3 ); uniforms.direction.transformDirection( viewMatrix );

uniforms.coneCos = Math.cos( light.angle ); uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) ); uniforms.decay = light.decay;

uniforms.shadow = light.castShadow;

if ( light.castShadow ) {

var shadow = light.shadow;

uniforms.shadowBias = shadow.bias; uniforms.shadowRadius = shadow.radius; uniforms.shadowMapSize = shadow.mapSize;

}

state.spotShadowMap[ spotLength ] = shadowMap; state.spotShadowMatrix[ spotLength ] = light.shadow.matrix; state.spot[ spotLength ] = uniforms;

spotLength ++;

} else if ( light.isRectAreaLight ) {

var uniforms = cache.get( light );

// (a) intensity is the total visible light emitted //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );

// (b) intensity is the brightness of the light uniforms.color.copy( color ).multiplyScalar( intensity );

uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix );

// extract local rotation of light to derive width/height half vectors matrix42.identity(); matrix4.copy( light.matrixWorld ); matrix4.premultiply( viewMatrix ); matrix42.extractRotation( matrix4 );

uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 );

uniforms.halfWidth.applyMatrix4( matrix42 ); uniforms.halfHeight.applyMatrix4( matrix42 );

// TODO (abelnation): RectAreaLight distance? // uniforms.distance = distance;

state.rectArea[ rectAreaLength ] = uniforms;

rectAreaLength ++;

} else if ( light.isPointLight ) {

var uniforms = cache.get( light );

uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix );

uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.distance = light.distance; uniforms.decay = light.decay;

uniforms.shadow = light.castShadow;

if ( light.castShadow ) {

var shadow = light.shadow;

uniforms.shadowBias = shadow.bias; uniforms.shadowRadius = shadow.radius; uniforms.shadowMapSize = shadow.mapSize; uniforms.shadowCameraNear = shadow.camera.near; uniforms.shadowCameraFar = shadow.camera.far;

}

state.pointShadowMap[ pointLength ] = shadowMap; state.pointShadowMatrix[ pointLength ] = light.shadow.matrix; state.point[ pointLength ] = uniforms;

pointLength ++;

} else if ( light.isHemisphereLight ) {

var uniforms = cache.get( light );

uniforms.direction.setFromMatrixPosition( light.matrixWorld ); uniforms.direction.transformDirection( viewMatrix ); uniforms.direction.normalize();

uniforms.skyColor.copy( light.color ).multiplyScalar( intensity ); uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity );

state.hemi[ hemiLength ] = uniforms;

hemiLength ++;

}

}

state.ambient[ 0 ] = r; state.ambient[ 1 ] = g; state.ambient[ 2 ] = b;

state.directional.length = directionalLength; state.spot.length = spotLength; state.rectArea.length = rectAreaLength; state.point.length = pointLength; state.hemi.length = hemiLength;

state.hash.stateID = state.id; state.hash.directionalLength = directionalLength; state.hash.pointLength = pointLength; state.hash.spotLength = spotLength; state.hash.rectAreaLength = rectAreaLength; state.hash.hemiLength = hemiLength; state.hash.shadowsLength = shadows.length;

}

return { setup: setup, state: state };

}

/** * @author Mugen87 / https://github.com/Mugen87 */

function WebGLRenderState() {

var lights = new WebGLLights();

var lightsArray = []; var shadowsArray = [];

function init() {

lightsArray.length = 0; shadowsArray.length = 0;

}

function pushLight( light ) {

lightsArray.push( light );

}

function pushShadow( shadowLight ) {

shadowsArray.push( shadowLight );

}

function setupLights( camera ) {

lights.setup( lightsArray, shadowsArray, camera );

}

var state = { lightsArray: lightsArray, shadowsArray: shadowsArray,

lights: lights };

return { init: init, state: state, setupLights: setupLights,

pushLight: pushLight, pushShadow: pushShadow };

}

function WebGLRenderStates() {

var renderStates = {};

function get( scene, camera ) {

var renderState;

if ( renderStates[ scene.id ] === undefined ) {

renderState = new WebGLRenderState(); renderStates[ scene.id ] = {}; renderStates[ scene.id ][ camera.id ] = renderState;

} else {

if ( renderStates[ scene.id ][ camera.id ] === undefined ) {

renderState = new WebGLRenderState(); renderStates[ scene.id ][ camera.id ] = renderState;

} else {

renderState = renderStates[ scene.id ][ camera.id ];

}

}

return renderState;

}

function dispose() {

renderStates = {};

}

return { get: get, dispose: dispose };

}

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author bhouston / https://clara.io * @author WestLangley / http://github.com/WestLangley * * parameters = { * * opacity: <float>, * * map: new THREE.Texture( <Image> ), * * alphaMap: new THREE.Texture( <Image> ), * * displacementMap: new THREE.Texture( <Image> ), * displacementScale: <float>, * displacementBias: <float>, * * wireframe: <boolean>, * wireframeLinewidth: <float> * } */

function MeshDepthMaterial( parameters ) {

Material.call( this );

this.type = 'MeshDepthMaterial';

this.depthPacking = BasicDepthPacking;

this.skinning = false; this.morphTargets = false;

this.map = null;

this.alphaMap = null;

this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0;

this.wireframe = false; this.wireframeLinewidth = 1;

this.fog = false; this.lights = false;

this.setValues( parameters );

}

MeshDepthMaterial.prototype = Object.create( Material.prototype ); MeshDepthMaterial.prototype.constructor = MeshDepthMaterial;

MeshDepthMaterial.prototype.isMeshDepthMaterial = true;

MeshDepthMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.depthPacking = source.depthPacking;

this.skinning = source.skinning; this.morphTargets = source.morphTargets;

this.map = source.map;

this.alphaMap = source.alphaMap;

this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias;

this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth;

return this;

};

/** * @author WestLangley / http://github.com/WestLangley * * parameters = { * * referencePosition: <float>, * nearDistance: <float>, * farDistance: <float>, * * skinning: <bool>, * morphTargets: <bool>, * * map: new THREE.Texture( <Image> ), * * alphaMap: new THREE.Texture( <Image> ), * * displacementMap: new THREE.Texture( <Image> ), * displacementScale: <float>, * displacementBias: <float> * * } */

function MeshDistanceMaterial( parameters ) {

Material.call( this );

this.type = 'MeshDistanceMaterial';

this.referencePosition = new Vector3(); this.nearDistance = 1; this.farDistance = 1000;

this.skinning = false; this.morphTargets = false;

this.map = null;

this.alphaMap = null;

this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0;

this.fog = false; this.lights = false;

this.setValues( parameters );

}

MeshDistanceMaterial.prototype = Object.create( Material.prototype ); MeshDistanceMaterial.prototype.constructor = MeshDistanceMaterial;

MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;

MeshDistanceMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.referencePosition.copy( source.referencePosition ); this.nearDistance = source.nearDistance; this.farDistance = source.farDistance;

this.skinning = source.skinning; this.morphTargets = source.morphTargets;

this.map = source.map;

this.alphaMap = source.alphaMap;

this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias;

return this;

};

/** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */

function WebGLShadowMap( _renderer, _objects, maxTextureSize ) {

var _frustum = new Frustum(), _projScreenMatrix = new Matrix4(),

_shadowMapSize = new Vector2(), _maxShadowMapSize = new Vector2( maxTextureSize, maxTextureSize ),

_lookTarget = new Vector3(), _lightPositionWorld = new Vector3(),

_MorphingFlag = 1, _SkinningFlag = 2,

_NumberOfMaterialVariants = ( _MorphingFlag | _SkinningFlag ) + 1,

_depthMaterials = new Array( _NumberOfMaterialVariants ), _distanceMaterials = new Array( _NumberOfMaterialVariants ),

_materialCache = {};

var shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide };

var cubeDirections = [ new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 ) ];

var cubeUps = [ new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ) ];

var cube2DViewPorts = [ new Vector4(), new Vector4(), new Vector4(), new Vector4(), new Vector4(), new Vector4() ];

// init

for ( var i = 0; i !== _NumberOfMaterialVariants; ++ i ) {

var useMorphing = ( i & _MorphingFlag ) !== 0; var useSkinning = ( i & _SkinningFlag ) !== 0;

var depthMaterial = new MeshDepthMaterial( {

depthPacking: RGBADepthPacking,

morphTargets: useMorphing, skinning: useSkinning

} );

_depthMaterials[ i ] = depthMaterial;

//

var distanceMaterial = new MeshDistanceMaterial( {

morphTargets: useMorphing, skinning: useSkinning

} );

_distanceMaterials[ i ] = distanceMaterial;

}

//

var scope = this;

this.enabled = false;

this.autoUpdate = true; this.needsUpdate = false;

this.type = PCFShadowMap;

this.render = function ( lights, scene, camera ) {

if ( scope.enabled === false ) return; if ( scope.autoUpdate === false && scope.needsUpdate === false ) return;

if ( lights.length === 0 ) return;

// TODO Clean up (needed in case of contextlost) var _gl = _renderer.context; var _state = _renderer.state;

// Set GL state for depth map. _state.disable( _gl.BLEND ); _state.buffers.color.setClear( 1, 1, 1, 1 ); _state.buffers.depth.setTest( true ); _state.setScissorTest( false );

// render depth map

var faceCount;

for ( var i = 0, il = lights.length; i < il; i ++ ) {

var light = lights[ i ]; var shadow = light.shadow; var isPointLight = light && light.isPointLight;

if ( shadow === undefined ) {

console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' ); continue;

}

var shadowCamera = shadow.camera;

_shadowMapSize.copy( shadow.mapSize ); _shadowMapSize.min( _maxShadowMapSize );

if ( isPointLight ) {

var vpWidth = _shadowMapSize.x; var vpHeight = _shadowMapSize.y;

// These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction

// positive X cube2DViewPorts[ 0 ].set( vpWidth * 2, vpHeight, vpWidth, vpHeight ); // negative X cube2DViewPorts[ 1 ].set( 0, vpHeight, vpWidth, vpHeight ); // positive Z cube2DViewPorts[ 2 ].set( vpWidth * 3, vpHeight, vpWidth, vpHeight ); // negative Z cube2DViewPorts[ 3 ].set( vpWidth, vpHeight, vpWidth, vpHeight ); // positive Y cube2DViewPorts[ 4 ].set( vpWidth * 3, 0, vpWidth, vpHeight ); // negative Y cube2DViewPorts[ 5 ].set( vpWidth, 0, vpWidth, vpHeight );

_shadowMapSize.x *= 4.0; _shadowMapSize.y *= 2.0;

}

if ( shadow.map === null ) {

var pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat };

shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); shadow.map.texture.name = light.name + ".shadowMap";

shadowCamera.updateProjectionMatrix();

}

if ( shadow.isSpotLightShadow ) {

shadow.update( light );

}

var shadowMap = shadow.map; var shadowMatrix = shadow.matrix;

_lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); shadowCamera.position.copy( _lightPositionWorld );

if ( isPointLight ) {

faceCount = 6;

// for point lights we set the shadow matrix to be a translation-only matrix // equal to inverse of the light's position

shadowMatrix.makeTranslation( - _lightPositionWorld.x, - _lightPositionWorld.y, - _lightPositionWorld.z );

} else {

faceCount = 1;

_lookTarget.setFromMatrixPosition( light.target.matrixWorld ); shadowCamera.lookAt( _lookTarget ); shadowCamera.updateMatrixWorld();

// compute shadow matrix

shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 );

shadowMatrix.multiply( shadowCamera.projectionMatrix ); shadowMatrix.multiply( shadowCamera.matrixWorldInverse );

}

_renderer.setRenderTarget( shadowMap ); _renderer.clear();

// render shadow map for each cube face (if omni-directional) or // run a single pass if not

for ( var face = 0; face < faceCount; face ++ ) {

if ( isPointLight ) {

_lookTarget.copy( shadowCamera.position ); _lookTarget.add( cubeDirections[ face ] ); shadowCamera.up.copy( cubeUps[ face ] ); shadowCamera.lookAt( _lookTarget ); shadowCamera.updateMatrixWorld();

var vpDimensions = cube2DViewPorts[ face ]; _state.viewport( vpDimensions );

}

// update camera matrices and frustum

_projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix );

// set object matrices & frustum culling

renderObject( scene, camera, shadowCamera, isPointLight );

}

}

scope.needsUpdate = false;

};

function getDepthMaterial( object, material, isPointLight, lightPositionWorld, shadowCameraNear, shadowCameraFar ) {

var geometry = object.geometry;

var result = null;

var materialVariants = _depthMaterials; var customMaterial = object.customDepthMaterial;

if ( isPointLight ) {

materialVariants = _distanceMaterials; customMaterial = object.customDistanceMaterial;

}

if ( ! customMaterial ) {

var useMorphing = false;

if ( material.morphTargets ) {

if ( geometry && geometry.isBufferGeometry ) {

useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0;

} else if ( geometry && geometry.isGeometry ) {

useMorphing = geometry.morphTargets && geometry.morphTargets.length > 0;

}

}

if ( object.isSkinnedMesh && material.skinning === false ) {

console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object );

}

var useSkinning = object.isSkinnedMesh && material.skinning;

var variantIndex = 0;

if ( useMorphing ) variantIndex |= _MorphingFlag; if ( useSkinning ) variantIndex |= _SkinningFlag;

result = materialVariants[ variantIndex ];

} else {

result = customMaterial;

}

if ( _renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 ) {

// in this case we need a unique material instance reflecting the // appropriate state

var keyA = result.uuid, keyB = material.uuid;

var materialsForVariant = _materialCache[ keyA ];

if ( materialsForVariant === undefined ) {

materialsForVariant = {}; _materialCache[ keyA ] = materialsForVariant;

}

var cachedMaterial = materialsForVariant[ keyB ];

if ( cachedMaterial === undefined ) {

cachedMaterial = result.clone(); materialsForVariant[ keyB ] = cachedMaterial;

}

result = cachedMaterial;

}

result.visible = material.visible; result.wireframe = material.wireframe;

result.side = ( material.shadowSide != null ) ? material.shadowSide : shadowSide[ material.side ];

result.clipShadows = material.clipShadows; result.clippingPlanes = material.clippingPlanes; result.clipIntersection = material.clipIntersection;

result.wireframeLinewidth = material.wireframeLinewidth; result.linewidth = material.linewidth;

if ( isPointLight && result.isMeshDistanceMaterial ) {

result.referencePosition.copy( lightPositionWorld ); result.nearDistance = shadowCameraNear; result.farDistance = shadowCameraFar;

}

return result;

}

function renderObject( object, camera, shadowCamera, isPointLight ) {

if ( object.visible === false ) return;

var visible = object.layers.test( camera.layers );

if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) {

if ( object.castShadow && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) {

object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld );

var geometry = _objects.update( object ); var material = object.material;

if ( Array.isArray( material ) ) {

var groups = geometry.groups;

for ( var k = 0, kl = groups.length; k < kl; k ++ ) {

var group = groups[ k ]; var groupMaterial = material[ group.materialIndex ];

if ( groupMaterial && groupMaterial.visible ) {

var depthMaterial = getDepthMaterial( object, groupMaterial, isPointLight, _lightPositionWorld, shadowCamera.near, shadowCamera.far ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group );

}

}

} else if ( material.visible ) {

var depthMaterial = getDepthMaterial( object, material, isPointLight, _lightPositionWorld, shadowCamera.near, shadowCamera.far ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null );

}

}

}

var children = object.children;

for ( var i = 0, l = children.length; i < l; i ++ ) {

renderObject( children[ i ], camera, shadowCamera, isPointLight );

}

}

}

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLState( gl, extensions, utils, capabilities ) {

function ColorBuffer() {

var locked = false;

var color = new Vector4(); var currentColorMask = null; var currentColorClear = new Vector4( 0, 0, 0, 0 );

return {

setMask: function ( colorMask ) {

if ( currentColorMask !== colorMask && ! locked ) {

gl.colorMask( colorMask, colorMask, colorMask, colorMask ); currentColorMask = colorMask;

}

},

setLocked: function ( lock ) {

locked = lock;

},

setClear: function ( r, g, b, a, premultipliedAlpha ) {

if ( premultipliedAlpha === true ) {

r *= a; g *= a; b *= a;

}

color.set( r, g, b, a );

if ( currentColorClear.equals( color ) === false ) {

gl.clearColor( r, g, b, a ); currentColorClear.copy( color );

}

},

reset: function () {

locked = false;

currentColorMask = null; currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state

}

};

}

function DepthBuffer() {

var locked = false;

var currentDepthMask = null; var currentDepthFunc = null; var currentDepthClear = null;

return {

setTest: function ( depthTest ) {

if ( depthTest ) {

enable( gl.DEPTH_TEST );

} else {

disable( gl.DEPTH_TEST );

}

},

setMask: function ( depthMask ) {

if ( currentDepthMask !== depthMask && ! locked ) {

gl.depthMask( depthMask ); currentDepthMask = depthMask;

}

},

setFunc: function ( depthFunc ) {

if ( currentDepthFunc !== depthFunc ) {

if ( depthFunc ) {

switch ( depthFunc ) {

case NeverDepth:

gl.depthFunc( gl.NEVER ); break;

case AlwaysDepth:

gl.depthFunc( gl.ALWAYS ); break;

case LessDepth:

gl.depthFunc( gl.LESS ); break;

case LessEqualDepth:

gl.depthFunc( gl.LEQUAL ); break;

case EqualDepth:

gl.depthFunc( gl.EQUAL ); break;

case GreaterEqualDepth:

gl.depthFunc( gl.GEQUAL ); break;

case GreaterDepth:

gl.depthFunc( gl.GREATER ); break;

case NotEqualDepth:

gl.depthFunc( gl.NOTEQUAL ); break;

default:

gl.depthFunc( gl.LEQUAL );

}

} else {

gl.depthFunc( gl.LEQUAL );

}

currentDepthFunc = depthFunc;

}

},

setLocked: function ( lock ) {

locked = lock;

},

setClear: function ( depth ) {

if ( currentDepthClear !== depth ) {

gl.clearDepth( depth ); currentDepthClear = depth;

}

},

reset: function () {

locked = false;

currentDepthMask = null; currentDepthFunc = null; currentDepthClear = null;

}

};

}

function StencilBuffer() {

var locked = false;

var currentStencilMask = null; var currentStencilFunc = null; var currentStencilRef = null; var currentStencilFuncMask = null; var currentStencilFail = null; var currentStencilZFail = null; var currentStencilZPass = null; var currentStencilClear = null;

return {

setTest: function ( stencilTest ) {

if ( stencilTest ) {

enable( gl.STENCIL_TEST );

} else {

disable( gl.STENCIL_TEST );

}

},

setMask: function ( stencilMask ) {

if ( currentStencilMask !== stencilMask && ! locked ) {

gl.stencilMask( stencilMask ); currentStencilMask = stencilMask;

}

},

setFunc: function ( stencilFunc, stencilRef, stencilMask ) {

if ( currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask ) {

gl.stencilFunc( stencilFunc, stencilRef, stencilMask );

currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilFuncMask = stencilMask;

}

},

setOp: function ( stencilFail, stencilZFail, stencilZPass ) {

if ( currentStencilFail  !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass ) {

gl.stencilOp( stencilFail, stencilZFail, stencilZPass );

currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass;

}

},

setLocked: function ( lock ) {

locked = lock;

},

setClear: function ( stencil ) {

if ( currentStencilClear !== stencil ) {

gl.clearStencil( stencil ); currentStencilClear = stencil;

}

},

reset: function () {

locked = false;

currentStencilMask = null; currentStencilFunc = null; currentStencilRef = null; currentStencilFuncMask = null; currentStencilFail = null; currentStencilZFail = null; currentStencilZPass = null; currentStencilClear = null;

}

};

}

//

var colorBuffer = new ColorBuffer(); var depthBuffer = new DepthBuffer(); var stencilBuffer = new StencilBuffer();

var maxVertexAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); var newAttributes = new Uint8Array( maxVertexAttributes ); var enabledAttributes = new Uint8Array( maxVertexAttributes ); var attributeDivisors = new Uint8Array( maxVertexAttributes );

var enabledCapabilities = {};

var compressedTextureFormats = null;

var currentProgram = null;

var currentBlendingEnabled = null; var currentBlending = null; var currentBlendEquation = null; var currentBlendSrc = null; var currentBlendDst = null; var currentBlendEquationAlpha = null; var currentBlendSrcAlpha = null; var currentBlendDstAlpha = null; var currentPremultipledAlpha = false;

var currentFlipSided = null; var currentCullFace = null;

var currentLineWidth = null;

var currentPolygonOffsetFactor = null; var currentPolygonOffsetUnits = null;

var maxTextures = gl.getParameter( gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS );

var lineWidthAvailable = false; var version = 0; var glVersion = gl.getParameter( gl.VERSION );

if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) {

version = parseFloat( /^WebGL\ ([0-9])/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 1.0 );

} else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) {

version = parseFloat( /^OpenGL\ ES\ ([0-9])/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 2.0 );

}

var currentTextureSlot = null; var currentBoundTextures = {};

var currentScissor = new Vector4(); var currentViewport = new Vector4();

function createTexture( type, target, count ) {

var data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4. var texture = gl.createTexture();

gl.bindTexture( type, texture ); gl.texParameteri( type, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); gl.texParameteri( type, gl.TEXTURE_MAG_FILTER, gl.NEAREST );

for ( var i = 0; i < count; i ++ ) {

gl.texImage2D( target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data );

}

return texture;

}

var emptyTextures = {}; emptyTextures[ gl.TEXTURE_2D ] = createTexture( gl.TEXTURE_2D, gl.TEXTURE_2D, 1 ); emptyTextures[ gl.TEXTURE_CUBE_MAP ] = createTexture( gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6 );

// init

colorBuffer.setClear( 0, 0, 0, 1 ); depthBuffer.setClear( 1 ); stencilBuffer.setClear( 0 );

enable( gl.DEPTH_TEST ); depthBuffer.setFunc( LessEqualDepth );

setFlipSided( false ); setCullFace( CullFaceBack ); enable( gl.CULL_FACE );

setBlending( NoBlending );

//

function initAttributes() {

for ( var i = 0, l = newAttributes.length; i < l; i ++ ) {

newAttributes[ i ] = 0;

}

}

function enableAttribute( attribute ) {

enableAttributeAndDivisor( attribute, 0 );

}

function enableAttributeAndDivisor( attribute, meshPerAttribute ) {

newAttributes[ attribute ] = 1;

if ( enabledAttributes[ attribute ] === 0 ) {

gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1;

}

if ( attributeDivisors[ attribute ] !== meshPerAttribute ) {

var extension = capabilities.isWebGL2 ? gl : extensions.get( 'ANGLE_instanced_arrays' );

extension[ capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE' ]( attribute, meshPerAttribute ); attributeDivisors[ attribute ] = meshPerAttribute;

}

}

function disableUnusedAttributes() {

for ( var i = 0, l = enabledAttributes.length; i !== l; ++ i ) {

if ( enabledAttributes[ i ] !== newAttributes[ i ] ) {

gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0;

}

}

}

function enable( id ) {

if ( enabledCapabilities[ id ] !== true ) {

gl.enable( id ); enabledCapabilities[ id ] = true;

}

}

function disable( id ) {

if ( enabledCapabilities[ id ] !== false ) {

gl.disable( id ); enabledCapabilities[ id ] = false;

}

}

function getCompressedTextureFormats() {

if ( compressedTextureFormats === null ) {

compressedTextureFormats = [];

if ( extensions.get( 'WEBGL_compressed_texture_pvrtc' ) || extensions.get( 'WEBGL_compressed_texture_s3tc' ) || extensions.get( 'WEBGL_compressed_texture_etc1' ) || extensions.get( 'WEBGL_compressed_texture_astc' ) ) {

var formats = gl.getParameter( gl.COMPRESSED_TEXTURE_FORMATS );

for ( var i = 0; i < formats.length; i ++ ) {

compressedTextureFormats.push( formats[ i ] );

}

}

}

return compressedTextureFormats;

}

function useProgram( program ) {

if ( currentProgram !== program ) {

gl.useProgram( program );

currentProgram = program;

return true;

}

return false;

}

function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) {

if ( blending === NoBlending ) {

if ( currentBlendingEnabled ) {

disable( gl.BLEND ); currentBlendingEnabled = false;

}

return;

}

if ( ! currentBlendingEnabled ) {

enable( gl.BLEND ); currentBlendingEnabled = true;

}

if ( blending !== CustomBlending ) {

if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) {

if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) {

gl.blendEquation( gl.FUNC_ADD );

currentBlendEquation = AddEquation; currentBlendEquationAlpha = AddEquation;

}

if ( premultipliedAlpha ) {

switch ( blending ) {

case NormalBlending: gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); break;

case AdditiveBlending: gl.blendFunc( gl.ONE, gl.ONE ); break;

case SubtractiveBlending: gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA ); break;

case MultiplyBlending: gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA ); break;

default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break;

}

} else {

switch ( blending ) {

case NormalBlending: gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); break;

case AdditiveBlending: gl.blendFunc( gl.SRC_ALPHA, gl.ONE ); break;

case SubtractiveBlending: gl.blendFunc( gl.ZERO, gl.ONE_MINUS_SRC_COLOR ); break;

case MultiplyBlending: gl.blendFunc( gl.ZERO, gl.SRC_COLOR ); break;

default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break;

}

}

currentBlendSrc = null; currentBlendDst = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null;

currentBlending = blending; currentPremultipledAlpha = premultipliedAlpha;

}

return;

}

// custom blending

blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst;

if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) {

gl.blendEquationSeparate( utils.convert( blendEquation ), utils.convert( blendEquationAlpha ) );

currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha;

}

if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) {

gl.blendFuncSeparate( utils.convert( blendSrc ), utils.convert( blendDst ), utils.convert( blendSrcAlpha ), utils.convert( blendDstAlpha ) );

currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha;

}

currentBlending = blending; currentPremultipledAlpha = null;

}

function setMaterial( material, frontFaceCW ) {

material.side === DoubleSide ? disable( gl.CULL_FACE ) : enable( gl.CULL_FACE );

var flipSided = ( material.side === BackSide ); if ( frontFaceCW ) flipSided = ! flipSided;

setFlipSided( flipSided );

( material.blending === NormalBlending && material.transparent === false ) ? setBlending( NoBlending ) : setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha );

depthBuffer.setFunc( material.depthFunc ); depthBuffer.setTest( material.depthTest ); depthBuffer.setMask( material.depthWrite ); colorBuffer.setMask( material.colorWrite );

setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );

}

//

function setFlipSided( flipSided ) {

if ( currentFlipSided !== flipSided ) {

if ( flipSided ) {

gl.frontFace( gl.CW );

} else {

gl.frontFace( gl.CCW );

}

currentFlipSided = flipSided;

}

}

function setCullFace( cullFace ) {

if ( cullFace !== CullFaceNone ) {

enable( gl.CULL_FACE );

if ( cullFace !== currentCullFace ) {

if ( cullFace === CullFaceBack ) {

gl.cullFace( gl.BACK );

} else if ( cullFace === CullFaceFront ) {

gl.cullFace( gl.FRONT );

} else {

gl.cullFace( gl.FRONT_AND_BACK );

}

}

} else {

disable( gl.CULL_FACE );

}

currentCullFace = cullFace;

}

function setLineWidth( width ) {

if ( width !== currentLineWidth ) {

if ( lineWidthAvailable ) gl.lineWidth( width );

currentLineWidth = width;

}

}

function setPolygonOffset( polygonOffset, factor, units ) {

if ( polygonOffset ) {

enable( gl.POLYGON_OFFSET_FILL );

if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) {

gl.polygonOffset( factor, units );

currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units;

}

} else {

disable( gl.POLYGON_OFFSET_FILL );

}

}

function setScissorTest( scissorTest ) {

if ( scissorTest ) {

enable( gl.SCISSOR_TEST );

} else {

disable( gl.SCISSOR_TEST );

}

}

// texture

function activeTexture( webglSlot ) {

if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1;

if ( currentTextureSlot !== webglSlot ) {

gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot;

}

}

function bindTexture( webglType, webglTexture ) {

if ( currentTextureSlot === null ) {

activeTexture();

}

var boundTexture = currentBoundTextures[ currentTextureSlot ];

if ( boundTexture === undefined ) {

boundTexture = { type: undefined, texture: undefined }; currentBoundTextures[ currentTextureSlot ] = boundTexture;

}

if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) {

gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] );

boundTexture.type = webglType; boundTexture.texture = webglTexture;

}

}

function compressedTexImage2D() {

try {

gl.compressedTexImage2D.apply( gl, arguments );

} catch ( error ) {

console.error( 'THREE.WebGLState:', error );

}

}

function texImage2D() {

try {

gl.texImage2D.apply( gl, arguments );

} catch ( error ) {

console.error( 'THREE.WebGLState:', error );

}

}

function texImage3D() {

try {

gl.texImage3D.apply( gl, arguments );

} catch ( error ) {

console.error( 'THREE.WebGLState:', error );

}

}

//

function scissor( scissor ) {

if ( currentScissor.equals( scissor ) === false ) {

gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); currentScissor.copy( scissor );

}

}

function viewport( viewport ) {

if ( currentViewport.equals( viewport ) === false ) {

gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); currentViewport.copy( viewport );

}

}

//

function reset() {

for ( var i = 0; i < enabledAttributes.length; i ++ ) {

if ( enabledAttributes[ i ] === 1 ) {

gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0;

}

}

enabledCapabilities = {};

compressedTextureFormats = null;

currentTextureSlot = null; currentBoundTextures = {};

currentProgram = null;

currentBlending = null;

currentFlipSided = null; currentCullFace = null;

colorBuffer.reset(); depthBuffer.reset(); stencilBuffer.reset();

}

return {

buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer },

initAttributes: initAttributes, enableAttribute: enableAttribute, enableAttributeAndDivisor: enableAttributeAndDivisor, disableUnusedAttributes: disableUnusedAttributes, enable: enable, disable: disable, getCompressedTextureFormats: getCompressedTextureFormats,

useProgram: useProgram,

setBlending: setBlending, setMaterial: setMaterial,

setFlipSided: setFlipSided, setCullFace: setCullFace,

setLineWidth: setLineWidth, setPolygonOffset: setPolygonOffset,

setScissorTest: setScissorTest,

activeTexture: activeTexture, bindTexture: bindTexture, compressedTexImage2D: compressedTexImage2D, texImage2D: texImage2D, texImage3D: texImage3D,

scissor: scissor, viewport: viewport,

reset: reset

};

}

/** * @author mrdoob / http://mrdoob.com/ */

function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) {

var _videoTextures = {}; var _canvas;

//

function clampToMaxSize( image, maxSize ) {

if ( image.width > maxSize || image.height > maxSize ) {

if ( 'data' in image ) {

console.warn( 'THREE.WebGLRenderer: image in DataTexture is too big (' + image.width + 'x' + image.height + ').' ); return;

}

// Warning: Scaling through the canvas will only work with images that use // premultiplied alpha.

var scale = maxSize / Math.max( image.width, image.height );

var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); canvas.width = Math.floor( image.width * scale ); canvas.height = Math.floor( image.height * scale );

var context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, image.width, image.height, 0, 0, canvas.width, canvas.height );

console.warn( 'THREE.WebGLRenderer: image is too big (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height );

return canvas;

}

return image;

}

function isPowerOfTwo( image ) {

return _Math.isPowerOfTwo( image.width ) && _Math.isPowerOfTwo( image.height );

}

function makePowerOfTwo( image ) {

if ( image instanceof HTMLImageElement || image instanceof HTMLCanvasElement || image instanceof ImageBitmap ) {

if ( _canvas === undefined ) _canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );

_canvas.width = _Math.floorPowerOfTwo( image.width ); _canvas.height = _Math.floorPowerOfTwo( image.height );

var context = _canvas.getContext( '2d' ); context.drawImage( image, 0, 0, _canvas.width, _canvas.height );

console.warn( 'THREE.WebGLRenderer: image is not power of two (' + image.width + 'x' + image.height + '). Resized to ' + _canvas.width + 'x' + _canvas.height );

return _canvas;

}

return image;

}

function textureNeedsPowerOfTwo( texture ) {

if ( capabilities.isWebGL2 ) return false;

return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) || ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter );

}

function textureNeedsGenerateMipmaps( texture, isPowerOfTwo ) {

return texture.generateMipmaps && isPowerOfTwo && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;

}

function generateMipmap( target, texture, width, height ) {

_gl.generateMipmap( target );

var textureProperties = properties.get( texture );

// Note: Math.log( x ) * Math.LOG2E used instead of Math.log2( x ) which is not supported by IE11 textureProperties.__maxMipLevel = Math.log( Math.max( width, height ) ) * Math.LOG2E;

}

function getInternalFormat( glFormat, glType ) {

if ( ! capabilities.isWebGL2 ) return glFormat;

if ( glFormat === _gl.RED ) {

if ( glType === _gl.FLOAT ) return _gl.R32F; if ( glType === _gl.HALF_FLOAT ) return _gl.R16F; if ( glType === _gl.UNSIGNED_BYTE ) return _gl.R8;

}

if ( glFormat === _gl.RGB ) {

if ( glType === _gl.FLOAT ) return _gl.RGB32F; if ( glType === _gl.HALF_FLOAT ) return _gl.RGB16F; if ( glType === _gl.UNSIGNED_BYTE ) return _gl.RGB8;

}

if ( glFormat === _gl.RGBA ) {

if ( glType === _gl.FLOAT ) return _gl.RGBA32F; if ( glType === _gl.HALF_FLOAT ) return _gl.RGBA16F; if ( glType === _gl.UNSIGNED_BYTE ) return _gl.RGBA8;

}

return glFormat;

}

// Fallback filters for non-power-of-2 textures

function filterFallback( f ) {

if ( f === NearestFilter || f === NearestMipMapNearestFilter || f === NearestMipMapLinearFilter ) {

return _gl.NEAREST;

}

return _gl.LINEAR;

}

//

function onTextureDispose( event ) {

var texture = event.target;

texture.removeEventListener( 'dispose', onTextureDispose );

deallocateTexture( texture );

if ( texture.isVideoTexture ) {

delete _videoTextures[ texture.id ];

}

info.memory.textures --;

}

function onRenderTargetDispose( event ) {

var renderTarget = event.target;

renderTarget.removeEventListener( 'dispose', onRenderTargetDispose );

deallocateRenderTarget( renderTarget );

info.memory.textures --;

}

//

function deallocateTexture( texture ) {

var textureProperties = properties.get( texture );

if ( texture.image && textureProperties.__image__webglTextureCube ) {

// cube texture

_gl.deleteTexture( textureProperties.__image__webglTextureCube );

} else {

// 2D texture

if ( textureProperties.__webglInit === undefined ) return;

_gl.deleteTexture( textureProperties.__webglTexture );

}

// remove all webgl properties properties.remove( texture );

}

function deallocateRenderTarget( renderTarget ) {

var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture );

if ( ! renderTarget ) return;

if ( textureProperties.__webglTexture !== undefined ) {

_gl.deleteTexture( textureProperties.__webglTexture );

}

if ( renderTarget.depthTexture ) {

renderTarget.depthTexture.dispose();

}

if ( renderTarget.isWebGLRenderTargetCube ) {

for ( var i = 0; i < 6; i ++ ) {

_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] );

}

} else {

_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer );

}

properties.remove( renderTarget.texture ); properties.remove( renderTarget );

}

//


function setTexture2D( texture, slot ) {

var textureProperties = properties.get( texture );

if ( texture.isVideoTexture ) updateVideoTexture( texture );

if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

var image = texture.image;

if ( image === undefined ) {

console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined' );

} else if ( image.complete === false ) {

console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' );

} else {

uploadTexture( textureProperties, texture, slot ); return;

}

}

state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );

}

function setTexture3D( texture, slot ) {

var textureProperties = properties.get( texture );

if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

uploadTexture( textureProperties, texture, slot ); return;

}

state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_3D, textureProperties.__webglTexture );

}


function setTextureCube( texture, slot ) {

var textureProperties = properties.get( texture );

if ( texture.image.length === 6 ) {

if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

if ( ! textureProperties.__image__webglTextureCube ) {

texture.addEventListener( 'dispose', onTextureDispose );

textureProperties.__image__webglTextureCube = _gl.createTexture();

info.memory.textures ++;

}

state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );

_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );

var isCompressed = ( texture && texture.isCompressedTexture ); var isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture );

var cubeImage = [];

for ( var i = 0; i < 6; i ++ ) {

if ( ! isCompressed && ! isDataTexture ) {

cubeImage[ i ] = clampToMaxSize( texture.image[ i ], capabilities.maxCubemapSize );

} else {

cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ];

}

}

var image = cubeImage[ 0 ], isPowerOfTwoImage = isPowerOfTwo( image ), glFormat = utils.convert( texture.format ), glType = utils.convert( texture.type ), glInternalFormat = getInternalFormat( glFormat, glType );

setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isPowerOfTwoImage );

for ( var i = 0; i < 6; i ++ ) {

if ( ! isCompressed ) {

if ( isDataTexture ) {

state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data );

} else {

state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[ i ] );

}

} else {

var mipmap, mipmaps = cubeImage[ i ].mipmaps;

for ( var j = 0, jl = mipmaps.length; j < jl; j ++ ) {

mipmap = mipmaps[ j ];

if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {

if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {

state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data );

} else {

console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' );

}

} else {

state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

}

}

}

}

if ( ! isCompressed ) {

textureProperties.__maxMipLevel = 0;

} else {

textureProperties.__maxMipLevel = mipmaps.length - 1;

}

if ( textureNeedsGenerateMipmaps( texture, isPowerOfTwoImage ) ) {

// We assume images for cube map have the same size. generateMipmap( _gl.TEXTURE_CUBE_MAP, texture, image.width, image.height );

}

textureProperties.__version = texture.version;

if ( texture.onUpdate ) texture.onUpdate( texture );

} else {

state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );

}

}

}

function setTextureCubeDynamic( texture, slot ) {

state.activeTexture( _gl.TEXTURE0 + slot ); state.bindTexture( _gl.TEXTURE_CUBE_MAP, properties.get( texture ).__webglTexture );

}

function setTextureParameters( textureType, texture, isPowerOfTwoImage ) {

var extension;

if ( isPowerOfTwoImage ) {

_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, utils.convert( texture.wrapS ) ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, utils.convert( texture.wrapT ) );

_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, utils.convert( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, utils.convert( texture.minFilter ) );

} else {

_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE );

if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) {

console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.' );

}

_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) );

if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) {

console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.' );

}

}

extension = extensions.get( 'EXT_texture_filter_anisotropic' );

if ( extension ) {

if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return; if ( texture.type === HalfFloatType && ( capabilities.isWebGL2 || extensions.get( 'OES_texture_half_float_linear' ) ) === null ) return;

if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) {

_gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) ); properties.get( texture ).__currentAnisotropy = texture.anisotropy;

}

}

}

function uploadTexture( textureProperties, texture, slot ) {

var textureType;

if ( texture.isDataTexture3D ) {

textureType = _gl.TEXTURE_3D;

} else {

textureType = _gl.TEXTURE_2D;

}


if ( textureProperties.__webglInit === undefined ) {

textureProperties.__webglInit = true;

texture.addEventListener( 'dispose', onTextureDispose );

textureProperties.__webglTexture = _gl.createTexture();

info.memory.textures ++;

} state.activeTexture( _gl.TEXTURE0 + slot );


state.bindTexture( textureType, textureProperties.__webglTexture );


_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment );

var image = clampToMaxSize( texture.image, capabilities.maxTextureSize );

if ( textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( image ) === false ) {

image = makePowerOfTwo( image );

}

var isPowerOfTwoImage = isPowerOfTwo( image ), glFormat = utils.convert( texture.format ), glType = utils.convert( texture.type ), glInternalFormat = getInternalFormat( glFormat, glType );

setTextureParameters( textureType, texture, isPowerOfTwoImage );

var mipmap, mipmaps = texture.mipmaps;

if ( texture.isDepthTexture ) {

// populate depth texture with dummy data

glInternalFormat = _gl.DEPTH_COMPONENT;

if ( texture.type === FloatType ) {

if ( ! capabilities.isWebGL2 ) throw new Error( 'Float Depth Texture only supported in WebGL2.0' ); glInternalFormat = _gl.DEPTH_COMPONENT32F;

} else if ( capabilities.isWebGL2 ) {

// WebGL 2.0 requires signed internalformat for glTexImage2D glInternalFormat = _gl.DEPTH_COMPONENT16;

}

if ( texture.format === DepthFormat && glInternalFormat === _gl.DEPTH_COMPONENT ) {

// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) {

console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' );

texture.type = UnsignedShortType; glType = utils.convert( texture.type );

}

}

// Depth stencil textures need the DEPTH_STENCIL internal format // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.format === DepthStencilFormat ) {

glInternalFormat = _gl.DEPTH_STENCIL;

// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedInt248Type ) {

console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' );

texture.type = UnsignedInt248Type; glType = utils.convert( texture.type );

}

}

state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null );

} else if ( texture.isDataTexture ) {

// use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels

if ( mipmaps.length > 0 && isPowerOfTwoImage ) {

for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

mipmap = mipmaps[ i ]; state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

}

texture.generateMipmaps = false; textureProperties.__maxMipLevel = mipmaps.length - 1;

} else {

state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data ); textureProperties.__maxMipLevel = 0;

}

} else if ( texture.isCompressedTexture ) {

for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

mipmap = mipmaps[ i ];

if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {

if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {

state.compressedTexImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data );

} else {

console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' );

}

} else {

state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

}

}

textureProperties.__maxMipLevel = mipmaps.length - 1;

} else if ( texture.isDataTexture3D ) {

state.texImage3D( _gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); textureProperties.__maxMipLevel = 0;

} else {

// regular Texture (image, video, canvas)

// use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels

if ( mipmaps.length > 0 && isPowerOfTwoImage ) {

for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

mipmap = mipmaps[ i ]; state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap );

}

texture.generateMipmaps = false; textureProperties.__maxMipLevel = mipmaps.length - 1;

} else {

state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image ); textureProperties.__maxMipLevel = 0;

}

}

if ( textureNeedsGenerateMipmaps( texture, isPowerOfTwoImage ) ) {

generateMipmap( _gl.TEXTURE_2D, texture, image.width, image.height );

}

textureProperties.__version = texture.version;

if ( texture.onUpdate ) texture.onUpdate( texture );

}

// Render targets

// Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) {

var glFormat = utils.convert( renderTarget.texture.format ); var glType = utils.convert( renderTarget.texture.type ); var glInternalFormat = getInternalFormat( glFormat, glType ); state.texImage2D( textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, null );

}

// Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage( renderbuffer, renderTarget ) {

_gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer );

if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) {

_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );

} else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) {

_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );

} else {

// FIXME: We don't support !depth !stencil _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height );

}

_gl.bindRenderbuffer( _gl.RENDERBUFFER, null );

}

// Setup resources for a Depth Texture for a FBO (needs an extension) function setupDepthTexture( framebuffer, renderTarget ) {

var isCube = ( renderTarget && renderTarget.isWebGLRenderTargetCube ); if ( isCube ) throw new Error( 'Depth Texture with cube render targets is not supported' );

_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );

if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) {

throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' );

}

// upload an empty depth texture with framebuffer size if ( ! properties.get( renderTarget.depthTexture ).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height ) {

renderTarget.depthTexture.image.width = renderTarget.width; renderTarget.depthTexture.image.height = renderTarget.height; renderTarget.depthTexture.needsUpdate = true;

}

setTexture2D( renderTarget.depthTexture, 0 );

var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture;

if ( renderTarget.depthTexture.format === DepthFormat ) {

_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 );

} else if ( renderTarget.depthTexture.format === DepthStencilFormat ) {

_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 );

} else {

throw new Error( 'Unknown depthTexture format' );

}

}

// Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer( renderTarget ) {

var renderTargetProperties = properties.get( renderTarget );

var isCube = ( renderTarget.isWebGLRenderTargetCube === true );

if ( renderTarget.depthTexture ) {

if ( isCube ) throw new Error( 'target.depthTexture not supported in Cube render targets' );

setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget );

} else {

if ( isCube ) {

renderTargetProperties.__webglDepthbuffer = [];

for ( var i = 0; i < 6; i ++ ) {

_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] ); renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget );

}

} else {

_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget );

}

}

_gl.bindFramebuffer( _gl.FRAMEBUFFER, null );

}

// Set up GL resources for the render target function setupRenderTarget( renderTarget ) {

var renderTargetProperties = properties.get( renderTarget ); var textureProperties = properties.get( renderTarget.texture );

renderTarget.addEventListener( 'dispose', onRenderTargetDispose );

textureProperties.__webglTexture = _gl.createTexture();

info.memory.textures ++;

var isCube = ( renderTarget.isWebGLRenderTargetCube === true ); var isTargetPowerOfTwo = isPowerOfTwo( renderTarget );

// Setup framebuffer

if ( isCube ) {

renderTargetProperties.__webglFramebuffer = [];

for ( var i = 0; i < 6; i ++ ) {

renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer();

}

} else {

renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();

}

// Setup color buffer

if ( isCube ) {

state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, isTargetPowerOfTwo );

for ( var i = 0; i < 6; i ++ ) {

setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i );

}

if ( textureNeedsGenerateMipmaps( renderTarget.texture, isTargetPowerOfTwo ) ) {

generateMipmap( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, renderTarget.width, renderTarget.height );

}

state.bindTexture( _gl.TEXTURE_CUBE_MAP, null );

} else {

state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_2D, renderTarget.texture, isTargetPowerOfTwo ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D );

if ( textureNeedsGenerateMipmaps( renderTarget.texture, isTargetPowerOfTwo ) ) {

generateMipmap( _gl.TEXTURE_2D, renderTarget.texture, renderTarget.width, renderTarget.height );

}

state.bindTexture( _gl.TEXTURE_2D, null );

}

// Setup depth and stencil buffers

if ( renderTarget.depthBuffer ) {

setupDepthRenderbuffer( renderTarget );

}

}

function updateRenderTargetMipmap( renderTarget ) {

var texture = renderTarget.texture; var isTargetPowerOfTwo = isPowerOfTwo( renderTarget );

if ( textureNeedsGenerateMipmaps( texture, isTargetPowerOfTwo ) ) {

var target = renderTarget.isWebGLRenderTargetCube ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D; var webglTexture = properties.get( texture ).__webglTexture;

state.bindTexture( target, webglTexture ); generateMipmap( target, texture, renderTarget.width, renderTarget.height ); state.bindTexture( target, null );

}

}

function updateVideoTexture( texture ) {

var id = texture.id; var frame = info.render.frame;

// Check the last frame we updated the VideoTexture

if ( _videoTextures[ id ] !== frame ) {

_videoTextures[ id ] = frame; texture.update();

}

}

this.setTexture2D = setTexture2D; this.setTexture3D = setTexture3D; this.setTextureCube = setTextureCube; this.setTextureCubeDynamic = setTextureCubeDynamic; this.setupRenderTarget = setupRenderTarget; this.updateRenderTargetMipmap = updateRenderTargetMipmap;

}

/** * @author thespite / http://www.twitter.com/thespite */

function WebGLUtils( gl, extensions, capabilities ) {

function convert( p ) {

var extension;

if ( p === RepeatWrapping ) return gl.REPEAT; if ( p === ClampToEdgeWrapping ) return gl.CLAMP_TO_EDGE; if ( p === MirroredRepeatWrapping ) return gl.MIRRORED_REPEAT;

if ( p === NearestFilter ) return gl.NEAREST; if ( p === NearestMipMapNearestFilter ) return gl.NEAREST_MIPMAP_NEAREST; if ( p === NearestMipMapLinearFilter ) return gl.NEAREST_MIPMAP_LINEAR;

if ( p === LinearFilter ) return gl.LINEAR; if ( p === LinearMipMapNearestFilter ) return gl.LINEAR_MIPMAP_NEAREST; if ( p === LinearMipMapLinearFilter ) return gl.LINEAR_MIPMAP_LINEAR;

if ( p === UnsignedByteType ) return gl.UNSIGNED_BYTE; if ( p === UnsignedShort4444Type ) return gl.UNSIGNED_SHORT_4_4_4_4; if ( p === UnsignedShort5551Type ) return gl.UNSIGNED_SHORT_5_5_5_1; if ( p === UnsignedShort565Type ) return gl.UNSIGNED_SHORT_5_6_5;

if ( p === ByteType ) return gl.BYTE; if ( p === ShortType ) return gl.SHORT; if ( p === UnsignedShortType ) return gl.UNSIGNED_SHORT; if ( p === IntType ) return gl.INT; if ( p === UnsignedIntType ) return gl.UNSIGNED_INT; if ( p === FloatType ) return gl.FLOAT;

if ( p === HalfFloatType ) {

if ( capabilities.isWebGL2 ) return gl.HALF_FLOAT;

extension = extensions.get( 'OES_texture_half_float' );

if ( extension !== null ) return extension.HALF_FLOAT_OES;

}

if ( p === AlphaFormat ) return gl.ALPHA; if ( p === RGBFormat ) return gl.RGB; if ( p === RGBAFormat ) return gl.RGBA; if ( p === LuminanceFormat ) return gl.LUMINANCE; if ( p === LuminanceAlphaFormat ) return gl.LUMINANCE_ALPHA; if ( p === DepthFormat ) return gl.DEPTH_COMPONENT; if ( p === DepthStencilFormat ) return gl.DEPTH_STENCIL; if ( p === RedFormat ) return gl.RED;

if ( p === AddEquation ) return gl.FUNC_ADD; if ( p === SubtractEquation ) return gl.FUNC_SUBTRACT; if ( p === ReverseSubtractEquation ) return gl.FUNC_REVERSE_SUBTRACT;

if ( p === ZeroFactor ) return gl.ZERO; if ( p === OneFactor ) return gl.ONE; if ( p === SrcColorFactor ) return gl.SRC_COLOR; if ( p === OneMinusSrcColorFactor ) return gl.ONE_MINUS_SRC_COLOR; if ( p === SrcAlphaFactor ) return gl.SRC_ALPHA; if ( p === OneMinusSrcAlphaFactor ) return gl.ONE_MINUS_SRC_ALPHA; if ( p === DstAlphaFactor ) return gl.DST_ALPHA; if ( p === OneMinusDstAlphaFactor ) return gl.ONE_MINUS_DST_ALPHA;

if ( p === DstColorFactor ) return gl.DST_COLOR; if ( p === OneMinusDstColorFactor ) return gl.ONE_MINUS_DST_COLOR; if ( p === SrcAlphaSaturateFactor ) return gl.SRC_ALPHA_SATURATE;

if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) {

extension = extensions.get( 'WEBGL_compressed_texture_s3tc' );

if ( extension !== null ) {

if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;

}

}

if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) {

extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' );

if ( extension !== null ) {

if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;

}

}

if ( p === RGB_ETC1_Format ) {

extension = extensions.get( 'WEBGL_compressed_texture_etc1' );

if ( extension !== null ) return extension.COMPRESSED_RGB_ETC1_WEBGL;

}

if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ) {

extension = extensions.get( 'WEBGL_compressed_texture_astc' );

if ( extension !== null ) {

return p;

}

}

if ( p === MinEquation || p === MaxEquation ) {

if ( capabilities.isWebGL2 ) {

if ( p === MinEquation ) return gl.MIN; if ( p === MaxEquation ) return gl.MAX;

}

extension = extensions.get( 'EXT_blend_minmax' );

if ( extension !== null ) {

if ( p === MinEquation ) return extension.MIN_EXT; if ( p === MaxEquation ) return extension.MAX_EXT;

}

}

if ( p === UnsignedInt248Type ) {

if ( capabilities.isWebGL2 ) return gl.UNSIGNED_INT_24_8;

extension = extensions.get( 'WEBGL_depth_texture' );

if ( extension !== null ) return extension.UNSIGNED_INT_24_8_WEBGL;

}

return 0;

}

return { convert: convert };

}

/** * @author mrdoob / http://mrdoob.com/ */

function Group() {

Object3D.call( this );

this.type = 'Group';

}

Group.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: Group,

isGroup: true

} );

/** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author WestLangley / http://github.com/WestLangley */

function Camera() {

Object3D.call( this );

this.type = 'Camera';

this.matrixWorldInverse = new Matrix4();

this.projectionMatrix = new Matrix4(); this.projectionMatrixInverse = new Matrix4();

}

Camera.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: Camera,

isCamera: true,

copy: function ( source, recursive ) {

Object3D.prototype.copy.call( this, source, recursive );

this.matrixWorldInverse.copy( source.matrixWorldInverse );

this.projectionMatrix.copy( source.projectionMatrix ); this.projectionMatrixInverse.copy( source.projectionMatrixInverse );

return this;

},

getWorldDirection: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Camera: .getWorldDirection() target is now required' ); target = new Vector3();

}

this.updateMatrixWorld( true );

var e = this.matrixWorld.elements;

return target.set( - e[ 8 ], - e[ 9 ], - e[ 10 ] ).normalize();

},

updateMatrixWorld: function ( force ) {

Object3D.prototype.updateMatrixWorld.call( this, force );

this.matrixWorldInverse.getInverse( this.matrixWorld );

},

clone: function () {

return new this.constructor().copy( this );

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author greggman / http://games.greggman.com/ * @author zz85 / http://www.lab4games.net/zz85/blog * @author tschw */

function PerspectiveCamera( fov, aspect, near, far ) {

Camera.call( this );

this.type = 'PerspectiveCamera';

this.fov = fov !== undefined ? fov : 50; this.zoom = 1;

this.near = near !== undefined ? near : 0.1; this.far = far !== undefined ? far : 2000; this.focus = 10;

this.aspect = aspect !== undefined ? aspect : 1; this.view = null;

this.filmGauge = 35; // width of the film (default in millimeters) this.filmOffset = 0; // horizontal film offset (same unit as gauge)

this.updateProjectionMatrix();

}

PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), {

constructor: PerspectiveCamera,

isPerspectiveCamera: true,

copy: function ( source, recursive ) {

Camera.prototype.copy.call( this, source, recursive );

this.fov = source.fov; this.zoom = source.zoom;

this.near = source.near; this.far = source.far; this.focus = source.focus;

this.aspect = source.aspect; this.view = source.view === null ? null : Object.assign( {}, source.view );

this.filmGauge = source.filmGauge; this.filmOffset = source.filmOffset;

return this;

},

/** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength: function ( focalLength ) {

// see http://www.bobatkins.com/photography/technical/field_of_view.html var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;

this.fov = _Math.RAD2DEG * 2 * Math.atan( vExtentSlope ); this.updateProjectionMatrix();

},

/** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength: function () {

var vExtentSlope = Math.tan( _Math.DEG2RAD * 0.5 * this.fov );

return 0.5 * this.getFilmHeight() / vExtentSlope;

},

getEffectiveFOV: function () {

return _Math.RAD2DEG * 2 * Math.atan( Math.tan( _Math.DEG2RAD * 0.5 * this.fov ) / this.zoom );

},

getFilmWidth: function () {

// film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min( this.aspect, 1 );

},

getFilmHeight: function () {

// film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max( this.aspect, 1 );

},

/** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * var w = 1920; * var h = 1080; * var fullWidth = w * 3; * var fullHeight = h * 2; * * --A-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {

this.aspect = fullWidth / fullHeight;

if ( this.view === null ) {

this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 };

}

this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height;

this.updateProjectionMatrix();

},

clearViewOffset: function () {

if ( this.view !== null ) {

this.view.enabled = false;

}

this.updateProjectionMatrix();

},

updateProjectionMatrix: function () {

var near = this.near, top = near * Math.tan( _Math.DEG2RAD * 0.5 * this.fov ) / this.zoom, height = 2 * top, width = this.aspect * height, left = - 0.5 * width, view = this.view;

if ( this.view !== null && this.view.enabled ) {

var fullWidth = view.fullWidth, fullHeight = view.fullHeight;

left += view.offsetX * width / fullWidth; top -= view.offsetY * height / fullHeight; width *= view.width / fullWidth; height *= view.height / fullHeight;

}

var skew = this.filmOffset; if ( skew !== 0 ) left += near * skew / this.getFilmWidth();

this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );

this.projectionMatrixInverse.getInverse( this.projectionMatrix );

},

toJSON: function ( meta ) {

var data = Object3D.prototype.toJSON.call( this, meta );

data.object.fov = this.fov; data.object.zoom = this.zoom;

data.object.near = this.near; data.object.far = this.far; data.object.focus = this.focus;

data.object.aspect = this.aspect;

if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );

data.object.filmGauge = this.filmGauge; data.object.filmOffset = this.filmOffset;

return data;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function ArrayCamera( array ) {

PerspectiveCamera.call( this );

this.cameras = array || [];

}

ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), {

constructor: ArrayCamera,

isArrayCamera: true

} );

/** * @author mrdoob / http://mrdoob.com/ */

function WebVRManager( renderer ) {

var scope = this;

var device = null; var frameData = null;

var poseTarget = null;

var controllers = []; var standingMatrix = new Matrix4(); var standingMatrixInverse = new Matrix4();

var frameOfReferenceType = 'stage';

if ( typeof window !== 'undefined' && 'VRFrameData' in window ) {

frameData = new window.VRFrameData(); window.addEventListener( 'vrdisplaypresentchange', onVRDisplayPresentChange, false );

}

var matrixWorldInverse = new Matrix4(); var tempQuaternion = new Quaternion(); var tempPosition = new Vector3();

var cameraL = new PerspectiveCamera(); cameraL.bounds = new Vector4( 0.0, 0.0, 0.5, 1.0 ); cameraL.layers.enable( 1 );

var cameraR = new PerspectiveCamera(); cameraR.bounds = new Vector4( 0.5, 0.0, 0.5, 1.0 ); cameraR.layers.enable( 2 );

var cameraVR = new ArrayCamera( [ cameraL, cameraR ] ); cameraVR.layers.enable( 1 ); cameraVR.layers.enable( 2 );

//

function isPresenting() {

return device !== null && device.isPresenting === true;

}

var currentSize, currentPixelRatio;

function onVRDisplayPresentChange() {

if ( isPresenting() ) {

var eyeParameters = device.getEyeParameters( 'left' ); var renderWidth = eyeParameters.renderWidth; var renderHeight = eyeParameters.renderHeight;

currentPixelRatio = renderer.getPixelRatio(); currentSize = renderer.getSize();

renderer.setDrawingBufferSize( renderWidth * 2, renderHeight, 1 );

animation.start();

} else {

if ( scope.enabled ) {

renderer.setDrawingBufferSize( currentSize.width, currentSize.height, currentPixelRatio );

}

animation.stop();

}

}

//

var triggers = [];

function findGamepad( id ) {

var gamepads = navigator.getGamepads && navigator.getGamepads();

for ( var i = 0, j = 0, l = gamepads.length; i < l; i ++ ) {

var gamepad = gamepads[ i ];

if ( gamepad && ( gamepad.id === 'Daydream Controller' || gamepad.id === 'Gear VR Controller' || gamepad.id === 'Oculus Go Controller' || gamepad.id === 'OpenVR Gamepad' || gamepad.id.startsWith( 'Oculus Touch' ) || gamepad.id.startsWith( 'Spatial Controller' ) ) ) {

if ( j === id ) return gamepad;

j ++;

}

}

}

function updateControllers() {

for ( var i = 0; i < controllers.length; i ++ ) {

var controller = controllers[ i ];

var gamepad = findGamepad( i );

if ( gamepad !== undefined && gamepad.pose !== undefined ) {

if ( gamepad.pose === null ) return;

// Pose

var pose = gamepad.pose;

if ( pose.hasPosition === false ) controller.position.set( 0.2, - 0.6, - 0.05 );

if ( pose.position !== null ) controller.position.fromArray( pose.position ); if ( pose.orientation !== null ) controller.quaternion.fromArray( pose.orientation ); controller.matrix.compose( controller.position, controller.quaternion, controller.scale ); controller.matrix.premultiply( standingMatrix ); controller.matrix.decompose( controller.position, controller.quaternion, controller.scale ); controller.matrixWorldNeedsUpdate = true; controller.visible = true;

// Trigger

var buttonId = gamepad.id === 'Daydream Controller' ? 0 : 1;

if ( triggers[ i ] !== gamepad.buttons[ buttonId ].pressed ) {

triggers[ i ] = gamepad.buttons[ buttonId ].pressed;

if ( triggers[ i ] === true ) {

controller.dispatchEvent( { type: 'selectstart' } );

} else {

controller.dispatchEvent( { type: 'selectend' } ); controller.dispatchEvent( { type: 'select' } );

}

}

} else {

controller.visible = false;

}

}

}

//

this.enabled = false;

this.getController = function ( id ) {

var controller = controllers[ id ];

if ( controller === undefined ) {

controller = new Group(); controller.matrixAutoUpdate = false; controller.visible = false;

controllers[ id ] = controller;

}

return controller;

};

this.getDevice = function () {

return device;

};

this.setDevice = function ( value ) {

if ( value !== undefined ) device = value;

animation.setContext( value );

};

this.setFrameOfReferenceType = function ( value ) {

frameOfReferenceType = value;

};

this.setPoseTarget = function ( object ) {

if ( object !== undefined ) poseTarget = object;

};

this.getCamera = function ( camera ) {

var userHeight = frameOfReferenceType === 'stage' ? 1.6 : 0;

if ( device === null ) {

camera.position.set( 0, userHeight, 0 ); return camera;

}

device.depthNear = camera.near; device.depthFar = camera.far;

device.getFrameData( frameData );

//

if ( frameOfReferenceType === 'stage' ) {

var stageParameters = device.stageParameters;

if ( stageParameters ) {

standingMatrix.fromArray( stageParameters.sittingToStandingTransform );

} else {

standingMatrix.makeTranslation( 0, userHeight, 0 );

}

}


var pose = frameData.pose; var poseObject = poseTarget !== null ? poseTarget : camera;

// We want to manipulate poseObject by its position and quaternion components since users may rely on them. poseObject.matrix.copy( standingMatrix ); poseObject.matrix.decompose( poseObject.position, poseObject.quaternion, poseObject.scale );

if ( pose.orientation !== null ) {

tempQuaternion.fromArray( pose.orientation ); poseObject.quaternion.multiply( tempQuaternion );

}

if ( pose.position !== null ) {

tempQuaternion.setFromRotationMatrix( standingMatrix ); tempPosition.fromArray( pose.position ); tempPosition.applyQuaternion( tempQuaternion ); poseObject.position.add( tempPosition );

}

poseObject.updateMatrixWorld();

if ( device.isPresenting === false ) return camera;

//

cameraL.near = camera.near; cameraR.near = camera.near;

cameraL.far = camera.far; cameraR.far = camera.far;

cameraVR.matrixWorld.copy( camera.matrixWorld ); cameraVR.matrixWorldInverse.copy( camera.matrixWorldInverse );

cameraL.matrixWorldInverse.fromArray( frameData.leftViewMatrix ); cameraR.matrixWorldInverse.fromArray( frameData.rightViewMatrix );

// TODO (mrdoob) Double check this code

standingMatrixInverse.getInverse( standingMatrix );

if ( frameOfReferenceType === 'stage' ) {

cameraL.matrixWorldInverse.multiply( standingMatrixInverse ); cameraR.matrixWorldInverse.multiply( standingMatrixInverse );

}

var parent = poseObject.parent;

if ( parent !== null ) {

matrixWorldInverse.getInverse( parent.matrixWorld );

cameraL.matrixWorldInverse.multiply( matrixWorldInverse ); cameraR.matrixWorldInverse.multiply( matrixWorldInverse );

}

// envMap and Mirror needs camera.matrixWorld

cameraL.matrixWorld.getInverse( cameraL.matrixWorldInverse ); cameraR.matrixWorld.getInverse( cameraR.matrixWorldInverse );

cameraL.projectionMatrix.fromArray( frameData.leftProjectionMatrix ); cameraR.projectionMatrix.fromArray( frameData.rightProjectionMatrix );

// HACK (mrdoob) // https://github.com/w3c/webvr/issues/203

cameraVR.projectionMatrix.copy( cameraL.projectionMatrix );

//

var layers = device.getLayers();

if ( layers.length ) {

var layer = layers[ 0 ];

if ( layer.leftBounds !== null && layer.leftBounds.length === 4 ) {

cameraL.bounds.fromArray( layer.leftBounds );

}

if ( layer.rightBounds !== null && layer.rightBounds.length === 4 ) {

cameraR.bounds.fromArray( layer.rightBounds );

}

}

updateControllers();

return cameraVR;

};

this.getStandingMatrix = function () {

return standingMatrix;

};

this.isPresenting = isPresenting;

// Animation Loop

var animation = new WebGLAnimation();

this.setAnimationLoop = function ( callback ) {

animation.setAnimationLoop( callback );

};

this.submitFrame = function () {

if ( isPresenting() ) device.submitFrame();

};

this.dispose = function () {

if ( typeof window !== 'undefined' ) {

window.removeEventListener( 'vrdisplaypresentchange', onVRDisplayPresentChange );

}

};

}

/** * @author mrdoob / http://mrdoob.com/ */

function WebXRManager( renderer ) {

var gl = renderer.context;

var device = null; var session = null;

var frameOfReference = null; var frameOfReferenceType = 'stage';

var pose = null;

var controllers = []; var inputSources = [];

function isPresenting() {

return session !== null && frameOfReference !== null;

}

//

var cameraL = new PerspectiveCamera(); cameraL.layers.enable( 1 ); cameraL.viewport = new Vector4();

var cameraR = new PerspectiveCamera(); cameraR.layers.enable( 2 ); cameraR.viewport = new Vector4();

var cameraVR = new ArrayCamera( [ cameraL, cameraR ] ); cameraVR.layers.enable( 1 ); cameraVR.layers.enable( 2 );

//

this.enabled = false;

this.getController = function ( id ) {

var controller = controllers[ id ];

if ( controller === undefined ) {

controller = new Group(); controller.matrixAutoUpdate = false; controller.visible = false;

controllers[ id ] = controller;

}

return controller;

};

this.getDevice = function () {

return device;

};

this.setDevice = function ( value ) {

if ( value !== undefined ) device = value; if ( value instanceof XRDevice ) gl.setCompatibleXRDevice( value );

};

//

function onSessionEvent( event ) {

var controller = controllers[ inputSources.indexOf( event.inputSource ) ]; if ( controller ) controller.dispatchEvent( { type: event.type } );

}

function onSessionEnd() {

renderer.setFramebuffer( null ); animation.stop();

}

this.setFrameOfReferenceType = function ( value ) {

frameOfReferenceType = value;

};

this.setSession = function ( value ) {

session = value;

if ( session !== null ) {

session.addEventListener( 'select', onSessionEvent ); session.addEventListener( 'selectstart', onSessionEvent ); session.addEventListener( 'selectend', onSessionEvent ); session.addEventListener( 'end', onSessionEnd );

session.baseLayer = new XRWebGLLayer( session, gl ); session.requestFrameOfReference( frameOfReferenceType ).then( function ( value ) {

frameOfReference = value;

renderer.setFramebuffer( session.baseLayer.framebuffer );

animation.setContext( session ); animation.start();

} );

//

inputSources = session.getInputSources();

session.addEventListener( 'inputsourceschange', function () {

inputSources = session.getInputSources(); console.log( inputSources );

} );

}

};

function updateCamera( camera, parent ) {

if ( parent === null ) {

camera.matrixWorld.copy( camera.matrix );

} else {

camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix );

}

camera.matrixWorldInverse.getInverse( camera.matrixWorld );

}

this.getCamera = function ( camera ) {

if ( isPresenting() ) {

var parent = camera.parent; var cameras = cameraVR.cameras;

// apply camera.parent to cameraVR

updateCamera( cameraVR, parent );

for ( var i = 0; i < cameras.length; i ++ ) {

updateCamera( cameras[ i ], parent );

}

// update camera and its children

camera.matrixWorld.copy( cameraVR.matrixWorld );

var children = camera.children;

for ( var i = 0, l = children.length; i < l; i ++ ) {

children[ i ].updateMatrixWorld( true );

}

return cameraVR;

}

return camera;

};

this.isPresenting = isPresenting;

// Animation Loop

var onAnimationFrameCallback = null;

function onAnimationFrame( time, frame ) {

pose = frame.getDevicePose( frameOfReference );

if ( pose !== null ) {

var layer = session.baseLayer; var views = frame.views;

for ( var i = 0; i < views.length; i ++ ) {

var view = views[ i ]; var viewport = layer.getViewport( view ); var viewMatrix = pose.getViewMatrix( view );

var camera = cameraVR.cameras[ i ]; camera.matrix.fromArray( viewMatrix ).getInverse( camera.matrix ); camera.projectionMatrix.fromArray( view.projectionMatrix ); camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height );

if ( i === 0 ) {

cameraVR.matrix.copy( camera.matrix );

// HACK (mrdoob) // https://github.com/w3c/webvr/issues/203

cameraVR.projectionMatrix.copy( camera.projectionMatrix );

}

}

}

//

for ( var i = 0; i < controllers.length; i ++ ) {

var controller = controllers[ i ];

var inputSource = inputSources[ i ];

if ( inputSource ) {

var inputPose = frame.getInputPose( inputSource, frameOfReference );

if ( inputPose !== null ) {

if ( 'targetRay' in inputPose ) {

controller.matrix.elements = inputPose.targetRay.transformMatrix;

} else if ( 'pointerMatrix' in inputPose ) {

// DEPRECATED

controller.matrix.elements = inputPose.pointerMatrix;

}

controller.matrix.decompose( controller.position, controller.rotation, controller.scale ); controller.visible = true;

continue;

}

}

controller.visible = false;

}

if ( onAnimationFrameCallback ) onAnimationFrameCallback( time );

}

var animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame );

this.setAnimationLoop = function ( callback ) {

onAnimationFrameCallback = callback;

};

this.dispose = function () {};

// DEPRECATED

this.getStandingMatrix = function () {

console.warn( 'THREE.WebXRManager: getStandingMatrix() is no longer needed.' ); return new THREE.Matrix4();

};

this.submitFrame = function () {};

}

/** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ * @author tschw */

function WebGLRenderer( parameters ) {

console.log( 'THREE.WebGLRenderer', REVISION );

parameters = parameters || {};

var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ), _context = parameters.context !== undefined ? parameters.context : null,

_alpha = parameters.alpha !== undefined ? parameters.alpha : false, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default';

var currentRenderList = null; var currentRenderState = null;

// public properties

this.domElement = _canvas; this.context = null;

// clearing

this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true;

// scene graph

this.sortObjects = true;

// user-defined clipping

this.clippingPlanes = []; this.localClippingEnabled = false;

// physically based shading

this.gammaFactor = 2.0; // for backwards compatibility this.gammaInput = false; this.gammaOutput = false;

// physical lights

this.physicallyCorrectLights = false;

// tone mapping

this.toneMapping = LinearToneMapping; this.toneMappingExposure = 1.0; this.toneMappingWhitePoint = 1.0;

// morphs

this.maxMorphTargets = 8; this.maxMorphNormals = 4;

// internal properties

var _this = this,

_isContextLost = false,

// internal state cache

_framebuffer = null,

_currentRenderTarget = null, _currentFramebuffer = null, _currentMaterialId = - 1,

// geometry and program caching

_currentGeometryProgram = { geometry: null, program: null, wireframe: false },

_currentCamera = null, _currentArrayCamera = null,

_currentViewport = new Vector4(), _currentScissor = new Vector4(), _currentScissorTest = null,

//

_usedTextureUnits = 0,

//

_width = _canvas.width, _height = _canvas.height,

_pixelRatio = 1,

_viewport = new Vector4( 0, 0, _width, _height ), _scissor = new Vector4( 0, 0, _width, _height ), _scissorTest = false,

// frustum

_frustum = new Frustum(),

// clipping

_clipping = new WebGLClipping(), _clippingEnabled = false, _localClippingEnabled = false,

// camera matrices cache

_projScreenMatrix = new Matrix4(),

_vector3 = new Vector3();

function getTargetPixelRatio() {

return _currentRenderTarget === null ? _pixelRatio : 1;

}

// initialize

var _gl;

try {

var contextAttributes = { alpha: _alpha, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer, powerPreference: _powerPreference };

// event listeners must be registered before WebGL context is created, see #12753

_canvas.addEventListener( 'webglcontextlost', onContextLost, false ); _canvas.addEventListener( 'webglcontextrestored', onContextRestore, false );

_gl = _context || _canvas.getContext( 'webgl', contextAttributes ) || _canvas.getContext( 'experimental-webgl', contextAttributes );

if ( _gl === null ) {

if ( _canvas.getContext( 'webgl' ) !== null ) {

throw new Error( 'Error creating WebGL context with your selected attributes.' );

} else {

throw new Error( 'Error creating WebGL context.' );

}

}

// Some experimental-webgl implementations do not have getShaderPrecisionFormat

if ( _gl.getShaderPrecisionFormat === undefined ) {

_gl.getShaderPrecisionFormat = function () {

return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 };

};

}

} catch ( error ) {

console.error( 'THREE.WebGLRenderer: ' + error.message );

}

var extensions, capabilities, state, info; var properties, textures, attributes, geometries, objects; var programCache, renderLists, renderStates;

var background, morphtargets, bufferRenderer, indexedBufferRenderer;

var utils;

function initGLContext() {

extensions = new WebGLExtensions( _gl );

capabilities = new WebGLCapabilities( _gl, extensions, parameters );

if ( ! capabilities.isWebGL2 ) {

extensions.get( 'WEBGL_depth_texture' ); extensions.get( 'OES_texture_float' ); extensions.get( 'OES_texture_half_float' ); extensions.get( 'OES_texture_half_float_linear' ); extensions.get( 'OES_standard_derivatives' ); extensions.get( 'OES_element_index_uint' ); extensions.get( 'ANGLE_instanced_arrays' );

}

extensions.get( 'OES_texture_float_linear' );

utils = new WebGLUtils( _gl, extensions, capabilities );

state = new WebGLState( _gl, extensions, utils, capabilities ); state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) ); state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) );

info = new WebGLInfo( _gl ); properties = new WebGLProperties(); textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ); attributes = new WebGLAttributes( _gl ); geometries = new WebGLGeometries( _gl, attributes, info ); objects = new WebGLObjects( geometries, info ); morphtargets = new WebGLMorphtargets( _gl ); programCache = new WebGLPrograms( _this, extensions, capabilities ); renderLists = new WebGLRenderLists(); renderStates = new WebGLRenderStates();

background = new WebGLBackground( _this, state, objects, _premultipliedAlpha );

bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info, capabilities ); indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info, capabilities );

info.programs = programCache.programs;

_this.context = _gl; _this.capabilities = capabilities; _this.extensions = extensions; _this.properties = properties; _this.renderLists = renderLists; _this.state = state; _this.info = info;

}

initGLContext();

// vr

var vr = null;

if ( typeof navigator !== 'undefined' ) {

vr = ( 'xr' in navigator ) ? new WebXRManager( _this ) : new WebVRManager( _this );

}

this.vr = vr;

// shadow map

var shadowMap = new WebGLShadowMap( _this, objects, capabilities.maxTextureSize );

this.shadowMap = shadowMap;

// API

this.getContext = function () {

return _gl;

};

this.getContextAttributes = function () {

return _gl.getContextAttributes();

};

this.forceContextLoss = function () {

var extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) extension.loseContext();

};

this.forceContextRestore = function () {

var extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) extension.restoreContext();

};

this.getPixelRatio = function () {

return _pixelRatio;

};

this.setPixelRatio = function ( value ) {

if ( value === undefined ) return;

_pixelRatio = value;

this.setSize( _width, _height, false );

};

this.getSize = function () {

return { width: _width, height: _height };

};

this.setSize = function ( width, height, updateStyle ) {

if ( vr.isPresenting() ) {

console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' ); return;

}

_width = width; _height = height;

_canvas.width = width * _pixelRatio; _canvas.height = height * _pixelRatio;

if ( updateStyle !== false ) {

_canvas.style.width = width + 'px'; _canvas.style.height = height + 'px';

}

this.setViewport( 0, 0, width, height );

};

this.getDrawingBufferSize = function () {

return { width: _width * _pixelRatio, height: _height * _pixelRatio };

};

this.setDrawingBufferSize = function ( width, height, pixelRatio ) {

_width = width; _height = height;

_pixelRatio = pixelRatio;

_canvas.width = width * pixelRatio; _canvas.height = height * pixelRatio;

this.setViewport( 0, 0, width, height );

};

this.getCurrentViewport = function () {

return _currentViewport;

};

this.setViewport = function ( x, y, width, height ) {

_viewport.set( x, _height - y - height, width, height ); state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) );

};

this.setScissor = function ( x, y, width, height ) {

_scissor.set( x, _height - y - height, width, height ); state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) );

};

this.setScissorTest = function ( boolean ) {

state.setScissorTest( _scissorTest = boolean );

};

// Clearing

this.getClearColor = function () {

return background.getClearColor();

};

this.setClearColor = function () {

background.setClearColor.apply( background, arguments );

};

this.getClearAlpha = function () {

return background.getClearAlpha();

};

this.setClearAlpha = function () {

background.setClearAlpha.apply( background, arguments );

};

this.clear = function ( color, depth, stencil ) {

var bits = 0;

if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT; if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT; if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT;

_gl.clear( bits );

};

this.clearColor = function () {

this.clear( true, false, false );

};

this.clearDepth = function () {

this.clear( false, true, false );

};

this.clearStencil = function () {

this.clear( false, false, true );

};

//

this.dispose = function () {

_canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); _canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false );

renderLists.dispose(); renderStates.dispose(); properties.dispose(); objects.dispose();

vr.dispose();

animation.stop();

};

// Events

function onContextLost( event ) {

event.preventDefault();

console.log( 'THREE.WebGLRenderer: Context Lost.' );

_isContextLost = true;

}

function onContextRestore( /* event */ ) {

console.log( 'THREE.WebGLRenderer: Context Restored.' );

_isContextLost = false;

initGLContext();

}

function onMaterialDispose( event ) {

var material = event.target;

material.removeEventListener( 'dispose', onMaterialDispose );

deallocateMaterial( material );

}

// Buffer deallocation

function deallocateMaterial( material ) {

releaseMaterialProgramReference( material );

properties.remove( material );

}


function releaseMaterialProgramReference( material ) {

var programInfo = properties.get( material ).program;

material.program = undefined;

if ( programInfo !== undefined ) {

programCache.releaseProgram( programInfo );

}

}

// Buffer rendering

function renderObjectImmediate( object, program ) {

object.render( function ( object ) {

_this.renderBufferImmediate( object, program );

} );

}

this.renderBufferImmediate = function ( object, program ) {

state.initAttributes();

var buffers = properties.get( object );

if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer(); if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer(); if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer(); if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer();

var programAttributes = program.getAttributes();

if ( object.hasPositions ) {

_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.position ); _gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW );

state.enableAttribute( programAttributes.position ); _gl.vertexAttribPointer( programAttributes.position, 3, _gl.FLOAT, false, 0, 0 );

}

if ( object.hasNormals ) {

_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.normal ); _gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW );

state.enableAttribute( programAttributes.normal ); _gl.vertexAttribPointer( programAttributes.normal, 3, _gl.FLOAT, false, 0, 0 );

}

if ( object.hasUvs ) {

_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.uv ); _gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW );

state.enableAttribute( programAttributes.uv ); _gl.vertexAttribPointer( programAttributes.uv, 2, _gl.FLOAT, false, 0, 0 );

}

if ( object.hasColors ) {

_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.color ); _gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW );

state.enableAttribute( programAttributes.color ); _gl.vertexAttribPointer( programAttributes.color, 3, _gl.FLOAT, false, 0, 0 );

}

state.disableUnusedAttributes();

_gl.drawArrays( _gl.TRIANGLES, 0, object.count );

object.count = 0;

};

this.renderBufferDirect = function ( camera, fog, geometry, material, object, group ) {

var frontFaceCW = ( object.isMesh && object.normalMatrix.determinant() < 0 );

state.setMaterial( material, frontFaceCW );

var program = setProgram( camera, fog, material, object );

var updateBuffers = false;

if ( _currentGeometryProgram.geometry !== geometry.id || _currentGeometryProgram.program !== program.id || _currentGeometryProgram.wireframe !== ( material.wireframe === true ) ) {

_currentGeometryProgram.geometry = geometry.id; _currentGeometryProgram.program = program.id; _currentGeometryProgram.wireframe = material.wireframe === true; updateBuffers = true;

}

if ( object.morphTargetInfluences ) {

morphtargets.update( object, geometry, material, program );

updateBuffers = true;

}

//

var index = geometry.index; var position = geometry.attributes.position; var rangeFactor = 1;

if ( material.wireframe === true ) {

index = geometries.getWireframeAttribute( geometry ); rangeFactor = 2;

}

var attribute; var renderer = bufferRenderer;

if ( index !== null ) {

attribute = attributes.get( index );

renderer = indexedBufferRenderer; renderer.setIndex( attribute );

}

if ( updateBuffers ) {

setupVertexAttributes( material, program, geometry );

if ( index !== null ) {

_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, attribute.buffer );

}

}

//

var dataCount = Infinity;

if ( index !== null ) {

dataCount = index.count;

} else if ( position !== undefined ) {

dataCount = position.count;

}

var rangeStart = geometry.drawRange.start * rangeFactor; var rangeCount = geometry.drawRange.count * rangeFactor;

var groupStart = group !== null ? group.start * rangeFactor : 0; var groupCount = group !== null ? group.count * rangeFactor : Infinity;

var drawStart = Math.max( rangeStart, groupStart ); var drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1;

var drawCount = Math.max( 0, drawEnd - drawStart + 1 );

if ( drawCount === 0 ) return;

//

if ( object.isMesh ) {

if ( material.wireframe === true ) {

state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); renderer.setMode( _gl.LINES );

} else {

switch ( object.drawMode ) {

case TrianglesDrawMode: renderer.setMode( _gl.TRIANGLES ); break;

case TriangleStripDrawMode: renderer.setMode( _gl.TRIANGLE_STRIP ); break;

case TriangleFanDrawMode: renderer.setMode( _gl.TRIANGLE_FAN ); break;

}

}


} else if ( object.isLine ) {

var lineWidth = material.linewidth;

if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material

state.setLineWidth( lineWidth * getTargetPixelRatio() );

if ( object.isLineSegments ) {

renderer.setMode( _gl.LINES );

} else if ( object.isLineLoop ) {

renderer.setMode( _gl.LINE_LOOP );

} else {

renderer.setMode( _gl.LINE_STRIP );

}

} else if ( object.isPoints ) {

renderer.setMode( _gl.POINTS );

} else if ( object.isSprite ) {

renderer.setMode( _gl.TRIANGLES );

}

if ( geometry && geometry.isInstancedBufferGeometry ) {

if ( geometry.maxInstancedCount > 0 ) {

renderer.renderInstances( geometry, drawStart, drawCount );

}

} else {

renderer.render( drawStart, drawCount );

}

};

function setupVertexAttributes( material, program, geometry ) {

if ( geometry && geometry.isInstancedBufferGeometry & ! capabilities.isWebGL2 ) {

if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) {

console.error( 'THREE.WebGLRenderer.setupVertexAttributes: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return;

}

}

state.initAttributes();

var geometryAttributes = geometry.attributes;

var programAttributes = program.getAttributes();

var materialDefaultAttributeValues = material.defaultAttributeValues;

for ( var name in programAttributes ) {

var programAttribute = programAttributes[ name ];

if ( programAttribute >= 0 ) {

var geometryAttribute = geometryAttributes[ name ];

if ( geometryAttribute !== undefined ) {

var normalized = geometryAttribute.normalized; var size = geometryAttribute.itemSize;

var attribute = attributes.get( geometryAttribute );

// TODO Attribute may not be available on context restore

if ( attribute === undefined ) continue;

var buffer = attribute.buffer; var type = attribute.type; var bytesPerElement = attribute.bytesPerElement;

if ( geometryAttribute.isInterleavedBufferAttribute ) {

var data = geometryAttribute.data; var stride = data.stride; var offset = geometryAttribute.offset;

if ( data && data.isInstancedInterleavedBuffer ) {

state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute );

if ( geometry.maxInstancedCount === undefined ) {

geometry.maxInstancedCount = data.meshPerAttribute * data.count;

}

} else {

state.enableAttribute( programAttribute );

}

_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer ); _gl.vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, offset * bytesPerElement );

} else {

if ( geometryAttribute.isInstancedBufferAttribute ) {

state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute );

if ( geometry.maxInstancedCount === undefined ) {

geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;

}

} else {

state.enableAttribute( programAttribute );

}

_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer ); _gl.vertexAttribPointer( programAttribute, size, type, normalized, 0, 0 );

}

} else if ( materialDefaultAttributeValues !== undefined ) {

var value = materialDefaultAttributeValues[ name ];

if ( value !== undefined ) {

switch ( value.length ) {

case 2: _gl.vertexAttrib2fv( programAttribute, value ); break;

case 3: _gl.vertexAttrib3fv( programAttribute, value ); break;

case 4: _gl.vertexAttrib4fv( programAttribute, value ); break;

default: _gl.vertexAttrib1fv( programAttribute, value );

}

}

}

}

}

state.disableUnusedAttributes();

}

// Compile

this.compile = function ( scene, camera ) {

currentRenderState = renderStates.get( scene, camera ); currentRenderState.init();

scene.traverse( function ( object ) {

if ( object.isLight ) {

currentRenderState.pushLight( object );

if ( object.castShadow ) {

currentRenderState.pushShadow( object );

}

}

} );

currentRenderState.setupLights( camera );

scene.traverse( function ( object ) {

if ( object.material ) {

if ( Array.isArray( object.material ) ) {

for ( var i = 0; i < object.material.length; i ++ ) {

initMaterial( object.material[ i ], scene.fog, object );

}

} else {

initMaterial( object.material, scene.fog, object );

}

}

} );

};

// Animation Loop

var onAnimationFrameCallback = null;

function onAnimationFrame( time ) {

if ( vr.isPresenting() ) return; if ( onAnimationFrameCallback ) onAnimationFrameCallback( time );

}

var animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame );

if ( typeof window !== 'undefined' ) animation.setContext( window );

this.setAnimationLoop = function ( callback ) {

onAnimationFrameCallback = callback; vr.setAnimationLoop( callback );

animation.start();

};

// Rendering

this.render = function ( scene, camera, renderTarget, forceClear ) {

if ( ! ( camera && camera.isCamera ) ) {

console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); return;

}

if ( _isContextLost ) return;

// reset caching for this frame

_currentGeometryProgram.geometry = null; _currentGeometryProgram.program = null; _currentGeometryProgram.wireframe = false; _currentMaterialId = - 1; _currentCamera = null;

// update scene graph

if ( scene.autoUpdate === true ) scene.updateMatrixWorld();

// update camera matrices and frustum

if ( camera.parent === null ) camera.updateMatrixWorld();

if ( vr.enabled ) {

camera = vr.getCamera( camera );

}

//

currentRenderState = renderStates.get( scene, camera ); currentRenderState.init();

scene.onBeforeRender( _this, scene, camera, renderTarget );

_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix );

_localClippingEnabled = this.localClippingEnabled; _clippingEnabled = _clipping.init( this.clippingPlanes, _localClippingEnabled, camera );

currentRenderList = renderLists.get( scene, camera ); currentRenderList.init();

projectObject( scene, camera, _this.sortObjects );

if ( _this.sortObjects === true ) {

currentRenderList.sort();

}

//

if ( _clippingEnabled ) _clipping.beginShadows();

var shadowsArray = currentRenderState.state.shadowsArray;

shadowMap.render( shadowsArray, scene, camera );

currentRenderState.setupLights( camera );

if ( _clippingEnabled ) _clipping.endShadows();

//

if ( this.info.autoReset ) this.info.reset();

if ( renderTarget === undefined ) {

renderTarget = null;

}

this.setRenderTarget( renderTarget );

//

background.render( currentRenderList, scene, camera, forceClear );

// render scene

var opaqueObjects = currentRenderList.opaque; var transparentObjects = currentRenderList.transparent;

if ( scene.overrideMaterial ) {

var overrideMaterial = scene.overrideMaterial;

if ( opaqueObjects.length ) renderObjects( opaqueObjects, scene, camera, overrideMaterial ); if ( transparentObjects.length ) renderObjects( transparentObjects, scene, camera, overrideMaterial );

} else {

// opaque pass (front-to-back order)

if ( opaqueObjects.length ) renderObjects( opaqueObjects, scene, camera );

// transparent pass (back-to-front order)

if ( transparentObjects.length ) renderObjects( transparentObjects, scene, camera );

}

// Generate mipmap if we're using any kind of mipmap filtering

if ( renderTarget ) {

textures.updateRenderTargetMipmap( renderTarget );

}

// Ensure depth buffer writing is enabled so it can be cleared on next render

state.buffers.depth.setTest( true ); state.buffers.depth.setMask( true ); state.buffers.color.setMask( true );

state.setPolygonOffset( false );

scene.onAfterRender( _this, scene, camera );

if ( vr.enabled ) {

vr.submitFrame();

}

// _gl.finish();

currentRenderList = null; currentRenderState = null;

};

/* // TODO Duplicated code (Frustum)

var _sphere = new Sphere();

function isObjectViewable( object ) {

var geometry = object.geometry;

if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

_sphere.copy( geometry.boundingSphere ). applyMatrix4( object.matrixWorld );

return isSphereViewable( _sphere );

}

function isSpriteViewable( sprite ) {

_sphere.center.set( 0, 0, 0 ); _sphere.radius = 0.7071067811865476; _sphere.applyMatrix4( sprite.matrixWorld );

return isSphereViewable( _sphere );

}

function isSphereViewable( sphere ) {

if ( ! _frustum.intersectsSphere( sphere ) ) return false;

var numPlanes = _clipping.numPlanes;

if ( numPlanes === 0 ) return true;

var planes = _this.clippingPlanes,

center = sphere.center, negRad = - sphere.radius, i = 0;

do {

// out when deeper than radius in the negative halfspace if ( planes[ i ].distanceToPoint( center ) < negRad ) return false;

} while ( ++ i !== numPlanes );

return true;

} */

function projectObject( object, camera, sortObjects ) {

if ( object.visible === false ) return;

var visible = object.layers.test( camera.layers );

if ( visible ) {

if ( object.isLight ) {

currentRenderState.pushLight( object );

if ( object.castShadow ) {

currentRenderState.pushShadow( object );

}

} else if ( object.isSprite ) {

if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {

if ( sortObjects ) {

_vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix );

}

var geometry = objects.update( object ); var material = object.material;

currentRenderList.push( object, geometry, material, _vector3.z, null );

}

} else if ( object.isImmediateRenderObject ) {

if ( sortObjects ) {

_vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix );

}

currentRenderList.push( object, null, object.material, _vector3.z, null );

} else if ( object.isMesh || object.isLine || object.isPoints ) {

if ( object.isSkinnedMesh ) {

object.skeleton.update();

}

if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {

if ( sortObjects ) {

_vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix );

}

var geometry = objects.update( object ); var material = object.material;

if ( Array.isArray( material ) ) {

var groups = geometry.groups;

for ( var i = 0, l = groups.length; i < l; i ++ ) {

var group = groups[ i ]; var groupMaterial = material[ group.materialIndex ];

if ( groupMaterial && groupMaterial.visible ) {

currentRenderList.push( object, geometry, groupMaterial, _vector3.z, group );

}

}

} else if ( material.visible ) {

currentRenderList.push( object, geometry, material, _vector3.z, null );

}

}

}

}

var children = object.children;

for ( var i = 0, l = children.length; i < l; i ++ ) {

projectObject( children[ i ], camera, sortObjects );

}

}

function renderObjects( renderList, scene, camera, overrideMaterial ) {

for ( var i = 0, l = renderList.length; i < l; i ++ ) {

var renderItem = renderList[ i ];

var object = renderItem.object; var geometry = renderItem.geometry; var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial; var group = renderItem.group;

if ( camera.isArrayCamera ) {

_currentArrayCamera = camera;

var cameras = camera.cameras;

for ( var j = 0, jl = cameras.length; j < jl; j ++ ) {

var camera2 = cameras[ j ];

if ( object.layers.test( camera2.layers ) ) {

if ( 'viewport' in camera2 ) { // XR

state.viewport( _currentViewport.copy( camera2.viewport ) );

} else {

var bounds = camera2.bounds;

var x = bounds.x * _width; var y = bounds.y * _height; var width = bounds.z * _width; var height = bounds.w * _height;

state.viewport( _currentViewport.set( x, y, width, height ).multiplyScalar( _pixelRatio ) );

}

currentRenderState.setupLights( camera2 );

renderObject( object, scene, camera2, geometry, material, group );

}

}

} else {

_currentArrayCamera = null;

renderObject( object, scene, camera, geometry, material, group );

}

}

}

function renderObject( object, scene, camera, geometry, material, group ) {

object.onBeforeRender( _this, scene, camera, geometry, material, group ); currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );

object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); object.normalMatrix.getNormalMatrix( object.modelViewMatrix );

if ( object.isImmediateRenderObject ) {

state.setMaterial( material );

var program = setProgram( camera, scene.fog, material, object );

_currentGeometryProgram.geometry = null; _currentGeometryProgram.program = null; _currentGeometryProgram.wireframe = false;

renderObjectImmediate( object, program );

} else {

_this.renderBufferDirect( camera, scene.fog, geometry, material, object, group );

}

object.onAfterRender( _this, scene, camera, geometry, material, group ); currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );

}

function initMaterial( material, fog, object ) {

var materialProperties = properties.get( material );

var lights = currentRenderState.state.lights; var shadowsArray = currentRenderState.state.shadowsArray;

var lightsHash = materialProperties.lightsHash; var lightsStateHash = lights.state.hash;

var parameters = programCache.getParameters( material, lights.state, shadowsArray, fog, _clipping.numPlanes, _clipping.numIntersection, object );

var code = programCache.getProgramCode( material, parameters );

var program = materialProperties.program; var programChange = true;

if ( program === undefined ) {

// new material material.addEventListener( 'dispose', onMaterialDispose );

} else if ( program.code !== code ) {

// changed glsl or parameters releaseMaterialProgramReference( material );

} else if ( lightsHash.stateID !== lightsStateHash.stateID || lightsHash.directionalLength !== lightsStateHash.directionalLength || lightsHash.pointLength !== lightsStateHash.pointLength || lightsHash.spotLength !== lightsStateHash.spotLength || lightsHash.rectAreaLength !== lightsStateHash.rectAreaLength || lightsHash.hemiLength !== lightsStateHash.hemiLength || lightsHash.shadowsLength !== lightsStateHash.shadowsLength ) {

lightsHash.stateID = lightsStateHash.stateID; lightsHash.directionalLength = lightsStateHash.directionalLength; lightsHash.pointLength = lightsStateHash.pointLength; lightsHash.spotLength = lightsStateHash.spotLength; lightsHash.rectAreaLength = lightsStateHash.rectAreaLength; lightsHash.hemiLength = lightsStateHash.hemiLength; lightsHash.shadowsLength = lightsStateHash.shadowsLength;

programChange = false;

} else if ( parameters.shaderID !== undefined ) {

// same glsl and uniform list return;

} else {

// only rebuild uniform list programChange = false;

}

if ( programChange ) {

if ( parameters.shaderID ) {

var shader = ShaderLib[ parameters.shaderID ];

materialProperties.shader = { name: material.type, uniforms: UniformsUtils.clone( shader.uniforms ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader };

} else {

materialProperties.shader = { name: material.type, uniforms: material.uniforms, vertexShader: material.vertexShader, fragmentShader: material.fragmentShader };

}

material.onBeforeCompile( materialProperties.shader, _this );

// Computing code again as onBeforeCompile may have changed the shaders code = programCache.getProgramCode( material, parameters );

program = programCache.acquireProgram( material, materialProperties.shader, parameters, code );

materialProperties.program = program; material.program = program;

}

var programAttributes = program.getAttributes();

if ( material.morphTargets ) {

material.numSupportedMorphTargets = 0;

for ( var i = 0; i < _this.maxMorphTargets; i ++ ) {

if ( programAttributes[ 'morphTarget' + i ] >= 0 ) {

material.numSupportedMorphTargets ++;

}

}

}

if ( material.morphNormals ) {

material.numSupportedMorphNormals = 0;

for ( var i = 0; i < _this.maxMorphNormals; i ++ ) {

if ( programAttributes[ 'morphNormal' + i ] >= 0 ) {

material.numSupportedMorphNormals ++;

}

}

}

var uniforms = materialProperties.shader.uniforms;

if ( ! material.isShaderMaterial && ! material.isRawShaderMaterial || material.clipping === true ) {

materialProperties.numClippingPlanes = _clipping.numPlanes; materialProperties.numIntersection = _clipping.numIntersection; uniforms.clippingPlanes = _clipping.uniform;

}

materialProperties.fog = fog;

// store the light setup it was created for if ( lightsHash === undefined ) {

materialProperties.lightsHash = lightsHash = {};

}

lightsHash.stateID = lightsStateHash.stateID; lightsHash.directionalLength = lightsStateHash.directionalLength; lightsHash.pointLength = lightsStateHash.pointLength; lightsHash.spotLength = lightsStateHash.spotLength; lightsHash.rectAreaLength = lightsStateHash.rectAreaLength; lightsHash.hemiLength = lightsStateHash.hemiLength; lightsHash.shadowsLength = lightsStateHash.shadowsLength;

if ( material.lights ) {

// wire up the material to this renderer's lighting state

uniforms.ambientLightColor.value = lights.state.ambient; uniforms.directionalLights.value = lights.state.directional; uniforms.spotLights.value = lights.state.spot; uniforms.rectAreaLights.value = lights.state.rectArea; uniforms.pointLights.value = lights.state.point; uniforms.hemisphereLights.value = lights.state.hemi;

uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; uniforms.spotShadowMap.value = lights.state.spotShadowMap; uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix; uniforms.pointShadowMap.value = lights.state.pointShadowMap; uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms

}

var progUniforms = materialProperties.program.getUniforms(), uniformsList = WebGLUniforms.seqWithValue( progUniforms.seq, uniforms );

materialProperties.uniformsList = uniformsList;

}

function setProgram( camera, fog, material, object ) {

_usedTextureUnits = 0;

var materialProperties = properties.get( material ); var lights = currentRenderState.state.lights;

var lightsHash = materialProperties.lightsHash; var lightsStateHash = lights.state.hash;

if ( _clippingEnabled ) {

if ( _localClippingEnabled || camera !== _currentCamera ) {

var useCache = camera === _currentCamera && material.id === _currentMaterialId;

// we might want to call this function with some ClippingGroup // object instead of the material, once it becomes feasible // (#8465, #8379) _clipping.setState( material.clippingPlanes, material.clipIntersection, material.clipShadows, camera, materialProperties, useCache );

}

}

if ( material.needsUpdate === false ) {

if ( materialProperties.program === undefined ) {

material.needsUpdate = true;

} else if ( material.fog && materialProperties.fog !== fog ) {

material.needsUpdate = true;

} else if ( material.lights && ( lightsHash.stateID !== lightsStateHash.stateID || lightsHash.directionalLength !== lightsStateHash.directionalLength || lightsHash.pointLength !== lightsStateHash.pointLength || lightsHash.spotLength !== lightsStateHash.spotLength || lightsHash.rectAreaLength !== lightsStateHash.rectAreaLength || lightsHash.hemiLength !== lightsStateHash.hemiLength || lightsHash.shadowsLength !== lightsStateHash.shadowsLength ) ) {

material.needsUpdate = true;

} else if ( materialProperties.numClippingPlanes !== undefined && ( materialProperties.numClippingPlanes !== _clipping.numPlanes || materialProperties.numIntersection !== _clipping.numIntersection ) ) {

material.needsUpdate = true;

}

}

if ( material.needsUpdate ) {

initMaterial( material, fog, object ); material.needsUpdate = false;

}

var refreshProgram = false; var refreshMaterial = false; var refreshLights = false;

var program = materialProperties.program, p_uniforms = program.getUniforms(), m_uniforms = materialProperties.shader.uniforms;

if ( state.useProgram( program.program ) ) {

refreshProgram = true; refreshMaterial = true; refreshLights = true;

}

if ( material.id !== _currentMaterialId ) {

_currentMaterialId = material.id;

refreshMaterial = true;

}

if ( refreshProgram || _currentCamera !== camera ) {

p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix );

if ( capabilities.logarithmicDepthBuffer ) {

p_uniforms.setValue( _gl, 'logDepthBufFC', 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );

}

if ( _currentCamera !== camera ) {

_currentCamera = camera;

// lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated:

refreshMaterial = true; // set to true on material change refreshLights = true; // remains set until update done

}

// load material specific uniforms // (shader material also gets them for the sake of genericity)

if ( material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.envMap ) {

var uCamPos = p_uniforms.map.cameraPosition;

if ( uCamPos !== undefined ) {

uCamPos.setValue( _gl, _vector3.setFromMatrixPosition( camera.matrixWorld ) );

}

}

if ( material.isMeshPhongMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.skinning ) {

p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );

}

}

// skinning uniforms must be set even if material didn't change // auto-setting of texture unit for bone texture must go before other textures // not sure why, but otherwise weird things happen

if ( material.skinning ) {

p_uniforms.setOptional( _gl, object, 'bindMatrix' ); p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );

var skeleton = object.skeleton;

if ( skeleton ) {

var bones = skeleton.bones;

if ( capabilities.floatVertexTextures ) {

if ( skeleton.boneTexture === undefined ) {

// layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)


var size = Math.sqrt( bones.length * 4 ); // 4 pixels needed for 1 matrix size = _Math.ceilPowerOfTwo( size ); size = Math.max( size, 4 );

var boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel boneMatrices.set( skeleton.boneMatrices ); // copy current values

var boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType ); boneTexture.needsUpdate = true;

skeleton.boneMatrices = boneMatrices; skeleton.boneTexture = boneTexture; skeleton.boneTextureSize = size;

}

p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture ); p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize );

} else {

p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' );

}

}

}

if ( refreshMaterial ) {

p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure ); p_uniforms.setValue( _gl, 'toneMappingWhitePoint', _this.toneMappingWhitePoint );

if ( material.lights ) {

// the current material requires lighting info

// note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required

markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );

}

// refresh uniforms common to several materials

if ( fog && material.fog ) {

refreshUniformsFog( m_uniforms, fog );

}

if ( material.isMeshBasicMaterial ) {

refreshUniformsCommon( m_uniforms, material );

} else if ( material.isMeshLambertMaterial ) {

refreshUniformsCommon( m_uniforms, material ); refreshUniformsLambert( m_uniforms, material );

} else if ( material.isMeshPhongMaterial ) {

refreshUniformsCommon( m_uniforms, material );

if ( material.isMeshToonMaterial ) {

refreshUniformsToon( m_uniforms, material );

} else {

refreshUniformsPhong( m_uniforms, material );

}

} else if ( material.isMeshStandardMaterial ) {

refreshUniformsCommon( m_uniforms, material );

if ( material.isMeshPhysicalMaterial ) {

refreshUniformsPhysical( m_uniforms, material );

} else {

refreshUniformsStandard( m_uniforms, material );

}

} else if ( material.isMeshMatcapMaterial ) {

refreshUniformsCommon( m_uniforms, material );

refreshUniformsMatcap( m_uniforms, material );

} else if ( material.isMeshDepthMaterial ) {

refreshUniformsCommon( m_uniforms, material ); refreshUniformsDepth( m_uniforms, material );

} else if ( material.isMeshDistanceMaterial ) {

refreshUniformsCommon( m_uniforms, material ); refreshUniformsDistance( m_uniforms, material );

} else if ( material.isMeshNormalMaterial ) {

refreshUniformsCommon( m_uniforms, material ); refreshUniformsNormal( m_uniforms, material );

} else if ( material.isLineBasicMaterial ) {

refreshUniformsLine( m_uniforms, material );

if ( material.isLineDashedMaterial ) {

refreshUniformsDash( m_uniforms, material );

}

} else if ( material.isPointsMaterial ) {

refreshUniformsPoints( m_uniforms, material );

} else if ( material.isSpriteMaterial ) {

refreshUniformsSprites( m_uniforms, material );

} else if ( material.isShadowMaterial ) {

m_uniforms.color.value = material.color; m_uniforms.opacity.value = material.opacity;

}

// RectAreaLight Texture // TODO (mrdoob): Find a nicer implementation

if ( m_uniforms.ltc_1 !== undefined ) m_uniforms.ltc_1.value = UniformsLib.LTC_1; if ( m_uniforms.ltc_2 !== undefined ) m_uniforms.ltc_2.value = UniformsLib.LTC_2;

WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, _this );

}

if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) {

WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, _this ); material.uniformsNeedUpdate = false;

}

if ( material.isSpriteMaterial ) {

p_uniforms.setValue( _gl, 'center', object.center );

}

// common matrices

p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix ); p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix ); p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );

return program;

}

// Uniforms (refresh uniforms objects)

function refreshUniformsCommon( uniforms, material ) {

uniforms.opacity.value = material.opacity;

if ( material.color ) {

uniforms.diffuse.value = material.color;

}

if ( material.emissive ) {

uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );

}

if ( material.map ) {

uniforms.map.value = material.map;

}

if ( material.alphaMap ) {

uniforms.alphaMap.value = material.alphaMap;

}

if ( material.specularMap ) {

uniforms.specularMap.value = material.specularMap;

}

if ( material.envMap ) {

uniforms.envMap.value = material.envMap;

// don't flip CubeTexture envMaps, flip everything else: // WebGLRenderTargetCube will be flipped for backwards compatibility // WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture // this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future uniforms.flipEnvMap.value = ( ! ( material.envMap && material.envMap.isCubeTexture ) ) ? 1 : - 1;

uniforms.reflectivity.value = material.reflectivity; uniforms.refractionRatio.value = material.refractionRatio;

uniforms.maxMipLevel.value = properties.get( material.envMap ).__maxMipLevel;

}

if ( material.lightMap ) {

uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity;

}

if ( material.aoMap ) {

uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity;

}

// uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map // 6. emissive map

var uvScaleMap;

if ( material.map ) {

uvScaleMap = material.map;

} else if ( material.specularMap ) {

uvScaleMap = material.specularMap;

} else if ( material.displacementMap ) {

uvScaleMap = material.displacementMap;

} else if ( material.normalMap ) {

uvScaleMap = material.normalMap;

} else if ( material.bumpMap ) {

uvScaleMap = material.bumpMap;

} else if ( material.roughnessMap ) {

uvScaleMap = material.roughnessMap;

} else if ( material.metalnessMap ) {

uvScaleMap = material.metalnessMap;

} else if ( material.alphaMap ) {

uvScaleMap = material.alphaMap;

} else if ( material.emissiveMap ) {

uvScaleMap = material.emissiveMap;

}

if ( uvScaleMap !== undefined ) {

// backwards compatibility if ( uvScaleMap.isWebGLRenderTarget ) {

uvScaleMap = uvScaleMap.texture;

}

if ( uvScaleMap.matrixAutoUpdate === true ) {

uvScaleMap.updateMatrix();

}

uniforms.uvTransform.value.copy( uvScaleMap.matrix );

}

}

function refreshUniformsLine( uniforms, material ) {

uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity;

}

function refreshUniformsDash( uniforms, material ) {

uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale;

}

function refreshUniformsPoints( uniforms, material ) {

uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * _pixelRatio; uniforms.scale.value = _height * 0.5;

uniforms.map.value = material.map;

if ( material.map !== null ) {

if ( material.map.matrixAutoUpdate === true ) {

material.map.updateMatrix();

}

uniforms.uvTransform.value.copy( material.map.matrix );

}

}

function refreshUniformsSprites( uniforms, material ) {

uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; uniforms.rotation.value = material.rotation; uniforms.map.value = material.map;

if ( material.map !== null ) {

if ( material.map.matrixAutoUpdate === true ) {

material.map.updateMatrix();

}

uniforms.uvTransform.value.copy( material.map.matrix );

}

}

function refreshUniformsFog( uniforms, fog ) {

uniforms.fogColor.value = fog.color;

if ( fog.isFog ) {

uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far;

} else if ( fog.isFogExp2 ) {

uniforms.fogDensity.value = fog.density;

}

}

function refreshUniformsLambert( uniforms, material ) {

if ( material.emissiveMap ) {

uniforms.emissiveMap.value = material.emissiveMap;

}

}

function refreshUniformsPhong( uniforms, material ) {

uniforms.specular.value = material.specular; uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )

if ( material.emissiveMap ) {

uniforms.emissiveMap.value = material.emissiveMap;

}

if ( material.bumpMap ) {

uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

}

if ( material.normalMap ) {

uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) uniforms.normalScale.value.negate();

}

if ( material.displacementMap ) {

uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias;

}

}

function refreshUniformsToon( uniforms, material ) {

refreshUniformsPhong( uniforms, material );

if ( material.gradientMap ) {

uniforms.gradientMap.value = material.gradientMap;

}

}

function refreshUniformsStandard( uniforms, material ) {

uniforms.roughness.value = material.roughness; uniforms.metalness.value = material.metalness;

if ( material.roughnessMap ) {

uniforms.roughnessMap.value = material.roughnessMap;

}

if ( material.metalnessMap ) {

uniforms.metalnessMap.value = material.metalnessMap;

}

if ( material.emissiveMap ) {

uniforms.emissiveMap.value = material.emissiveMap;

}

if ( material.bumpMap ) {

uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

}

if ( material.normalMap ) {

uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) uniforms.normalScale.value.negate();

}

if ( material.displacementMap ) {

uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias;

}

if ( material.envMap ) {

//uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity;

}

}

function refreshUniformsPhysical( uniforms, material ) {

refreshUniformsStandard( uniforms, material );

uniforms.reflectivity.value = material.reflectivity; // also part of uniforms common

uniforms.clearCoat.value = material.clearCoat; uniforms.clearCoatRoughness.value = material.clearCoatRoughness;

}

function refreshUniformsMatcap( uniforms, material ) {

if ( material.matcap ) {

uniforms.matcap.value = material.matcap;

}

if ( material.bumpMap ) {

uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

}

if ( material.normalMap ) {

uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) uniforms.normalScale.value.negate();

}

if ( material.displacementMap ) {

uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias;

}

}

function refreshUniformsDepth( uniforms, material ) {

if ( material.displacementMap ) {

uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias;

}

}

function refreshUniformsDistance( uniforms, material ) {

if ( material.displacementMap ) {

uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias;

}

uniforms.referencePosition.value.copy( material.referencePosition ); uniforms.nearDistance.value = material.nearDistance; uniforms.farDistance.value = material.farDistance;

}

function refreshUniformsNormal( uniforms, material ) {

if ( material.bumpMap ) {

uniforms.bumpMap.value = material.bumpMap; uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

}

if ( material.normalMap ) {

uniforms.normalMap.value = material.normalMap; uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) uniforms.normalScale.value.negate();

}

if ( material.displacementMap ) {

uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias;

}

}

// If uniforms are marked as clean, they don't need to be loaded to the GPU.

function markUniformsLightsNeedsUpdate( uniforms, value ) {

uniforms.ambientLightColor.needsUpdate = value;

uniforms.directionalLights.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.rectAreaLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value;

}

// Textures

function allocTextureUnit() {

var textureUnit = _usedTextureUnits;

if ( textureUnit >= capabilities.maxTextures ) {

console.warn( 'THREE.WebGLRenderer: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures );

}

_usedTextureUnits += 1;

return textureUnit;

}

this.allocTextureUnit = allocTextureUnit;

// this.setTexture2D = setTexture2D; this.setTexture2D = ( function () {

var warned = false;

// backwards compatibility: peel texture.texture return function setTexture2D( texture, slot ) {

if ( texture && texture.isWebGLRenderTarget ) {

if ( ! warned ) {

console.warn( "THREE.WebGLRenderer.setTexture2D: don't use render targets as textures. Use their .texture property instead." ); warned = true;

}

texture = texture.texture;

}

textures.setTexture2D( texture, slot );

};

}() );

this.setTexture3D = ( function () {

// backwards compatibility: peel texture.texture return function setTexture3D( texture, slot ) {

textures.setTexture3D( texture, slot );

};

}() );

this.setTexture = ( function () {

var warned = false;

return function setTexture( texture, slot ) {

if ( ! warned ) {

console.warn( "THREE.WebGLRenderer: .setTexture is deprecated, use setTexture2D instead." ); warned = true;

}

textures.setTexture2D( texture, slot );

};

}() );

this.setTextureCube = ( function () {

var warned = false;

return function setTextureCube( texture, slot ) {

// backwards compatibility: peel texture.texture if ( texture && texture.isWebGLRenderTargetCube ) {

if ( ! warned ) {

console.warn( "THREE.WebGLRenderer.setTextureCube: don't use cube render targets as textures. Use their .texture property instead." ); warned = true;

}

texture = texture.texture;

}

// currently relying on the fact that WebGLRenderTargetCube.texture is a Texture and NOT a CubeTexture // TODO: unify these code paths if ( ( texture && texture.isCubeTexture ) || ( Array.isArray( texture.image ) && texture.image.length === 6 ) ) {

// CompressedTexture can have Array in image :/

// this function alone should take care of cube textures textures.setTextureCube( texture, slot );

} else {

// assumed: texture property of THREE.WebGLRenderTargetCube

textures.setTextureCubeDynamic( texture, slot );

}

};

}() );

//

this.setFramebuffer = function ( value ) {

_framebuffer = value;

};

this.getRenderTarget = function () {

return _currentRenderTarget;

};

this.setRenderTarget = function ( renderTarget ) {

_currentRenderTarget = renderTarget;

if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) {

textures.setupRenderTarget( renderTarget );

}

var framebuffer = _framebuffer; var isCube = false;

if ( renderTarget ) {

var __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer;

if ( renderTarget.isWebGLRenderTargetCube ) {

framebuffer = __webglFramebuffer[ renderTarget.activeCubeFace ]; isCube = true;

} else {

framebuffer = __webglFramebuffer;

}

_currentViewport.copy( renderTarget.viewport ); _currentScissor.copy( renderTarget.scissor ); _currentScissorTest = renderTarget.scissorTest;

} else {

_currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ); _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ); _currentScissorTest = _scissorTest;

}

if ( _currentFramebuffer !== framebuffer ) {

_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _currentFramebuffer = framebuffer;

}

state.viewport( _currentViewport ); state.scissor( _currentScissor ); state.setScissorTest( _currentScissorTest );

if ( isCube ) {

var textureProperties = properties.get( renderTarget.texture ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + renderTarget.activeCubeFace, textureProperties.__webglTexture, renderTarget.activeMipMapLevel );

}

};

this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer ) {

if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) {

console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); return;

}

var framebuffer = properties.get( renderTarget ).__webglFramebuffer;

if ( framebuffer ) {

var restore = false;

if ( framebuffer !== _currentFramebuffer ) {

_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );

restore = true;

}

try {

var texture = renderTarget.texture; var textureFormat = texture.format; var textureType = texture.type;

if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) {

console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); return;

}

if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_TYPE ) && // IE11, Edge and Chrome Mac < 52 (#9513) ! ( textureType === FloatType && ( capabilities.isWebGL2 || extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox ! ( textureType === HalfFloatType && ( capabilities.isWebGL2 ? extensions.get( 'EXT_color_buffer_float' ) : extensions.get( 'EXT_color_buffer_half_float' ) ) ) ) {

console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); return;

}

if ( _gl.checkFramebufferStatus( _gl.FRAMEBUFFER ) === _gl.FRAMEBUFFER_COMPLETE ) {

// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)

if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) {

_gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer );

}

} else {

console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' );

}

} finally {

if ( restore ) {

_gl.bindFramebuffer( _gl.FRAMEBUFFER, _currentFramebuffer );

}

}

}

};

this.copyFramebufferToTexture = function ( position, texture, level ) {

var width = texture.image.width; var height = texture.image.height; var glFormat = utils.convert( texture.format );

this.setTexture2D( texture, 0 );

_gl.copyTexImage2D( _gl.TEXTURE_2D, level || 0, glFormat, position.x, position.y, width, height, 0 );

};

this.copyTextureToTexture = function ( position, srcTexture, dstTexture, level ) {

var width = srcTexture.image.width; var height = srcTexture.image.height; var glFormat = utils.convert( dstTexture.format ); var glType = utils.convert( dstTexture.type );

this.setTexture2D( dstTexture, 0 );

if ( srcTexture.isDataTexture ) {

_gl.texSubImage2D( _gl.TEXTURE_2D, level || 0, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data );

} else {

_gl.texSubImage2D( _gl.TEXTURE_2D, level || 0, position.x, position.y, glFormat, glType, srcTexture.image );

}

};

}

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */

function FogExp2( color, density ) {

this.name = ;

this.color = new Color( color ); this.density = ( density !== undefined ) ? density : 0.00025;

}

FogExp2.prototype.isFogExp2 = true;

FogExp2.prototype.clone = function () {

return new FogExp2( this.color, this.density );

};

FogExp2.prototype.toJSON = function ( /* meta */ ) {

return { type: 'FogExp2', color: this.color.getHex(), density: this.density };

};

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */

function Fog( color, near, far ) {

this.name = ;

this.color = new Color( color );

this.near = ( near !== undefined ) ? near : 1; this.far = ( far !== undefined ) ? far : 1000;

}

Fog.prototype.isFog = true;

Fog.prototype.clone = function () {

return new Fog( this.color, this.near, this.far );

};

Fog.prototype.toJSON = function ( /* meta */ ) {

return { type: 'Fog', color: this.color.getHex(), near: this.near, far: this.far };

};

/** * @author mrdoob / http://mrdoob.com/ */

function Scene() {

Object3D.call( this );

this.type = 'Scene';

this.background = null; this.fog = null; this.overrideMaterial = null;

this.autoUpdate = true; // checked by the renderer

}

Scene.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: Scene,

copy: function ( source, recursive ) {

Object3D.prototype.copy.call( this, source, recursive );

if ( source.background !== null ) this.background = source.background.clone(); if ( source.fog !== null ) this.fog = source.fog.clone(); if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone();

this.autoUpdate = source.autoUpdate; this.matrixAutoUpdate = source.matrixAutoUpdate;

return this;

},

toJSON: function ( meta ) {

var data = Object3D.prototype.toJSON.call( this, meta );

if ( this.background !== null ) data.object.background = this.background.toJSON( meta ); if ( this.fog !== null ) data.object.fog = this.fog.toJSON();

return data;

}

} );

/** * @author benaadams / https://twitter.com/ben_a_adams */

function InterleavedBuffer( array, stride ) {

this.array = array; this.stride = stride; this.count = array !== undefined ? array.length / stride : 0;

this.dynamic = false; this.updateRange = { offset: 0, count: - 1 };

this.version = 0;

}

Object.defineProperty( InterleavedBuffer.prototype, 'needsUpdate', {

set: function ( value ) {

if ( value === true ) this.version ++;

}

} );

Object.assign( InterleavedBuffer.prototype, {

isInterleavedBuffer: true,

onUploadCallback: function () {},

setArray: function ( array ) {

if ( Array.isArray( array ) ) {

throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );

}

this.count = array !== undefined ? array.length / this.stride : 0; this.array = array;

return this;

},

setDynamic: function ( value ) {

this.dynamic = value;

return this;

},

copy: function ( source ) {

this.array = new source.array.constructor( source.array ); this.count = source.count; this.stride = source.stride; this.dynamic = source.dynamic;

return this;

},

copyAt: function ( index1, attribute, index2 ) {

index1 *= this.stride; index2 *= attribute.stride;

for ( var i = 0, l = this.stride; i < l; i ++ ) {

this.array[ index1 + i ] = attribute.array[ index2 + i ];

}

return this;

},

set: function ( value, offset ) {

if ( offset === undefined ) offset = 0;

this.array.set( value, offset );

return this;

},

clone: function () {

return new this.constructor().copy( this );

},

onUpload: function ( callback ) {

this.onUploadCallback = callback;

return this;

}

} );

/** * @author benaadams / https://twitter.com/ben_a_adams */

function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) {

this.data = interleavedBuffer; this.itemSize = itemSize; this.offset = offset;

this.normalized = normalized === true;

}

Object.defineProperties( InterleavedBufferAttribute.prototype, {

count: {

get: function () {

return this.data.count;

}

},

array: {

get: function () {

return this.data.array;

}

}

} );

Object.assign( InterleavedBufferAttribute.prototype, {

isInterleavedBufferAttribute: true,

setX: function ( index, x ) {

this.data.array[ index * this.data.stride + this.offset ] = x;

return this;

},

setY: function ( index, y ) {

this.data.array[ index * this.data.stride + this.offset + 1 ] = y;

return this;

},

setZ: function ( index, z ) {

this.data.array[ index * this.data.stride + this.offset + 2 ] = z;

return this;

},

setW: function ( index, w ) {

this.data.array[ index * this.data.stride + this.offset + 3 ] = w;

return this;

},

getX: function ( index ) {

return this.data.array[ index * this.data.stride + this.offset ];

},

getY: function ( index ) {

return this.data.array[ index * this.data.stride + this.offset + 1 ];

},

getZ: function ( index ) {

return this.data.array[ index * this.data.stride + this.offset + 2 ];

},

getW: function ( index ) {

return this.data.array[ index * this.data.stride + this.offset + 3 ];

},

setXY: function ( index, x, y ) {

index = index * this.data.stride + this.offset;

this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y;

return this;

},

setXYZ: function ( index, x, y, z ) {

index = index * this.data.stride + this.offset;

this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z;

return this;

},

setXYZW: function ( index, x, y, z, w ) {

index = index * this.data.stride + this.offset;

this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; this.data.array[ index + 3 ] = w;

return this;

}

} );

/** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: <hex>, * map: new THREE.Texture( <Image> ), * rotation: <float>, * sizeAttenuation: <bool> * } */

function SpriteMaterial( parameters ) {

Material.call( this );

this.type = 'SpriteMaterial';

this.color = new Color( 0xffffff ); this.map = null;

this.rotation = 0;

this.sizeAttenuation = true;

this.lights = false; this.transparent = true;

this.setValues( parameters );

}

SpriteMaterial.prototype = Object.create( Material.prototype ); SpriteMaterial.prototype.constructor = SpriteMaterial; SpriteMaterial.prototype.isSpriteMaterial = true;

SpriteMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.color.copy( source.color ); this.map = source.map;

this.rotation = source.rotation;

this.sizeAttenuation = source.sizeAttenuation;

return this;

};

/** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */

var geometry;

function Sprite( material ) {

Object3D.call( this );

this.type = 'Sprite';

if ( geometry === undefined ) {

geometry = new BufferGeometry();

var float32Array = new Float32Array( [ - 0.5, - 0.5, 0, 0, 0, 0.5, - 0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, - 0.5, 0.5, 0, 0, 1 ] );

var interleavedBuffer = new InterleavedBuffer( float32Array, 5 );

geometry.setIndex( [ 0, 1, 2, 0, 2, 3 ] ); geometry.addAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) ); geometry.addAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );

}

this.geometry = geometry; this.material = ( material !== undefined ) ? material : new SpriteMaterial();

this.center = new Vector2( 0.5, 0.5 );

}

Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: Sprite,

isSprite: true,

raycast: ( function () {

var intersectPoint = new Vector3(); var worldScale = new Vector3(); var mvPosition = new Vector3();

var alignedPosition = new Vector2(); var rotatedPosition = new Vector2(); var viewWorldMatrix = new Matrix4();

var vA = new Vector3(); var vB = new Vector3(); var vC = new Vector3();

var uvA = new Vector2(); var uvB = new Vector2(); var uvC = new Vector2();

function transformVertex( vertexPosition, mvPosition, center, scale, sin, cos ) {

// compute position in camera space alignedPosition.subVectors( vertexPosition, center ).addScalar( 0.5 ).multiply( scale );

// to check if rotation is not zero if ( sin !== undefined ) {

rotatedPosition.x = ( cos * alignedPosition.x ) - ( sin * alignedPosition.y ); rotatedPosition.y = ( sin * alignedPosition.x ) + ( cos * alignedPosition.y );

} else {

rotatedPosition.copy( alignedPosition );

}


vertexPosition.copy( mvPosition ); vertexPosition.x += rotatedPosition.x; vertexPosition.y += rotatedPosition.y;

// transform to world space vertexPosition.applyMatrix4( viewWorldMatrix );

}

return function raycast( raycaster, intersects ) {

worldScale.setFromMatrixScale( this.matrixWorld ); viewWorldMatrix.getInverse( this.modelViewMatrix ).premultiply( this.matrixWorld ); mvPosition.setFromMatrixPosition( this.modelViewMatrix );

var rotation = this.material.rotation; var sin, cos; if ( rotation !== 0 ) {

cos = Math.cos( rotation ); sin = Math.sin( rotation );

}

var center = this.center;

transformVertex( vA.set( - 0.5, - 0.5, 0 ), mvPosition, center, worldScale, sin, cos ); transformVertex( vB.set( 0.5, - 0.5, 0 ), mvPosition, center, worldScale, sin, cos ); transformVertex( vC.set( 0.5, 0.5, 0 ), mvPosition, center, worldScale, sin, cos );

uvA.set( 0, 0 ); uvB.set( 1, 0 ); uvC.set( 1, 1 );

// check first triangle var intersect = raycaster.ray.intersectTriangle( vA, vB, vC, false, intersectPoint );

if ( intersect === null ) {

// check second triangle transformVertex( vB.set( - 0.5, 0.5, 0 ), mvPosition, center, worldScale, sin, cos ); uvB.set( 0, 1 );

intersect = raycaster.ray.intersectTriangle( vA, vC, vB, false, intersectPoint ); if ( intersect === null ) {

return;

}

}

var distance = raycaster.ray.origin.distanceTo( intersectPoint );

if ( distance < raycaster.near || distance > raycaster.far ) return;

intersects.push( {

distance: distance, point: intersectPoint.clone(), uv: Triangle.getUV( intersectPoint, vA, vB, vC, uvA, uvB, uvC, new Vector2() ), face: null, object: this

} );

};

}() ),

clone: function () {

return new this.constructor( this.material ).copy( this );

},

copy: function ( source ) {

Object3D.prototype.copy.call( this, source );

if ( source.center !== undefined ) this.center.copy( source.center );

return this;

}


} );

/** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */

function LOD() {

Object3D.call( this );

this.type = 'LOD';

Object.defineProperties( this, { levels: { enumerable: true, value: [] } } );

}

LOD.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: LOD,

copy: function ( source ) {

Object3D.prototype.copy.call( this, source, false );

var levels = source.levels;

for ( var i = 0, l = levels.length; i < l; i ++ ) {

var level = levels[ i ];

this.addLevel( level.object.clone(), level.distance );

}

return this;

},

addLevel: function ( object, distance ) {

if ( distance === undefined ) distance = 0;

distance = Math.abs( distance );

var levels = this.levels;

for ( var l = 0; l < levels.length; l ++ ) {

if ( distance < levels[ l ].distance ) {

break;

}

}

levels.splice( l, 0, { distance: distance, object: object } );

this.add( object );

},

getObjectForDistance: function ( distance ) {

var levels = this.levels;

for ( var i = 1, l = levels.length; i < l; i ++ ) {

if ( distance < levels[ i ].distance ) {

break;

}

}

return levels[ i - 1 ].object;

},

raycast: ( function () {

var matrixPosition = new Vector3();

return function raycast( raycaster, intersects ) {

matrixPosition.setFromMatrixPosition( this.matrixWorld );

var distance = raycaster.ray.origin.distanceTo( matrixPosition );

this.getObjectForDistance( distance ).raycast( raycaster, intersects );

};

}() ),

update: function () {

var v1 = new Vector3(); var v2 = new Vector3();

return function update( camera ) {

var levels = this.levels;

if ( levels.length > 1 ) {

v1.setFromMatrixPosition( camera.matrixWorld ); v2.setFromMatrixPosition( this.matrixWorld );

var distance = v1.distanceTo( v2 );

levels[ 0 ].object.visible = true;

for ( var i = 1, l = levels.length; i < l; i ++ ) {

if ( distance >= levels[ i ].distance ) {

levels[ i - 1 ].object.visible = false; levels[ i ].object.visible = true;

} else {

break;

}

}

for ( ; i < l; i ++ ) {

levels[ i ].object.visible = false;

}

}

};

}(),

toJSON: function ( meta ) {

var data = Object3D.prototype.toJSON.call( this, meta );

data.object.levels = [];

var levels = this.levels;

for ( var i = 0, l = levels.length; i < l; i ++ ) {

var level = levels[ i ];

data.object.levels.push( { object: level.object.uuid, distance: level.distance } );

}

return data;

}

} );

/** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author michael guerrero / http://realitymeltdown.com * @author ikerr / http://verold.com */

function Skeleton( bones, boneInverses ) {

// copy the bone array

bones = bones || [];

this.bones = bones.slice( 0 ); this.boneMatrices = new Float32Array( this.bones.length * 16 );

// use the supplied bone inverses or calculate the inverses

if ( boneInverses === undefined ) {

this.calculateInverses();

} else {

if ( this.bones.length === boneInverses.length ) {

this.boneInverses = boneInverses.slice( 0 );

} else {

console.warn( 'THREE.Skeleton boneInverses is the wrong length.' );

this.boneInverses = [];

for ( var i = 0, il = this.bones.length; i < il; i ++ ) {

this.boneInverses.push( new Matrix4() );

}

}

}

}

Object.assign( Skeleton.prototype, {

calculateInverses: function () {

this.boneInverses = [];

for ( var i = 0, il = this.bones.length; i < il; i ++ ) {

var inverse = new Matrix4();

if ( this.bones[ i ] ) {

inverse.getInverse( this.bones[ i ].matrixWorld );

}

this.boneInverses.push( inverse );

}

},

pose: function () {

var bone, i, il;

// recover the bind-time world matrices

for ( i = 0, il = this.bones.length; i < il; i ++ ) {

bone = this.bones[ i ];

if ( bone ) {

bone.matrixWorld.getInverse( this.boneInverses[ i ] );

}

}

// compute the local matrices, positions, rotations and scales

for ( i = 0, il = this.bones.length; i < il; i ++ ) {

bone = this.bones[ i ];

if ( bone ) {

if ( bone.parent && bone.parent.isBone ) {

bone.matrix.getInverse( bone.parent.matrixWorld ); bone.matrix.multiply( bone.matrixWorld );

} else {

bone.matrix.copy( bone.matrixWorld );

}

bone.matrix.decompose( bone.position, bone.quaternion, bone.scale );

}

}

},

update: ( function () {

var offsetMatrix = new Matrix4(); var identityMatrix = new Matrix4();

return function update() {

var bones = this.bones; var boneInverses = this.boneInverses; var boneMatrices = this.boneMatrices; var boneTexture = this.boneTexture;

// flatten bone matrices to array

for ( var i = 0, il = bones.length; i < il; i ++ ) {

// compute the offset between the current and the original transform

var matrix = bones[ i ] ? bones[ i ].matrixWorld : identityMatrix;

offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] ); offsetMatrix.toArray( boneMatrices, i * 16 );

}

if ( boneTexture !== undefined ) {

boneTexture.needsUpdate = true;

}

};

} )(),

clone: function () {

return new Skeleton( this.bones, this.boneInverses );

},

getBoneByName: function ( name ) {

for ( var i = 0, il = this.bones.length; i < il; i ++ ) {

var bone = this.bones[ i ];

if ( bone.name === name ) {

return bone;

}

}

return undefined;

}

} );

/** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */

function Bone() {

Object3D.call( this );

this.type = 'Bone';

}

Bone.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: Bone,

isBone: true

} );

/** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */

function SkinnedMesh( geometry, material ) {

Mesh.call( this, geometry, material );

this.type = 'SkinnedMesh';

this.bindMode = 'attached'; this.bindMatrix = new Matrix4(); this.bindMatrixInverse = new Matrix4();

var bones = this.initBones(); var skeleton = new Skeleton( bones );

this.bind( skeleton, this.matrixWorld );

this.normalizeSkinWeights();

}

SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {

constructor: SkinnedMesh,

isSkinnedMesh: true,

initBones: function () {

var bones = [], bone, gbone; var i, il;

if ( this.geometry && this.geometry.bones !== undefined ) {

// first, create array of 'Bone' objects from geometry data

for ( i = 0, il = this.geometry.bones.length; i < il; i ++ ) {

gbone = this.geometry.bones[ i ];

// create new 'Bone' object

bone = new Bone(); bones.push( bone );

// apply values

bone.name = gbone.name; bone.position.fromArray( gbone.pos ); bone.quaternion.fromArray( gbone.rotq ); if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl );

}

// second, create bone hierarchy

for ( i = 0, il = this.geometry.bones.length; i < il; i ++ ) {

gbone = this.geometry.bones[ i ];

if ( ( gbone.parent !== - 1 ) && ( gbone.parent !== null ) && ( bones[ gbone.parent ] !== undefined ) ) {

// subsequent bones in the hierarchy

bones[ gbone.parent ].add( bones[ i ] );

} else {

// topmost bone, immediate child of the skinned mesh

this.add( bones[ i ] );

}

}

}

// now the bones are part of the scene graph and children of the skinned mesh. // let's update the corresponding matrices

this.updateMatrixWorld( true );

return bones;

},

bind: function ( skeleton, bindMatrix ) {

this.skeleton = skeleton;

if ( bindMatrix === undefined ) {

this.updateMatrixWorld( true );

this.skeleton.calculateInverses();

bindMatrix = this.matrixWorld;

}

this.bindMatrix.copy( bindMatrix ); this.bindMatrixInverse.getInverse( bindMatrix );

},

pose: function () {

this.skeleton.pose();

},

normalizeSkinWeights: function () {

var scale, i;

if ( this.geometry && this.geometry.isGeometry ) {

for ( i = 0; i < this.geometry.skinWeights.length; i ++ ) {

var sw = this.geometry.skinWeights[ i ];

scale = 1.0 / sw.manhattanLength();

if ( scale !== Infinity ) {

sw.multiplyScalar( scale );

} else {

sw.set( 1, 0, 0, 0 ); // do something reasonable

}

}

} else if ( this.geometry && this.geometry.isBufferGeometry ) {

var vec = new Vector4();

var skinWeight = this.geometry.attributes.skinWeight;

for ( i = 0; i < skinWeight.count; i ++ ) {

vec.x = skinWeight.getX( i ); vec.y = skinWeight.getY( i ); vec.z = skinWeight.getZ( i ); vec.w = skinWeight.getW( i );

scale = 1.0 / vec.manhattanLength();

if ( scale !== Infinity ) {

vec.multiplyScalar( scale );

} else {

vec.set( 1, 0, 0, 0 ); // do something reasonable

}

skinWeight.setXYZW( i, vec.x, vec.y, vec.z, vec.w );

}

}

},

updateMatrixWorld: function ( force ) {

Mesh.prototype.updateMatrixWorld.call( this, force );

if ( this.bindMode === 'attached' ) {

this.bindMatrixInverse.getInverse( this.matrixWorld );

} else if ( this.bindMode === 'detached' ) {

this.bindMatrixInverse.getInverse( this.bindMatrix );

} else {

console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode );

}

},

clone: function () {

return new this.constructor( this.geometry, this.material ).copy( this );

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: <hex>, * opacity: <float>, * * linewidth: <float>, * linecap: "round", * linejoin: "round" * } */

function LineBasicMaterial( parameters ) {

Material.call( this );

this.type = 'LineBasicMaterial';

this.color = new Color( 0xffffff );

this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round';

this.lights = false;

this.setValues( parameters );

}

LineBasicMaterial.prototype = Object.create( Material.prototype ); LineBasicMaterial.prototype.constructor = LineBasicMaterial;

LineBasicMaterial.prototype.isLineBasicMaterial = true;

LineBasicMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.color.copy( source.color );

this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin;

return this;

};

/** * @author mrdoob / http://mrdoob.com/ */

function Line( geometry, material, mode ) {

if ( mode === 1 ) {

console.error( 'THREE.Line: parameter THREE.LinePieces no longer supported. Use THREE.LineSegments instead.' );

}

Object3D.call( this );

this.type = 'Line';

this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new LineBasicMaterial( { color: Math.random() * 0xffffff } );

}

Line.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: Line,

isLine: true,

computeLineDistances: ( function () {

var start = new Vector3(); var end = new Vector3();

return function computeLineDistances() {

var geometry = this.geometry;

if ( geometry.isBufferGeometry ) {

// we assume non-indexed geometry

if ( geometry.index === null ) {

var positionAttribute = geometry.attributes.position; var lineDistances = [ 0 ];

for ( var i = 1, l = positionAttribute.count; i < l; i ++ ) {

start.fromBufferAttribute( positionAttribute, i - 1 ); end.fromBufferAttribute( positionAttribute, i );

lineDistances[ i ] = lineDistances[ i - 1 ]; lineDistances[ i ] += start.distanceTo( end );

}

geometry.addAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );

} else {

console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );

}

} else if ( geometry.isGeometry ) {

var vertices = geometry.vertices; var lineDistances = geometry.lineDistances;

lineDistances[ 0 ] = 0;

for ( var i = 1, l = vertices.length; i < l; i ++ ) {

lineDistances[ i ] = lineDistances[ i - 1 ]; lineDistances[ i ] += vertices[ i - 1 ].distanceTo( vertices[ i ] );

}

}

return this;

};

}() ),

raycast: ( function () {

var inverseMatrix = new Matrix4(); var ray = new Ray(); var sphere = new Sphere();

return function raycast( raycaster, intersects ) {

var precision = raycaster.linePrecision;

var geometry = this.geometry; var matrixWorld = this.matrixWorld;

// Checking boundingSphere distance to ray

if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); sphere.radius += precision;

if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;

//

inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );

var localPrecision = precision / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); var localPrecisionSq = localPrecision * localPrecision;

var vStart = new Vector3(); var vEnd = new Vector3(); var interSegment = new Vector3(); var interRay = new Vector3(); var step = ( this && this.isLineSegments ) ? 2 : 1;

if ( geometry.isBufferGeometry ) {

var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array;

if ( index !== null ) {

var indices = index.array;

for ( var i = 0, l = indices.length - 1; i < l; i += step ) {

var a = indices[ i ]; var b = indices[ i + 1 ];

vStart.fromArray( positions, a * 3 ); vEnd.fromArray( positions, b * 3 );

var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );

if ( distSq > localPrecisionSq ) continue;

interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

var distance = raycaster.ray.origin.distanceTo( interRay );

if ( distance < raycaster.near || distance > raycaster.far ) continue;

intersects.push( {

distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this

} );

}

} else {

for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) {

vStart.fromArray( positions, 3 * i ); vEnd.fromArray( positions, 3 * i + 3 );

var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );

if ( distSq > localPrecisionSq ) continue;

interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

var distance = raycaster.ray.origin.distanceTo( interRay );

if ( distance < raycaster.near || distance > raycaster.far ) continue;

intersects.push( {

distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this

} );

}

}

} else if ( geometry.isGeometry ) {

var vertices = geometry.vertices; var nbVertices = vertices.length;

for ( var i = 0; i < nbVertices - 1; i += step ) {

var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );

if ( distSq > localPrecisionSq ) continue;

interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

var distance = raycaster.ray.origin.distanceTo( interRay );

if ( distance < raycaster.near || distance > raycaster.far ) continue;

intersects.push( {

distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this

} );

}

}

};

}() ),

clone: function () {

return new this.constructor( this.geometry, this.material ).copy( this );

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function LineSegments( geometry, material ) {

Line.call( this, geometry, material );

this.type = 'LineSegments';

}

LineSegments.prototype = Object.assign( Object.create( Line.prototype ), {

constructor: LineSegments,

isLineSegments: true,

computeLineDistances: ( function () {

var start = new Vector3(); var end = new Vector3();

return function computeLineDistances() {

var geometry = this.geometry;

if ( geometry.isBufferGeometry ) {

// we assume non-indexed geometry

if ( geometry.index === null ) {

var positionAttribute = geometry.attributes.position; var lineDistances = [];

for ( var i = 0, l = positionAttribute.count; i < l; i += 2 ) {

start.fromBufferAttribute( positionAttribute, i ); end.fromBufferAttribute( positionAttribute, i + 1 );

lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ]; lineDistances[ i + 1 ] = lineDistances[ i ] + start.distanceTo( end );

}

geometry.addAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );

} else {

console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );

}

} else if ( geometry.isGeometry ) {

var vertices = geometry.vertices; var lineDistances = geometry.lineDistances;

for ( var i = 0, l = vertices.length; i < l; i += 2 ) {

start.copy( vertices[ i ] ); end.copy( vertices[ i + 1 ] );

lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ]; lineDistances[ i + 1 ] = lineDistances[ i ] + start.distanceTo( end );

}

}

return this;

};

}() )

} );

/** * @author mgreter / http://github.com/mgreter */

function LineLoop( geometry, material ) {

Line.call( this, geometry, material );

this.type = 'LineLoop';

}

LineLoop.prototype = Object.assign( Object.create( Line.prototype ), {

constructor: LineLoop,

isLineLoop: true,

} );

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: <hex>, * opacity: <float>, * map: new THREE.Texture( <Image> ), * * size: <float>, * sizeAttenuation: <bool> * * morphTargets: <bool> * } */

function PointsMaterial( parameters ) {

Material.call( this );

this.type = 'PointsMaterial';

this.color = new Color( 0xffffff );

this.map = null;

this.size = 1; this.sizeAttenuation = true;

this.morphTargets = false;

this.lights = false;

this.setValues( parameters );

}

PointsMaterial.prototype = Object.create( Material.prototype ); PointsMaterial.prototype.constructor = PointsMaterial;

PointsMaterial.prototype.isPointsMaterial = true;

PointsMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.color.copy( source.color );

this.map = source.map;

this.size = source.size; this.sizeAttenuation = source.sizeAttenuation;

this.morphTargets = source.morphTargets;

return this;

};

/** * @author alteredq / http://alteredqualia.com/ */

function Points( geometry, material ) {

Object3D.call( this );

this.type = 'Points';

this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); this.material = material !== undefined ? material : new PointsMaterial( { color: Math.random() * 0xffffff } );

}

Points.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: Points,

isPoints: true,

raycast: ( function () {

var inverseMatrix = new Matrix4(); var ray = new Ray(); var sphere = new Sphere();

return function raycast( raycaster, intersects ) {

var object = this; var geometry = this.geometry; var matrixWorld = this.matrixWorld; var threshold = raycaster.params.Points.threshold;

// Checking boundingSphere distance to ray

if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

sphere.copy( geometry.boundingSphere ); sphere.applyMatrix4( matrixWorld ); sphere.radius += threshold;

if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;

//

inverseMatrix.getInverse( matrixWorld ); ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );

var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); var localThresholdSq = localThreshold * localThreshold; var position = new Vector3(); var intersectPoint = new Vector3();

function testPoint( point, index ) {

var rayPointDistanceSq = ray.distanceSqToPoint( point );

if ( rayPointDistanceSq < localThresholdSq ) {

ray.closestPointToPoint( point, intersectPoint ); intersectPoint.applyMatrix4( matrixWorld );

var distance = raycaster.ray.origin.distanceTo( intersectPoint );

if ( distance < raycaster.near || distance > raycaster.far ) return;

intersects.push( {

distance: distance, distanceToRay: Math.sqrt( rayPointDistanceSq ), point: intersectPoint.clone(), index: index, face: null, object: object

} );

}

}

if ( geometry.isBufferGeometry ) {

var index = geometry.index; var attributes = geometry.attributes; var positions = attributes.position.array;

if ( index !== null ) {

var indices = index.array;

for ( var i = 0, il = indices.length; i < il; i ++ ) {

var a = indices[ i ];

position.fromArray( positions, a * 3 );

testPoint( position, a );

}

} else {

for ( var i = 0, l = positions.length / 3; i < l; i ++ ) {

position.fromArray( positions, i * 3 );

testPoint( position, i );

}

}

} else {

var vertices = geometry.vertices;

for ( var i = 0, l = vertices.length; i < l; i ++ ) {

testPoint( vertices[ i ], i );

}

}

};

}() ),

clone: function () {

return new this.constructor( this.geometry, this.material ).copy( this );

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function VideoTexture( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {

Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

this.generateMipmaps = false;

}

VideoTexture.prototype = Object.assign( Object.create( Texture.prototype ), {

constructor: VideoTexture,

isVideoTexture: true,

update: function () {

var video = this.image;

if ( video.readyState >= video.HAVE_CURRENT_DATA ) {

this.needsUpdate = true;

}

}

} );

/** * @author alteredq / http://alteredqualia.com/ */

function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {

Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

this.image = { width: width, height: height }; this.mipmaps = mipmaps;

// no flipping for cube textures // (also flipping doesn't work for compressed textures )

this.flipY = false;

// can't generate mipmaps for compressed textures // mips must be embedded in DDS files

this.generateMipmaps = false;

}

CompressedTexture.prototype = Object.create( Texture.prototype ); CompressedTexture.prototype.constructor = CompressedTexture;

CompressedTexture.prototype.isCompressedTexture = true;

/** * @author mrdoob / http://mrdoob.com/ */

function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {

Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

this.needsUpdate = true;

}

CanvasTexture.prototype = Object.create( Texture.prototype ); CanvasTexture.prototype.constructor = CanvasTexture; CanvasTexture.prototype.isCanvasTexture = true;

/** * @author Matt DesLauriers / @mattdesl * @author atix / arthursilber.de */

function DepthTexture( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) {

format = format !== undefined ? format : DepthFormat;

if ( format !== DepthFormat && format !== DepthStencilFormat ) {

throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' );

}

if ( type === undefined && format === DepthFormat ) type = UnsignedShortType; if ( type === undefined && format === DepthStencilFormat ) type = UnsignedInt248Type;

Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

this.image = { width: width, height: height };

this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;

this.flipY = false; this.generateMipmaps = false;

}

DepthTexture.prototype = Object.create( Texture.prototype ); DepthTexture.prototype.constructor = DepthTexture; DepthTexture.prototype.isDepthTexture = true;

/** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */

function WireframeGeometry( geometry ) {

BufferGeometry.call( this );

this.type = 'WireframeGeometry';

// buffer

var vertices = [];

// helper variables

var i, j, l, o, ol; var edge = [ 0, 0 ], edges = {}, e, edge1, edge2; var key, keys = [ 'a', 'b', 'c' ]; var vertex;

// different logic for Geometry and BufferGeometry

if ( geometry && geometry.isGeometry ) {

// create a data structure that contains all edges without duplicates

var faces = geometry.faces;

for ( i = 0, l = faces.length; i < l; i ++ ) {

var face = faces[ i ];

for ( j = 0; j < 3; j ++ ) {

edge1 = face[ keys[ j ] ]; edge2 = face[ keys[ ( j + 1 ) % 3 ] ]; edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates edge[ 1 ] = Math.max( edge1, edge2 );

key = edge[ 0 ] + ',' + edge[ 1 ];

if ( edges[ key ] === undefined ) {

edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };

}

}

}

// generate vertices

for ( key in edges ) {

e = edges[ key ];

vertex = geometry.vertices[ e.index1 ]; vertices.push( vertex.x, vertex.y, vertex.z );

vertex = geometry.vertices[ e.index2 ]; vertices.push( vertex.x, vertex.y, vertex.z );

}

} else if ( geometry && geometry.isBufferGeometry ) {

var position, indices, groups; var group, start, count; var index1, index2;

vertex = new Vector3();

if ( geometry.index !== null ) {

// indexed BufferGeometry

position = geometry.attributes.position; indices = geometry.index; groups = geometry.groups;

if ( groups.length === 0 ) {

groups = [ { start: 0, count: indices.count, materialIndex: 0 } ];

}

// create a data structure that contains all eges without duplicates

for ( o = 0, ol = groups.length; o < ol; ++ o ) {

group = groups[ o ];

start = group.start; count = group.count;

for ( i = start, l = ( start + count ); i < l; i += 3 ) {

for ( j = 0; j < 3; j ++ ) {

edge1 = indices.getX( i + j ); edge2 = indices.getX( i + ( j + 1 ) % 3 ); edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates edge[ 1 ] = Math.max( edge1, edge2 );

key = edge[ 0 ] + ',' + edge[ 1 ];

if ( edges[ key ] === undefined ) {

edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };

}

}

}

}

// generate vertices

for ( key in edges ) {

e = edges[ key ];

vertex.fromBufferAttribute( position, e.index1 ); vertices.push( vertex.x, vertex.y, vertex.z );

vertex.fromBufferAttribute( position, e.index2 ); vertices.push( vertex.x, vertex.y, vertex.z );

}

} else {

// non-indexed BufferGeometry

position = geometry.attributes.position;

for ( i = 0, l = ( position.count / 3 ); i < l; i ++ ) {

for ( j = 0; j < 3; j ++ ) {

// three edges per triangle, an edge is represented as (index1, index2) // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)

index1 = 3 * i + j; vertex.fromBufferAttribute( position, index1 ); vertices.push( vertex.x, vertex.y, vertex.z );

index2 = 3 * i + ( ( j + 1 ) % 3 ); vertex.fromBufferAttribute( position, index2 ); vertices.push( vertex.x, vertex.y, vertex.z );

}

}

}

}

// build geometry

this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

}

WireframeGeometry.prototype = Object.create( BufferGeometry.prototype ); WireframeGeometry.prototype.constructor = WireframeGeometry;

/** * @author zz85 / https://github.com/zz85 * @author Mugen87 / https://github.com/Mugen87 * * Parametric Surfaces Geometry * based on the brilliant article by @prideout http://prideout.net/blog/?p=44 */

// ParametricGeometry

function ParametricGeometry( func, slices, stacks ) {

Geometry.call( this );

this.type = 'ParametricGeometry';

this.parameters = { func: func, slices: slices, stacks: stacks };

this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) ); this.mergeVertices();

}

ParametricGeometry.prototype = Object.create( Geometry.prototype ); ParametricGeometry.prototype.constructor = ParametricGeometry;

// ParametricBufferGeometry

function ParametricBufferGeometry( func, slices, stacks ) {

BufferGeometry.call( this );

this.type = 'ParametricBufferGeometry';

this.parameters = { func: func, slices: slices, stacks: stacks };

// buffers

var indices = []; var vertices = []; var normals = []; var uvs = [];

var EPS = 0.00001;

var normal = new Vector3();

var p0 = new Vector3(), p1 = new Vector3(); var pu = new Vector3(), pv = new Vector3();

var i, j;

if ( func.length < 3 ) {

console.error( 'THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.' );

}

// generate vertices, normals and uvs

var sliceCount = slices + 1;

for ( i = 0; i <= stacks; i ++ ) {

var v = i / stacks;

for ( j = 0; j <= slices; j ++ ) {

var u = j / slices;

// vertex

func( u, v, p0 ); vertices.push( p0.x, p0.y, p0.z );

// normal

// approximate tangent vectors via finite differences

if ( u - EPS >= 0 ) {

func( u - EPS, v, p1 ); pu.subVectors( p0, p1 );

} else {

func( u + EPS, v, p1 ); pu.subVectors( p1, p0 );

}

if ( v - EPS >= 0 ) {

func( u, v - EPS, p1 ); pv.subVectors( p0, p1 );

} else {

func( u, v + EPS, p1 ); pv.subVectors( p1, p0 );

}

// cross product of tangent vectors returns surface normal

normal.crossVectors( pu, pv ).normalize(); normals.push( normal.x, normal.y, normal.z );

// uv

uvs.push( u, v );

}

}

// generate indices

for ( i = 0; i < stacks; i ++ ) {

for ( j = 0; j < slices; j ++ ) {

var a = i * sliceCount + j; var b = i * sliceCount + j + 1; var c = ( i + 1 ) * sliceCount + j + 1; var d = ( i + 1 ) * sliceCount + j;

// faces one and two

indices.push( a, b, d ); indices.push( b, c, d );

}

}

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry;

/** * @author clockworkgeek / https://github.com/clockworkgeek * @author timothypratley / https://github.com/timothypratley * @author WestLangley / http://github.com/WestLangley * @author Mugen87 / https://github.com/Mugen87 */

// PolyhedronGeometry

function PolyhedronGeometry( vertices, indices, radius, detail ) {

Geometry.call( this );

this.type = 'PolyhedronGeometry';

this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail };

this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) ); this.mergeVertices();

}

PolyhedronGeometry.prototype = Object.create( Geometry.prototype ); PolyhedronGeometry.prototype.constructor = PolyhedronGeometry;

// PolyhedronBufferGeometry

function PolyhedronBufferGeometry( vertices, indices, radius, detail ) {

BufferGeometry.call( this );

this.type = 'PolyhedronBufferGeometry';

this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail };

radius = radius || 1; detail = detail || 0;

// default buffer data

var vertexBuffer = []; var uvBuffer = [];

// the subdivision creates the vertex buffer data

subdivide( detail );

// all vertices should lie on a conceptual sphere with a given radius

appplyRadius( radius );

// finally, create the uv data

generateUVs();

// build non-indexed geometry

this.addAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) );

if ( detail === 0 ) {

this.computeVertexNormals(); // flat normals

} else {

this.normalizeNormals(); // smooth normals

}

// helper functions

function subdivide( detail ) {

var a = new Vector3(); var b = new Vector3(); var c = new Vector3();

// iterate over all faces and apply a subdivison with the given detail value

for ( var i = 0; i < indices.length; i += 3 ) {

// get the vertices of the face

getVertexByIndex( indices[ i + 0 ], a ); getVertexByIndex( indices[ i + 1 ], b ); getVertexByIndex( indices[ i + 2 ], c );

// perform subdivision

subdivideFace( a, b, c, detail );

}

}

function subdivideFace( a, b, c, detail ) {

var cols = Math.pow( 2, detail );

// we use this multidimensional array as a data structure for creating the subdivision

var v = [];

var i, j;

// construct all of the vertices for this subdivision

for ( i = 0; i <= cols; i ++ ) {

v[ i ] = [];

var aj = a.clone().lerp( c, i / cols ); var bj = b.clone().lerp( c, i / cols );

var rows = cols - i;

for ( j = 0; j <= rows; j ++ ) {

if ( j === 0 && i === cols ) {

v[ i ][ j ] = aj;

} else {

v[ i ][ j ] = aj.clone().lerp( bj, j / rows );

}

}

}

// construct all of the faces

for ( i = 0; i < cols; i ++ ) {

for ( j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {

var k = Math.floor( j / 2 );

if ( j % 2 === 0 ) {

pushVertex( v[ i ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k ] ); pushVertex( v[ i ][ k ] );

} else {

pushVertex( v[ i ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k ] );

}

}

}

}

function appplyRadius( radius ) {

var vertex = new Vector3();

// iterate over the entire buffer and apply the radius to each vertex

for ( var i = 0; i < vertexBuffer.length; i += 3 ) {

vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ];

vertex.normalize().multiplyScalar( radius );

vertexBuffer[ i + 0 ] = vertex.x; vertexBuffer[ i + 1 ] = vertex.y; vertexBuffer[ i + 2 ] = vertex.z;

}

}

function generateUVs() {

var vertex = new Vector3();

for ( var i = 0; i < vertexBuffer.length; i += 3 ) {

vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ];

var u = azimuth( vertex ) / 2 / Math.PI + 0.5; var v = inclination( vertex ) / Math.PI + 0.5; uvBuffer.push( u, 1 - v );

}

correctUVs();

correctSeam();

}

function correctSeam() {

// handle case when face straddles the seam, see #3269

for ( var i = 0; i < uvBuffer.length; i += 6 ) {

// uv data of a single face

var x0 = uvBuffer[ i + 0 ]; var x1 = uvBuffer[ i + 2 ]; var x2 = uvBuffer[ i + 4 ];

var max = Math.max( x0, x1, x2 ); var min = Math.min( x0, x1, x2 );

// 0.9 is somewhat arbitrary

if ( max > 0.9 && min < 0.1 ) {

if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1; if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1; if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1;

}

}

}

function pushVertex( vertex ) {

vertexBuffer.push( vertex.x, vertex.y, vertex.z );

}

function getVertexByIndex( index, vertex ) {

var stride = index * 3;

vertex.x = vertices[ stride + 0 ]; vertex.y = vertices[ stride + 1 ]; vertex.z = vertices[ stride + 2 ];

}

function correctUVs() {

var a = new Vector3(); var b = new Vector3(); var c = new Vector3();

var centroid = new Vector3();

var uvA = new Vector2(); var uvB = new Vector2(); var uvC = new Vector2();

for ( var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) {

a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] ); b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] ); c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] );

uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] ); uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] ); uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] );

centroid.copy( a ).add( b ).add( c ).divideScalar( 3 );

var azi = azimuth( centroid );

correctUV( uvA, j + 0, a, azi ); correctUV( uvB, j + 2, b, azi ); correctUV( uvC, j + 4, c, azi );

}

}

function correctUV( uv, stride, vector, azimuth ) {

if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) {

uvBuffer[ stride ] = uv.x - 1;

}

if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) {

uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5;

}

}

// Angle around the Y axis, counter-clockwise when looking from above.

function azimuth( vector ) {

return Math.atan2( vector.z, - vector.x );

}


// Angle above the XZ plane.

function inclination( vector ) {

return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );

}

}

PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry;

/** * @author timothypratley / https://github.com/timothypratley * @author Mugen87 / https://github.com/Mugen87 */

// TetrahedronGeometry

function TetrahedronGeometry( radius, detail ) {

Geometry.call( this );

this.type = 'TetrahedronGeometry';

this.parameters = { radius: radius, detail: detail };

this.fromBufferGeometry( new TetrahedronBufferGeometry( radius, detail ) ); this.mergeVertices();

}

TetrahedronGeometry.prototype = Object.create( Geometry.prototype ); TetrahedronGeometry.prototype.constructor = TetrahedronGeometry;

// TetrahedronBufferGeometry

function TetrahedronBufferGeometry( radius, detail ) {

var vertices = [ 1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1 ];

var indices = [ 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 ];

PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

this.type = 'TetrahedronBufferGeometry';

this.parameters = { radius: radius, detail: detail };

}

TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry;

/** * @author timothypratley / https://github.com/timothypratley * @author Mugen87 / https://github.com/Mugen87 */

// OctahedronGeometry

function OctahedronGeometry( radius, detail ) {

Geometry.call( this );

this.type = 'OctahedronGeometry';

this.parameters = { radius: radius, detail: detail };

this.fromBufferGeometry( new OctahedronBufferGeometry( radius, detail ) ); this.mergeVertices();

}

OctahedronGeometry.prototype = Object.create( Geometry.prototype ); OctahedronGeometry.prototype.constructor = OctahedronGeometry;

// OctahedronBufferGeometry

function OctahedronBufferGeometry( radius, detail ) {

var vertices = [ 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1, 0, 0, 0, 1, 0, 0, - 1 ];

var indices = [ 0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2 ];

PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

this.type = 'OctahedronBufferGeometry';

this.parameters = { radius: radius, detail: detail };

}

OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry;

/** * @author timothypratley / https://github.com/timothypratley * @author Mugen87 / https://github.com/Mugen87 */

// IcosahedronGeometry

function IcosahedronGeometry( radius, detail ) {

Geometry.call( this );

this.type = 'IcosahedronGeometry';

this.parameters = { radius: radius, detail: detail };

this.fromBufferGeometry( new IcosahedronBufferGeometry( radius, detail ) ); this.mergeVertices();

}

IcosahedronGeometry.prototype = Object.create( Geometry.prototype ); IcosahedronGeometry.prototype.constructor = IcosahedronGeometry;

// IcosahedronBufferGeometry

function IcosahedronBufferGeometry( radius, detail ) {

var t = ( 1 + Math.sqrt( 5 ) ) / 2;

var vertices = [ - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0, 0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1 ];

var indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ];

PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

this.type = 'IcosahedronBufferGeometry';

this.parameters = { radius: radius, detail: detail };

}

IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry;

/** * @author Abe Pazos / https://hamoid.com * @author Mugen87 / https://github.com/Mugen87 */

// DodecahedronGeometry

function DodecahedronGeometry( radius, detail ) {

Geometry.call( this );

this.type = 'DodecahedronGeometry';

this.parameters = { radius: radius, detail: detail };

this.fromBufferGeometry( new DodecahedronBufferGeometry( radius, detail ) ); this.mergeVertices();

}

DodecahedronGeometry.prototype = Object.create( Geometry.prototype ); DodecahedronGeometry.prototype.constructor = DodecahedronGeometry;

// DodecahedronBufferGeometry

function DodecahedronBufferGeometry( radius, detail ) {

var t = ( 1 + Math.sqrt( 5 ) ) / 2; var r = 1 / t;

var vertices = [

// (±1, ±1, ±1) - 1, - 1, - 1, - 1, - 1, 1, - 1, 1, - 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1,

// (0, ±1/φ, ±φ) 0, - r, - t, 0, - r, t, 0, r, - t, 0, r, t,

// (±1/φ, ±φ, 0) - r, - t, 0, - r, t, 0, r, - t, 0, r, t, 0,

// (±φ, 0, ±1/φ) - t, 0, - r, t, 0, - r, - t, 0, r, t, 0, r ];

var indices = [ 3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9 ];

PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

this.type = 'DodecahedronBufferGeometry';

this.parameters = { radius: radius, detail: detail };

}

DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry;

/** * @author oosmoxiecode / https://github.com/oosmoxiecode * @author WestLangley / https://github.com/WestLangley * @author zz85 / https://github.com/zz85 * @author miningold / https://github.com/miningold * @author jonobr1 / https://github.com/jonobr1 * @author Mugen87 / https://github.com/Mugen87 * */

// TubeGeometry

function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) {

Geometry.call( this );

this.type = 'TubeGeometry';

this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed };

if ( taper !== undefined ) console.warn( 'THREE.TubeGeometry: taper has been removed.' );

var bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed );

// expose internals

this.tangents = bufferGeometry.tangents; this.normals = bufferGeometry.normals; this.binormals = bufferGeometry.binormals;

// create geometry

this.fromBufferGeometry( bufferGeometry ); this.mergeVertices();

}

TubeGeometry.prototype = Object.create( Geometry.prototype ); TubeGeometry.prototype.constructor = TubeGeometry;

// TubeBufferGeometry

function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) {

BufferGeometry.call( this );

this.type = 'TubeBufferGeometry';

this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed };

tubularSegments = tubularSegments || 64; radius = radius || 1; radialSegments = radialSegments || 8; closed = closed || false;

var frames = path.computeFrenetFrames( tubularSegments, closed );

// expose internals

this.tangents = frames.tangents; this.normals = frames.normals; this.binormals = frames.binormals;

// helper variables

var vertex = new Vector3(); var normal = new Vector3(); var uv = new Vector2(); var P = new Vector3();

var i, j;

// buffer

var vertices = []; var normals = []; var uvs = []; var indices = [];

// create buffer data

generateBufferData();

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

// functions

function generateBufferData() {

for ( i = 0; i < tubularSegments; i ++ ) {

generateSegment( i );

}

// if the geometry is not closed, generate the last row of vertices and normals // at the regular position on the given path // // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)

generateSegment( ( closed === false ) ? tubularSegments : 0 );

// uvs are generated in a separate function. // this makes it easy compute correct values for closed geometries

generateUVs();

// finally create faces

generateIndices();

}

function generateSegment( i ) {

// we use getPointAt to sample evenly distributed points from the given path

P = path.getPointAt( i / tubularSegments, P );

// retrieve corresponding normal and binormal

var N = frames.normals[ i ]; var B = frames.binormals[ i ];

// generate normals and vertices for the current segment

for ( j = 0; j <= radialSegments; j ++ ) {

var v = j / radialSegments * Math.PI * 2;

var sin = Math.sin( v ); var cos = - Math.cos( v );

// normal

normal.x = ( cos * N.x + sin * B.x ); normal.y = ( cos * N.y + sin * B.y ); normal.z = ( cos * N.z + sin * B.z ); normal.normalize();

normals.push( normal.x, normal.y, normal.z );

// vertex

vertex.x = P.x + radius * normal.x; vertex.y = P.y + radius * normal.y; vertex.z = P.z + radius * normal.z;

vertices.push( vertex.x, vertex.y, vertex.z );

}

}

function generateIndices() {

for ( j = 1; j <= tubularSegments; j ++ ) {

for ( i = 1; i <= radialSegments; i ++ ) {

var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); var b = ( radialSegments + 1 ) * j + ( i - 1 ); var c = ( radialSegments + 1 ) * j + i; var d = ( radialSegments + 1 ) * ( j - 1 ) + i;

// faces

indices.push( a, b, d ); indices.push( b, c, d );

}

}

}

function generateUVs() {

for ( i = 0; i <= tubularSegments; i ++ ) {

for ( j = 0; j <= radialSegments; j ++ ) {

uv.x = i / tubularSegments; uv.y = j / radialSegments;

uvs.push( uv.x, uv.y );

}

}

}

}

TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TubeBufferGeometry.prototype.constructor = TubeBufferGeometry;

/** * @author oosmoxiecode * @author Mugen87 / https://github.com/Mugen87 * * based on http://www.blackpawn.com/texts/pqtorus/ */

// TorusKnotGeometry

function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) {

Geometry.call( this );

this.type = 'TorusKnotGeometry';

this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q };

if ( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' );

this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) ); this.mergeVertices();

}

TorusKnotGeometry.prototype = Object.create( Geometry.prototype ); TorusKnotGeometry.prototype.constructor = TorusKnotGeometry;

// TorusKnotBufferGeometry

function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) {

BufferGeometry.call( this );

this.type = 'TorusKnotBufferGeometry';

this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q };

radius = radius || 1; tube = tube || 0.4; tubularSegments = Math.floor( tubularSegments ) || 64; radialSegments = Math.floor( radialSegments ) || 8; p = p || 2; q = q || 3;

// buffers

var indices = []; var vertices = []; var normals = []; var uvs = [];

// helper variables

var i, j;

var vertex = new Vector3(); var normal = new Vector3();

var P1 = new Vector3(); var P2 = new Vector3();

var B = new Vector3(); var T = new Vector3(); var N = new Vector3();

// generate vertices, normals and uvs

for ( i = 0; i <= tubularSegments; ++ i ) {

// the radian "u" is used to calculate the position on the torus curve of the current tubular segement

var u = i / tubularSegments * p * Math.PI * 2;

// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions

calculatePositionOnCurve( u, p, q, radius, P1 ); calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );

// calculate orthonormal basis

T.subVectors( P2, P1 ); N.addVectors( P2, P1 ); B.crossVectors( T, N ); N.crossVectors( B, T );

// normalize B, N. T can be ignored, we don't use it

B.normalize(); N.normalize();

for ( j = 0; j <= radialSegments; ++ j ) {

// now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value.

var v = j / radialSegments * Math.PI * 2; var cx = - tube * Math.cos( v ); var cy = tube * Math.sin( v );

// now calculate the final vertex position. // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve

vertex.x = P1.x + ( cx * N.x + cy * B.x ); vertex.y = P1.y + ( cx * N.y + cy * B.y ); vertex.z = P1.z + ( cx * N.z + cy * B.z );

vertices.push( vertex.x, vertex.y, vertex.z );

// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)

normal.subVectors( vertex, P1 ).normalize();

normals.push( normal.x, normal.y, normal.z );

// uv

uvs.push( i / tubularSegments ); uvs.push( j / radialSegments );

}

}

// generate indices

for ( j = 1; j <= tubularSegments; j ++ ) {

for ( i = 1; i <= radialSegments; i ++ ) {

// indices

var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); var b = ( radialSegments + 1 ) * j + ( i - 1 ); var c = ( radialSegments + 1 ) * j + i; var d = ( radialSegments + 1 ) * ( j - 1 ) + i;

// faces

indices.push( a, b, d ); indices.push( b, c, d );

}

}

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

// this function calculates the current position on the torus curve

function calculatePositionOnCurve( u, p, q, radius, position ) {

var cu = Math.cos( u ); var su = Math.sin( u ); var quOverP = q / p * u; var cs = Math.cos( quOverP );

position.x = radius * ( 2 + cs ) * 0.5 * cu; position.y = radius * ( 2 + cs ) * su * 0.5; position.z = radius * Math.sin( quOverP ) * 0.5;

}

}

TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry;

/** * @author oosmoxiecode * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */

// TorusGeometry

function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) {

Geometry.call( this );

this.type = 'TorusGeometry';

this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc };

this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) ); this.mergeVertices();

}

TorusGeometry.prototype = Object.create( Geometry.prototype ); TorusGeometry.prototype.constructor = TorusGeometry;

// TorusBufferGeometry

function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) {

BufferGeometry.call( this );

this.type = 'TorusBufferGeometry';

this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc };

radius = radius || 1; tube = tube || 0.4; radialSegments = Math.floor( radialSegments ) || 8; tubularSegments = Math.floor( tubularSegments ) || 6; arc = arc || Math.PI * 2;

// buffers

var indices = []; var vertices = []; var normals = []; var uvs = [];

// helper variables

var center = new Vector3(); var vertex = new Vector3(); var normal = new Vector3();

var j, i;

// generate vertices, normals and uvs

for ( j = 0; j <= radialSegments; j ++ ) {

for ( i = 0; i <= tubularSegments; i ++ ) {

var u = i / tubularSegments * arc; var v = j / radialSegments * Math.PI * 2;

// vertex

vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); vertex.z = tube * Math.sin( v );

vertices.push( vertex.x, vertex.y, vertex.z );

// normal

center.x = radius * Math.cos( u ); center.y = radius * Math.sin( u ); normal.subVectors( vertex, center ).normalize();

normals.push( normal.x, normal.y, normal.z );

// uv

uvs.push( i / tubularSegments ); uvs.push( j / radialSegments );

}

}

// generate indices

for ( j = 1; j <= radialSegments; j ++ ) {

for ( i = 1; i <= tubularSegments; i ++ ) {

// indices

var a = ( tubularSegments + 1 ) * j + i - 1; var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1; var c = ( tubularSegments + 1 ) * ( j - 1 ) + i; var d = ( tubularSegments + 1 ) * j + i;

// faces

indices.push( a, b, d ); indices.push( b, c, d );

}

}

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); TorusBufferGeometry.prototype.constructor = TorusBufferGeometry;

/** * @author Mugen87 / https://github.com/Mugen87 * Port from https://github.com/mapbox/earcut (v2.1.2) */

var Earcut = {

triangulate: function ( data, holeIndices, dim ) {

dim = dim || 2;

var hasHoles = holeIndices && holeIndices.length, outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length, outerNode = linkedList( data, 0, outerLen, dim, true ), triangles = [];

if ( ! outerNode ) return triangles;

var minX, minY, maxX, maxY, x, y, invSize;

if ( hasHoles ) outerNode = eliminateHoles( data, holeIndices, outerNode, dim );

// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox

if ( data.length > 80 * dim ) {

minX = maxX = data[ 0 ]; minY = maxY = data[ 1 ];

for ( var i = dim; i < outerLen; i += dim ) {

x = data[ i ]; y = data[ i + 1 ]; if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y;

}

// minX, minY and invSize are later used to transform coords into integers for z-order calculation

invSize = Math.max( maxX - minX, maxY - minY ); invSize = invSize !== 0 ? 1 / invSize : 0;

}

earcutLinked( outerNode, triangles, dim, minX, minY, invSize );

return triangles;

}

};

// create a circular doubly linked list from polygon points in the specified winding order

function linkedList( data, start, end, dim, clockwise ) {

var i, last;

if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) {

for ( i = start; i < end; i += dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );

} else {

for ( i = end - dim; i >= start; i -= dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );

}

if ( last && equals( last, last.next ) ) {

removeNode( last ); last = last.next;

}

return last;

}

// eliminate colinear or duplicate points

function filterPoints( start, end ) {

if ( ! start ) return start; if ( ! end ) end = start;

var p = start, again;

do {

again = false;

if ( ! p.steiner && ( equals( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) {

removeNode( p ); p = end = p.prev; if ( p === p.next ) break; again = true;

} else {

p = p.next;

}

} while ( again || p !== end );

return end;

}

// main ear slicing loop which triangulates a polygon (given as a linked list)

function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) {

if ( ! ear ) return;

// interlink polygon nodes in z-order

if ( ! pass && invSize ) indexCurve( ear, minX, minY, invSize );

var stop = ear, prev, next;

// iterate through ears, slicing them one by one

while ( ear.prev !== ear.next ) {

prev = ear.prev; next = ear.next;

if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) {

// cut off the triangle triangles.push( prev.i / dim ); triangles.push( ear.i / dim ); triangles.push( next.i / dim );

removeNode( ear );

// skipping the next vertice leads to less sliver triangles ear = next.next; stop = next.next;

continue;

}

ear = next;

// if we looped through the whole remaining polygon and can't find any more ears

if ( ear === stop ) {

// try filtering points and slicing again

if ( ! pass ) {

earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 );

// if this didn't work, try curing all small self-intersections locally

} else if ( pass === 1 ) {

ear = cureLocalIntersections( ear, triangles, dim ); earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 );

// as a last resort, try splitting the remaining polygon into two

} else if ( pass === 2 ) {

splitEarcut( ear, triangles, dim, minX, minY, invSize );

}

break;

}

}

}

// check whether a polygon node forms a valid ear with adjacent nodes

function isEar( ear ) {

var a = ear.prev, b = ear, c = ear.next;

if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear

// now make sure we don't have other points inside the potential ear var p = ear.next.next;

while ( p !== ear.prev ) {

if ( pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) {

return false;

}

p = p.next;

}

return true;

}

function isEarHashed( ear, minX, minY, invSize ) {

var a = ear.prev, b = ear, c = ear.next;

if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear

// triangle bbox; min & max are calculated like this for speed

var minTX = a.x < b.x ? ( a.x < c.x ? a.x : c.x ) : ( b.x < c.x ? b.x : c.x ), minTY = a.y < b.y ? ( a.y < c.y ? a.y : c.y ) : ( b.y < c.y ? b.y : c.y ), maxTX = a.x > b.x ? ( a.x > c.x ? a.x : c.x ) : ( b.x > c.x ? b.x : c.x ), maxTY = a.y > b.y ? ( a.y > c.y ? a.y : c.y ) : ( b.y > c.y ? b.y : c.y );

// z-order range for the current triangle bbox;

var minZ = zOrder( minTX, minTY, minX, minY, invSize ), maxZ = zOrder( maxTX, maxTY, minX, minY, invSize );

// first look for points inside the triangle in increasing z-order

var p = ear.nextZ;

while ( p && p.z <= maxZ ) {

if ( p !== ear.prev && p !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false; p = p.nextZ;

}

// then look for points in decreasing z-order

p = ear.prevZ;

while ( p && p.z >= minZ ) {

if ( p !== ear.prev && p !== ear.next && pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false;

p = p.prevZ;

}

return true;

}

// go through all polygon nodes and cure small local self-intersections

function cureLocalIntersections( start, triangles, dim ) {

var p = start;

do {

var a = p.prev, b = p.next.next;

if ( ! equals( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) {

triangles.push( a.i / dim ); triangles.push( p.i / dim ); triangles.push( b.i / dim );

// remove two nodes involved

removeNode( p ); removeNode( p.next );

p = start = b;

}

p = p.next;

} while ( p !== start );

return p;

}

// try splitting polygon into two and triangulate them independently

function splitEarcut( start, triangles, dim, minX, minY, invSize ) {

// look for a valid diagonal that divides the polygon into two

var a = start;

do {

var b = a.next.next;

while ( b !== a.prev ) {

if ( a.i !== b.i && isValidDiagonal( a, b ) ) {

// split the polygon in two by the diagonal

var c = splitPolygon( a, b );

// filter colinear points around the cuts

a = filterPoints( a, a.next ); c = filterPoints( c, c.next );

// run earcut on each half

earcutLinked( a, triangles, dim, minX, minY, invSize ); earcutLinked( c, triangles, dim, minX, minY, invSize ); return;

}

b = b.next;

}

a = a.next;

} while ( a !== start );

}

// link every hole into the outer loop, producing a single-ring polygon without holes

function eliminateHoles( data, holeIndices, outerNode, dim ) {

var queue = [], i, len, start, end, list;

for ( i = 0, len = holeIndices.length; i < len; i ++ ) {

start = holeIndices[ i ] * dim; end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length; list = linkedList( data, start, end, dim, false ); if ( list === list.next ) list.steiner = true; queue.push( getLeftmost( list ) );

}

queue.sort( compareX );

// process holes from left to right

for ( i = 0; i < queue.length; i ++ ) {

eliminateHole( queue[ i ], outerNode ); outerNode = filterPoints( outerNode, outerNode.next );

}

return outerNode;

}

function compareX( a, b ) {

return a.x - b.x;

}

// find a bridge between vertices that connects hole with an outer ring and and link it

function eliminateHole( hole, outerNode ) {

outerNode = findHoleBridge( hole, outerNode );

if ( outerNode ) {

var b = splitPolygon( outerNode, hole );

filterPoints( b, b.next );

}

}

// David Eberly's algorithm for finding a bridge between hole and outer polygon

function findHoleBridge( hole, outerNode ) {

var p = outerNode, hx = hole.x, hy = hole.y, qx = - Infinity, m;

// find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point

do {

if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) {

var x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y );

if ( x <= hx && x > qx ) {

qx = x;

if ( x === hx ) {

if ( hy === p.y ) return p; if ( hy === p.next.y ) return p.next;

}

m = p.x < p.next.x ? p : p.next;

}

}

p = p.next;

} while ( p !== outerNode );

if ( ! m ) return null;

if ( hx === qx ) return m.prev; // hole touches outer segment; pick lower endpoint

// look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point

var stop = m, mx = m.x, my = m.y, tanMin = Infinity, tan;

p = m.next;

while ( p !== stop ) {

if ( hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) {

tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential

if ( ( tan < tanMin || ( tan === tanMin && p.x > m.x ) ) && locallyInside( p, hole ) ) {

m = p; tanMin = tan;

}

}

p = p.next;

}

return m;

}

// interlink polygon nodes in z-order

function indexCurve( start, minX, minY, invSize ) {

var p = start;

do {

if ( p.z === null ) p.z = zOrder( p.x, p.y, minX, minY, invSize ); p.prevZ = p.prev; p.nextZ = p.next; p = p.next;

} while ( p !== start );

p.prevZ.nextZ = null; p.prevZ = null;

sortLinked( p );

}

// Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html

function sortLinked( list ) {

var i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1;

do {

p = list; list = null; tail = null; numMerges = 0;

while ( p ) {

numMerges ++; q = p; pSize = 0;

for ( i = 0; i < inSize; i ++ ) {

pSize ++; q = q.nextZ; if ( ! q ) break;

}

qSize = inSize;

while ( pSize > 0 || ( qSize > 0 && q ) ) {

if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) {

e = p; p = p.nextZ; pSize --;

} else {

e = q; q = q.nextZ; qSize --;

}

if ( tail ) tail.nextZ = e; else list = e;

e.prevZ = tail; tail = e;

}

p = q;

}

tail.nextZ = null; inSize *= 2;

} while ( numMerges > 1 );

return list;

}

// z-order of a point given coords and inverse of the longer side of data bbox

function zOrder( x, y, minX, minY, invSize ) {

// coords are transformed into non-negative 15-bit integer range

x = 32767 * ( x - minX ) * invSize; y = 32767 * ( y - minY ) * invSize;

x = ( x | ( x << 8 ) ) & 0x00FF00FF; x = ( x | ( x << 4 ) ) & 0x0F0F0F0F; x = ( x | ( x << 2 ) ) & 0x33333333; x = ( x | ( x << 1 ) ) & 0x55555555;

y = ( y | ( y << 8 ) ) & 0x00FF00FF; y = ( y | ( y << 4 ) ) & 0x0F0F0F0F; y = ( y | ( y << 2 ) ) & 0x33333333; y = ( y | ( y << 1 ) ) & 0x55555555;

return x | ( y << 1 );

}

// find the leftmost node of a polygon ring

function getLeftmost( start ) {

var p = start, leftmost = start;

do {

if ( p.x < leftmost.x ) leftmost = p; p = p.next;

} while ( p !== start );

return leftmost;

}

// check if a point lies within a convex triangle

function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) {

return ( cx - px ) * ( ay - py ) - ( ax - px ) * ( cy - py ) >= 0 && ( ax - px ) * ( by - py ) - ( bx - px ) * ( ay - py ) >= 0 && ( bx - px ) * ( cy - py ) - ( cx - px ) * ( by - py ) >= 0;

}

// check if a diagonal between two polygon nodes is valid (lies in polygon interior)

function isValidDiagonal( a, b ) {

return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) && locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b );

}

// signed area of a triangle

function area( p, q, r ) {

return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y );

}

// check if two points are equal

function equals( p1, p2 ) {

return p1.x === p2.x && p1.y === p2.y;

}

// check if two segments intersect

function intersects( p1, q1, p2, q2 ) {

if ( ( equals( p1, q1 ) && equals( p2, q2 ) ) || ( equals( p1, q2 ) && equals( p2, q1 ) ) ) return true;

return area( p1, q1, p2 ) > 0 !== area( p1, q1, q2 ) > 0 && area( p2, q2, p1 ) > 0 !== area( p2, q2, q1 ) > 0;

}

// check if a polygon diagonal intersects any polygon segments

function intersectsPolygon( a, b ) {

var p = a;

do {

if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects( p, p.next, a, b ) ) {

return true;

}

p = p.next;

} while ( p !== a );

return false;

}

// check if a polygon diagonal is locally inside the polygon

function locallyInside( a, b ) {

return area( a.prev, a, a.next ) < 0 ? area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 : area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0;

}

// check if the middle point of a polygon diagonal is inside the polygon

function middleInside( a, b ) {

var p = a, inside = false, px = ( a.x + b.x ) / 2, py = ( a.y + b.y ) / 2;

do {

if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y && ( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) ) {

inside = ! inside;

}

p = p.next;

} while ( p !== a );

return inside;

}

// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring

function splitPolygon( a, b ) {

var a2 = new Node( a.i, a.x, a.y ), b2 = new Node( b.i, b.x, b.y ), an = a.next, bp = b.prev;

a.next = b; b.prev = a;

a2.next = an; an.prev = a2;

b2.next = a2; a2.prev = b2;

bp.next = b2; b2.prev = bp;

return b2;

}

// create a node and optionally link it with previous one (in a circular doubly linked list)

function insertNode( i, x, y, last ) {

var p = new Node( i, x, y );

if ( ! last ) {

p.prev = p; p.next = p;

} else {

p.next = last.next; p.prev = last; last.next.prev = p; last.next = p;

}

return p;

}

function removeNode( p ) {

p.next.prev = p.prev; p.prev.next = p.next;

if ( p.prevZ ) p.prevZ.nextZ = p.nextZ; if ( p.nextZ ) p.nextZ.prevZ = p.prevZ;

}

function Node( i, x, y ) {

// vertice index in coordinates array this.i = i;

// vertex coordinates this.x = x; this.y = y;

// previous and next vertice nodes in a polygon ring this.prev = null; this.next = null;

// z-order curve value this.z = null;

// previous and next nodes in z-order this.prevZ = null; this.nextZ = null;

// indicates whether this is a steiner point this.steiner = false;

}

function signedArea( data, start, end, dim ) {

var sum = 0;

for ( var i = start, j = end - dim; i < end; i += dim ) {

sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] ); j = i;

}

return sum;

}

/** * @author zz85 / http://www.lab4games.net/zz85/blog */

var ShapeUtils = {

// calculate area of the contour polygon

area: function ( contour ) {

var n = contour.length; var a = 0.0;

for ( var p = n - 1, q = 0; q < n; p = q ++ ) {

a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;

}

return a * 0.5;

},

isClockWise: function ( pts ) {

return ShapeUtils.area( pts ) < 0;

},

triangulateShape: function ( contour, holes ) {

var vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] var holeIndices = []; // array of hole indices var faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]

removeDupEndPts( contour ); addContour( vertices, contour );

//

var holeIndex = contour.length;

holes.forEach( removeDupEndPts );

for ( var i = 0; i < holes.length; i ++ ) {

holeIndices.push( holeIndex ); holeIndex += holes[ i ].length; addContour( vertices, holes[ i ] );

}

//

var triangles = Earcut.triangulate( vertices, holeIndices );

//

for ( var i = 0; i < triangles.length; i += 3 ) {

faces.push( triangles.slice( i, i + 3 ) );

}

return faces;

}

};

function removeDupEndPts( points ) {

var l = points.length;

if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) {

points.pop();

}

}

function addContour( vertices, contour ) {

for ( var i = 0; i < contour.length; i ++ ) {

vertices.push( contour[ i ].x ); vertices.push( contour[ i ].y );

}

}

/** * @author zz85 / http://www.lab4games.net/zz85/blog * * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: <int>, // number of points on the curves * steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too * depth: <float>, // Depth to extrude the shape * * bevelEnabled: <bool>, // turn on bevel * bevelThickness: <float>, // how deep into the original shape bevel goes * bevelSize: <float>, // how far from shape outline is bevel * bevelSegments: <int>, // number of bevel layers * * extrudePath: <THREE.Curve> // curve to extrude shape along * * UVGenerator: <Object> // object that provides UV generator functions * * } */

// ExtrudeGeometry

function ExtrudeGeometry( shapes, options ) {

Geometry.call( this );

this.type = 'ExtrudeGeometry';

this.parameters = { shapes: shapes, options: options };

this.fromBufferGeometry( new ExtrudeBufferGeometry( shapes, options ) ); this.mergeVertices();

}

ExtrudeGeometry.prototype = Object.create( Geometry.prototype ); ExtrudeGeometry.prototype.constructor = ExtrudeGeometry;

ExtrudeGeometry.prototype.toJSON = function () {

var data = Geometry.prototype.toJSON.call( this );

var shapes = this.parameters.shapes; var options = this.parameters.options;

return toJSON( shapes, options, data );

};

// ExtrudeBufferGeometry

function ExtrudeBufferGeometry( shapes, options ) {

BufferGeometry.call( this );

this.type = 'ExtrudeBufferGeometry';

this.parameters = { shapes: shapes, options: options };

shapes = Array.isArray( shapes ) ? shapes : [ shapes ];

var scope = this;

var verticesArray = []; var uvArray = [];

for ( var i = 0, l = shapes.length; i < l; i ++ ) {

var shape = shapes[ i ]; addShape( shape );

}

// build geometry

this.addAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) );

this.computeVertexNormals();

// functions

function addShape( shape ) {

var placeholder = [];

// options

var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var steps = options.steps !== undefined ? options.steps : 1; var depth = options.depth !== undefined ? options.depth : 100;

var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;

var extrudePath = options.extrudePath;

var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator;

// deprecated options

if ( options.amount !== undefined ) {

console.warn( 'THREE.ExtrudeBufferGeometry: amount has been renamed to depth.' ); depth = options.amount;

}

//

var extrudePts, extrudeByPath = false; var splineTube, binormal, normal, position2;

if ( extrudePath ) {

extrudePts = extrudePath.getSpacedPoints( steps );

extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion

// SETUP TNB variables

// TODO1 - have a .isClosed in spline?

splineTube = extrudePath.computeFrenetFrames( steps, false );

// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);

binormal = new Vector3(); normal = new Vector3(); position2 = new Vector3();

}

// Safeguards if bevels are not enabled

if ( ! bevelEnabled ) {

bevelSegments = 0; bevelThickness = 0; bevelSize = 0;

}

// Variables initialization

var ahole, h, hl; // looping of holes

var shapePoints = shape.extractPoints( curveSegments );

var vertices = shapePoints.shape; var holes = shapePoints.holes;

var reverse = ! ShapeUtils.isClockWise( vertices );

if ( reverse ) {

vertices = vertices.reverse();

// Maybe we should also check if holes are in the opposite direction, just to be safe ...

for ( h = 0, hl = holes.length; h < hl; h ++ ) {

ahole = holes[ h ];

if ( ShapeUtils.isClockWise( ahole ) ) {

holes[ h ] = ahole.reverse();

}

}

}


var faces = ShapeUtils.triangulateShape( vertices, holes );

/* Vertices */

var contour = vertices; // vertices has all points but contour has only points of circumference

for ( h = 0, hl = holes.length; h < hl; h ++ ) {

ahole = holes[ h ];

vertices = vertices.concat( ahole );

}


function scalePt2( pt, vec, size ) {

if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" );

return vec.clone().multiplyScalar( size ).add( pt );

}

var b, bs, t, z, vert, vlen = vertices.length, face, flen = faces.length;


// Find directions for point movement


function getBevelVec( inPt, inPrev, inNext ) {

// computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side.

var v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt

// good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html

var v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; var v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y;

var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );

// check for collinear edges var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );

if ( Math.abs( collinear0 ) > Number.EPSILON ) {

// not collinear

// length of vectors for normalizing

var v_prev_len = Math.sqrt( v_prev_lensq ); var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );

// shift adjacent points by unit vectors to the left

var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );

var ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); var ptNextShift_y = ( inNext.y + v_next_x / v_next_len );

// scaling factor for v_prev to intersection point

var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x );

// vector from inPt to intersection point

v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );

// Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); if ( v_trans_lensq <= 2 ) {

return new Vector2( v_trans_x, v_trans_y );

} else {

shrink_by = Math.sqrt( v_trans_lensq / 2 );

}

} else {

// handle special case of collinear edges

var direction_eq = false; // assumes: opposite if ( v_prev_x > Number.EPSILON ) {

if ( v_next_x > Number.EPSILON ) {

direction_eq = true;

}

} else {

if ( v_prev_x < - Number.EPSILON ) {

if ( v_next_x < - Number.EPSILON ) {

direction_eq = true;

}

} else {

if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {

direction_eq = true;

}

}

}

if ( direction_eq ) {

// console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq );

} else {

// console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 );

}

}

return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );

}


var contourMovements = [];

for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {

if ( j === il ) j = 0; if ( k === il ) k = 0;

// (j)---(i)---(k) // console.log('i,j,k', i, j , k)

contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );

}

var holesMovements = [], oneHoleMovements, verticesMovements = contourMovements.concat();

for ( h = 0, hl = holes.length; h < hl; h ++ ) {

ahole = holes[ h ];

oneHoleMovements = [];

for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {

if ( j === il ) j = 0; if ( k === il ) k = 0;

// (j)---(i)---(k) oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );

}

holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements );

}


// Loop bevelSegments, 1 for the front, 1 for the back

for ( b = 0; b < bevelSegments; b ++ ) {

//for ( b = bevelSegments; b > 0; b -- ) {

t = b / bevelSegments; z = bevelThickness * Math.cos( t * Math.PI / 2 ); bs = bevelSize * Math.sin( t * Math.PI / 2 );

// contract shape

for ( i = 0, il = contour.length; i < il; i ++ ) {

vert = scalePt2( contour[ i ], contourMovements[ i ], bs );

v( vert.x, vert.y, - z );

}

// expand holes

for ( h = 0, hl = holes.length; h < hl; h ++ ) {

ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ];

for ( i = 0, il = ahole.length; i < il; i ++ ) {

vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );

v( vert.x, vert.y, - z );

}

}

}

bs = bevelSize;

// Back facing vertices

for ( i = 0; i < vlen; i ++ ) {

vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];

if ( ! extrudeByPath ) {

v( vert.x, vert.y, 0 );

} else {

// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );

normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );

position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );

v( position2.x, position2.y, position2.z );

}

}

// Add stepped vertices... // Including front facing vertices

var s;

for ( s = 1; s <= steps; s ++ ) {

for ( i = 0; i < vlen; i ++ ) {

vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];

if ( ! extrudeByPath ) {

v( vert.x, vert.y, depth / steps * s );

} else {

// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );

normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );

position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );

v( position2.x, position2.y, position2.z );

}

}

}


// Add bevel segments planes

//for ( b = 1; b <= bevelSegments; b ++ ) { for ( b = bevelSegments - 1; b >= 0; b -- ) {

t = b / bevelSegments; z = bevelThickness * Math.cos( t * Math.PI / 2 ); bs = bevelSize * Math.sin( t * Math.PI / 2 );

// contract shape

for ( i = 0, il = contour.length; i < il; i ++ ) {

vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, depth + z );

}

// expand holes

for ( h = 0, hl = holes.length; h < hl; h ++ ) {

ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ];

for ( i = 0, il = ahole.length; i < il; i ++ ) {

vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );

if ( ! extrudeByPath ) {

v( vert.x, vert.y, depth + z );

} else {

v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );

}

}

}

}

/* Faces */

// Top and bottom faces

buildLidFaces();

// Sides faces

buildSideFaces();


///// Internal functions

function buildLidFaces() {

var start = verticesArray.length / 3;

if ( bevelEnabled ) {

var layer = 0; // steps + 1 var offset = vlen * layer;

// Bottom faces

for ( i = 0; i < flen; i ++ ) {

face = faces[ i ]; f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );

}

layer = steps + bevelSegments * 2; offset = vlen * layer;

// Top faces

for ( i = 0; i < flen; i ++ ) {

face = faces[ i ]; f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );

}

} else {

// Bottom faces

for ( i = 0; i < flen; i ++ ) {

face = faces[ i ]; f3( face[ 2 ], face[ 1 ], face[ 0 ] );

}

// Top faces

for ( i = 0; i < flen; i ++ ) {

face = faces[ i ]; f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );

}

}

scope.addGroup( start, verticesArray.length / 3 - start, 0 );

}

// Create faces for the z-sides of the shape

function buildSideFaces() {

var start = verticesArray.length / 3; var layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length;

for ( h = 0, hl = holes.length; h < hl; h ++ ) {

ahole = holes[ h ]; sidewalls( ahole, layeroffset );

//, true layeroffset += ahole.length;

}


scope.addGroup( start, verticesArray.length / 3 - start, 1 );


}

function sidewalls( contour, layeroffset ) {

var j, k; i = contour.length;

while ( -- i >= 0 ) {

j = i; k = i - 1; if ( k < 0 ) k = contour.length - 1;

//console.log('b', i,j, i-1, k,vertices.length);

var s = 0, sl = steps + bevelSegments * 2;

for ( s = 0; s < sl; s ++ ) {

var slen1 = vlen * s; var slen2 = vlen * ( s + 1 );

var a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2;

f4( a, b, c, d );

}

}

}

function v( x, y, z ) {

placeholder.push( x ); placeholder.push( y ); placeholder.push( z );

}


function f3( a, b, c ) {

addVertex( a ); addVertex( b ); addVertex( c );

var nextIndex = verticesArray.length / 3; var uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 );

addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] );

}

function f4( a, b, c, d ) {

addVertex( a ); addVertex( b ); addVertex( d );

addVertex( b ); addVertex( c ); addVertex( d );


var nextIndex = verticesArray.length / 3; var uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 );

addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 3 ] );

addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); addUV( uvs[ 3 ] );

}

function addVertex( index ) {

verticesArray.push( placeholder[ index * 3 + 0 ] ); verticesArray.push( placeholder[ index * 3 + 1 ] ); verticesArray.push( placeholder[ index * 3 + 2 ] );

}


function addUV( vector2 ) {

uvArray.push( vector2.x ); uvArray.push( vector2.y );

}

}

}

ExtrudeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry;

ExtrudeBufferGeometry.prototype.toJSON = function () {

var data = BufferGeometry.prototype.toJSON.call( this );

var shapes = this.parameters.shapes; var options = this.parameters.options;

return toJSON( shapes, options, data );

};

//

var WorldUVGenerator = {

generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) {

var a_x = vertices[ indexA * 3 ]; var a_y = vertices[ indexA * 3 + 1 ]; var b_x = vertices[ indexB * 3 ]; var b_y = vertices[ indexB * 3 + 1 ]; var c_x = vertices[ indexC * 3 ]; var c_y = vertices[ indexC * 3 + 1 ];

return [ new Vector2( a_x, a_y ), new Vector2( b_x, b_y ), new Vector2( c_x, c_y ) ];

},

generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) {

var a_x = vertices[ indexA * 3 ]; var a_y = vertices[ indexA * 3 + 1 ]; var a_z = vertices[ indexA * 3 + 2 ]; var b_x = vertices[ indexB * 3 ]; var b_y = vertices[ indexB * 3 + 1 ]; var b_z = vertices[ indexB * 3 + 2 ]; var c_x = vertices[ indexC * 3 ]; var c_y = vertices[ indexC * 3 + 1 ]; var c_z = vertices[ indexC * 3 + 2 ]; var d_x = vertices[ indexD * 3 ]; var d_y = vertices[ indexD * 3 + 1 ]; var d_z = vertices[ indexD * 3 + 2 ];

if ( Math.abs( a_y - b_y ) < 0.01 ) {

return [ new Vector2( a_x, 1 - a_z ), new Vector2( b_x, 1 - b_z ), new Vector2( c_x, 1 - c_z ), new Vector2( d_x, 1 - d_z ) ];

} else {

return [ new Vector2( a_y, 1 - a_z ), new Vector2( b_y, 1 - b_z ), new Vector2( c_y, 1 - c_z ), new Vector2( d_y, 1 - d_z ) ];

}

} };

function toJSON( shapes, options, data ) {

//

data.shapes = [];

if ( Array.isArray( shapes ) ) {

for ( var i = 0, l = shapes.length; i < l; i ++ ) {

var shape = shapes[ i ];

data.shapes.push( shape.uuid );

}

} else {

data.shapes.push( shapes.uuid );

}

//

if ( options.extrudePath !== undefined ) data.options.extrudePath = options.extrudePath.toJSON();

return data;

}

/** * @author zz85 / http://www.lab4games.net/zz85/blog * @author alteredq / http://alteredqualia.com/ * * Text = 3D Text * * parameters = { * font: <THREE.Font>, // font * * size: <float>, // size of the text * height: <float>, // thickness to extrude text * curveSegments: <int>, // number of points on the curves * * bevelEnabled: <bool>, // turn on bevel * bevelThickness: <float>, // how deep into text bevel goes * bevelSize: <float> // how far from text outline is bevel * } */

// TextGeometry

function TextGeometry( text, parameters ) {

Geometry.call( this );

this.type = 'TextGeometry';

this.parameters = { text: text, parameters: parameters };

this.fromBufferGeometry( new TextBufferGeometry( text, parameters ) ); this.mergeVertices();

}

TextGeometry.prototype = Object.create( Geometry.prototype ); TextGeometry.prototype.constructor = TextGeometry;

// TextBufferGeometry

function TextBufferGeometry( text, parameters ) {

parameters = parameters || {};

var font = parameters.font;

if ( ! ( font && font.isFont ) ) {

console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' ); return new Geometry();

}

var shapes = font.generateShapes( text, parameters.size );

// translate parameters to ExtrudeGeometry API

parameters.depth = parameters.height !== undefined ? parameters.height : 50;

// defaults

if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10; if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8; if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false;

ExtrudeBufferGeometry.call( this, shapes, parameters );

this.type = 'TextBufferGeometry';

}

TextBufferGeometry.prototype = Object.create( ExtrudeBufferGeometry.prototype ); TextBufferGeometry.prototype.constructor = TextBufferGeometry;

/** * @author mrdoob / http://mrdoob.com/ * @author benaadams / https://twitter.com/ben_a_adams * @author Mugen87 / https://github.com/Mugen87 */

// SphereGeometry

function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {

Geometry.call( this );

this.type = 'SphereGeometry';

this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength };

this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) ); this.mergeVertices();

}

SphereGeometry.prototype = Object.create( Geometry.prototype ); SphereGeometry.prototype.constructor = SphereGeometry;

// SphereBufferGeometry

function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {

BufferGeometry.call( this );

this.type = 'SphereBufferGeometry';

this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength };

radius = radius || 1;

widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 ); heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 );

phiStart = phiStart !== undefined ? phiStart : 0; phiLength = phiLength !== undefined ? phiLength : Math.PI * 2;

thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI;

var thetaEnd = thetaStart + thetaLength;

var ix, iy;

var index = 0; var grid = [];

var vertex = new Vector3(); var normal = new Vector3();

// buffers

var indices = []; var vertices = []; var normals = []; var uvs = [];

// generate vertices, normals and uvs

for ( iy = 0; iy <= heightSegments; iy ++ ) {

var verticesRow = [];

var v = iy / heightSegments;

for ( ix = 0; ix <= widthSegments; ix ++ ) {

var u = ix / widthSegments;

// vertex

vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertex.y = radius * Math.cos( thetaStart + v * thetaLength ); vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );

vertices.push( vertex.x, vertex.y, vertex.z );

// normal

normal.set( vertex.x, vertex.y, vertex.z ).normalize(); normals.push( normal.x, normal.y, normal.z );

// uv

uvs.push( u, 1 - v );

verticesRow.push( index ++ );

}

grid.push( verticesRow );

}

// indices

for ( iy = 0; iy < heightSegments; iy ++ ) {

for ( ix = 0; ix < widthSegments; ix ++ ) {

var a = grid[ iy ][ ix + 1 ]; var b = grid[ iy ][ ix ]; var c = grid[ iy + 1 ][ ix ]; var d = grid[ iy + 1 ][ ix + 1 ];

if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d ); if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d );

}

}

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); SphereBufferGeometry.prototype.constructor = SphereBufferGeometry;

/** * @author Kaleb Murphy * @author Mugen87 / https://github.com/Mugen87 */

// RingGeometry

function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {

Geometry.call( this );

this.type = 'RingGeometry';

this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength };

this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) ); this.mergeVertices();

}

RingGeometry.prototype = Object.create( Geometry.prototype ); RingGeometry.prototype.constructor = RingGeometry;

// RingBufferGeometry

function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {

BufferGeometry.call( this );

this.type = 'RingBufferGeometry';

this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength };

innerRadius = innerRadius || 0.5; outerRadius = outerRadius || 1;

thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8; phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1;

// buffers

var indices = []; var vertices = []; var normals = []; var uvs = [];

// some helper variables

var segment; var radius = innerRadius; var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments ); var vertex = new Vector3(); var uv = new Vector2(); var j, i;

// generate vertices, normals and uvs

for ( j = 0; j <= phiSegments; j ++ ) {

for ( i = 0; i <= thetaSegments; i ++ ) {

// values are generate from the inside of the ring to the outside

segment = thetaStart + i / thetaSegments * thetaLength;

// vertex

vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment );

vertices.push( vertex.x, vertex.y, vertex.z );

// normal

normals.push( 0, 0, 1 );

// uv

uv.x = ( vertex.x / outerRadius + 1 ) / 2; uv.y = ( vertex.y / outerRadius + 1 ) / 2;

uvs.push( uv.x, uv.y );

}

// increase the radius for next row of vertices

radius += radiusStep;

}

// indices

for ( j = 0; j < phiSegments; j ++ ) {

var thetaSegmentLevel = j * ( thetaSegments + 1 );

for ( i = 0; i < thetaSegments; i ++ ) {

segment = i + thetaSegmentLevel;

var a = segment; var b = segment + thetaSegments + 1; var c = segment + thetaSegments + 2; var d = segment + 1;

// faces

indices.push( a, b, d ); indices.push( b, c, d );

}

}

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); RingBufferGeometry.prototype.constructor = RingBufferGeometry;

/** * @author zz85 / https://github.com/zz85 * @author bhouston / http://clara.io * @author Mugen87 / https://github.com/Mugen87 */

// LatheGeometry

function LatheGeometry( points, segments, phiStart, phiLength ) {

Geometry.call( this );

this.type = 'LatheGeometry';

this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength };

this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) ); this.mergeVertices();

}

LatheGeometry.prototype = Object.create( Geometry.prototype ); LatheGeometry.prototype.constructor = LatheGeometry;

// LatheBufferGeometry

function LatheBufferGeometry( points, segments, phiStart, phiLength ) {

BufferGeometry.call( this );

this.type = 'LatheBufferGeometry';

this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength };

segments = Math.floor( segments ) || 12; phiStart = phiStart || 0; phiLength = phiLength || Math.PI * 2;

// clamp phiLength so it's in range of [ 0, 2PI ]

phiLength = _Math.clamp( phiLength, 0, Math.PI * 2 );


// buffers

var indices = []; var vertices = []; var uvs = [];

// helper variables

var base; var inverseSegments = 1.0 / segments; var vertex = new Vector3(); var uv = new Vector2(); var i, j;

// generate vertices and uvs

for ( i = 0; i <= segments; i ++ ) {

var phi = phiStart + i * inverseSegments * phiLength;

var sin = Math.sin( phi ); var cos = Math.cos( phi );

for ( j = 0; j <= ( points.length - 1 ); j ++ ) {

// vertex

vertex.x = points[ j ].x * sin; vertex.y = points[ j ].y; vertex.z = points[ j ].x * cos;

vertices.push( vertex.x, vertex.y, vertex.z );

// uv

uv.x = i / segments; uv.y = j / ( points.length - 1 );

uvs.push( uv.x, uv.y );


}

}

// indices

for ( i = 0; i < segments; i ++ ) {

for ( j = 0; j < ( points.length - 1 ); j ++ ) {

base = j + i * points.length;

var a = base; var b = base + points.length; var c = base + points.length + 1; var d = base + 1;

// faces

indices.push( a, b, d ); indices.push( b, c, d );

}

}

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

// generate normals

this.computeVertexNormals();

// if the geometry is closed, we need to average the normals along the seam. // because the corresponding vertices are identical (but still have different UVs).

if ( phiLength === Math.PI * 2 ) {

var normals = this.attributes.normal.array; var n1 = new Vector3(); var n2 = new Vector3(); var n = new Vector3();

// this is the buffer offset for the last line of vertices

base = segments * points.length * 3;

for ( i = 0, j = 0; i < points.length; i ++, j += 3 ) {

// select the normal of the vertex in the first line

n1.x = normals[ j + 0 ]; n1.y = normals[ j + 1 ]; n1.z = normals[ j + 2 ];

// select the normal of the vertex in the last line

n2.x = normals[ base + j + 0 ]; n2.y = normals[ base + j + 1 ]; n2.z = normals[ base + j + 2 ];

// average normals

n.addVectors( n1, n2 ).normalize();

// assign the new values to both normals

normals[ j + 0 ] = normals[ base + j + 0 ] = n.x; normals[ j + 1 ] = normals[ base + j + 1 ] = n.y; normals[ j + 2 ] = normals[ base + j + 2 ] = n.z;

}

}

}

LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); LatheBufferGeometry.prototype.constructor = LatheBufferGeometry;

/** * @author jonobr1 / http://jonobr1.com * @author Mugen87 / https://github.com/Mugen87 */

// ShapeGeometry

function ShapeGeometry( shapes, curveSegments ) {

Geometry.call( this );

this.type = 'ShapeGeometry';

if ( typeof curveSegments === 'object' ) {

console.warn( 'THREE.ShapeGeometry: Options parameter has been removed.' );

curveSegments = curveSegments.curveSegments;

}

this.parameters = { shapes: shapes, curveSegments: curveSegments };

this.fromBufferGeometry( new ShapeBufferGeometry( shapes, curveSegments ) ); this.mergeVertices();

}

ShapeGeometry.prototype = Object.create( Geometry.prototype ); ShapeGeometry.prototype.constructor = ShapeGeometry;

ShapeGeometry.prototype.toJSON = function () {

var data = Geometry.prototype.toJSON.call( this );

var shapes = this.parameters.shapes;

return toJSON$1( shapes, data );

};

// ShapeBufferGeometry

function ShapeBufferGeometry( shapes, curveSegments ) {

BufferGeometry.call( this );

this.type = 'ShapeBufferGeometry';

this.parameters = { shapes: shapes, curveSegments: curveSegments };

curveSegments = curveSegments || 12;

// buffers

var indices = []; var vertices = []; var normals = []; var uvs = [];

// helper variables

var groupStart = 0; var groupCount = 0;

// allow single and array values for "shapes" parameter

if ( Array.isArray( shapes ) === false ) {

addShape( shapes );

} else {

for ( var i = 0; i < shapes.length; i ++ ) {

addShape( shapes[ i ] );

this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support

groupStart += groupCount; groupCount = 0;

}

}

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );


// helper functions

function addShape( shape ) {

var i, l, shapeHole;

var indexOffset = vertices.length / 3; var points = shape.extractPoints( curveSegments );

var shapeVertices = points.shape; var shapeHoles = points.holes;

// check direction of vertices

if ( ShapeUtils.isClockWise( shapeVertices ) === false ) {

shapeVertices = shapeVertices.reverse();

// also check if holes are in the opposite direction

for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {

shapeHole = shapeHoles[ i ];

if ( ShapeUtils.isClockWise( shapeHole ) === true ) {

shapeHoles[ i ] = shapeHole.reverse();

}

}

}

var faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles );

// join vertices of inner and outer paths to a single array

for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {

shapeHole = shapeHoles[ i ]; shapeVertices = shapeVertices.concat( shapeHole );

}

// vertices, normals, uvs

for ( i = 0, l = shapeVertices.length; i < l; i ++ ) {

var vertex = shapeVertices[ i ];

vertices.push( vertex.x, vertex.y, 0 ); normals.push( 0, 0, 1 ); uvs.push( vertex.x, vertex.y ); // world uvs

}

// incides

for ( i = 0, l = faces.length; i < l; i ++ ) {

var face = faces[ i ];

var a = face[ 0 ] + indexOffset; var b = face[ 1 ] + indexOffset; var c = face[ 2 ] + indexOffset;

indices.push( a, b, c ); groupCount += 3;

}

}

}

ShapeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry;

ShapeBufferGeometry.prototype.toJSON = function () {

var data = BufferGeometry.prototype.toJSON.call( this );

var shapes = this.parameters.shapes;

return toJSON$1( shapes, data );

};

//

function toJSON$1( shapes, data ) {

data.shapes = [];

if ( Array.isArray( shapes ) ) {

for ( var i = 0, l = shapes.length; i < l; i ++ ) {

var shape = shapes[ i ];

data.shapes.push( shape.uuid );

}

} else {

data.shapes.push( shapes.uuid );

}

return data;

}

/** * @author WestLangley / http://github.com/WestLangley * @author Mugen87 / https://github.com/Mugen87 */

function EdgesGeometry( geometry, thresholdAngle ) {

BufferGeometry.call( this );

this.type = 'EdgesGeometry';

this.parameters = { thresholdAngle: thresholdAngle };

thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1;

// buffer

var vertices = [];

// helper variables

var thresholdDot = Math.cos( _Math.DEG2RAD * thresholdAngle ); var edge = [ 0, 0 ], edges = {}, edge1, edge2; var key, keys = [ 'a', 'b', 'c' ];

// prepare source geometry

var geometry2;

if ( geometry.isBufferGeometry ) {

geometry2 = new Geometry(); geometry2.fromBufferGeometry( geometry );

} else {

geometry2 = geometry.clone();

}

geometry2.mergeVertices(); geometry2.computeFaceNormals();

var sourceVertices = geometry2.vertices; var faces = geometry2.faces;

// now create a data structure where each entry represents an edge with its adjoining faces

for ( var i = 0, l = faces.length; i < l; i ++ ) {

var face = faces[ i ];

for ( var j = 0; j < 3; j ++ ) {

edge1 = face[ keys[ j ] ]; edge2 = face[ keys[ ( j + 1 ) % 3 ] ]; edge[ 0 ] = Math.min( edge1, edge2 ); edge[ 1 ] = Math.max( edge1, edge2 );

key = edge[ 0 ] + ',' + edge[ 1 ];

if ( edges[ key ] === undefined ) {

edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ], face1: i, face2: undefined };

} else {

edges[ key ].face2 = i;

}

}

}

// generate vertices

for ( key in edges ) {

var e = edges[ key ];

// an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree.

if ( e.face2 === undefined || faces[ e.face1 ].normal.dot( faces[ e.face2 ].normal ) <= thresholdDot ) {

var vertex = sourceVertices[ e.index1 ]; vertices.push( vertex.x, vertex.y, vertex.z );

vertex = sourceVertices[ e.index2 ]; vertices.push( vertex.x, vertex.y, vertex.z );

}

}

// build geometry

this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

}

EdgesGeometry.prototype = Object.create( BufferGeometry.prototype ); EdgesGeometry.prototype.constructor = EdgesGeometry;

/** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */

// CylinderGeometry

function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

Geometry.call( this );

this.type = 'CylinderGeometry';

this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength };

this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) ); this.mergeVertices();

}

CylinderGeometry.prototype = Object.create( Geometry.prototype ); CylinderGeometry.prototype.constructor = CylinderGeometry;

// CylinderBufferGeometry

function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

BufferGeometry.call( this );

this.type = 'CylinderBufferGeometry';

this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength };

var scope = this;

radiusTop = radiusTop !== undefined ? radiusTop : 1; radiusBottom = radiusBottom !== undefined ? radiusBottom : 1; height = height || 1;

radialSegments = Math.floor( radialSegments ) || 8; heightSegments = Math.floor( heightSegments ) || 1;

openEnded = openEnded !== undefined ? openEnded : false; thetaStart = thetaStart !== undefined ? thetaStart : 0.0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

// buffers

var indices = []; var vertices = []; var normals = []; var uvs = [];

// helper variables

var index = 0; var indexArray = []; var halfHeight = height / 2; var groupStart = 0;

// generate geometry

generateTorso();

if ( openEnded === false ) {

if ( radiusTop > 0 ) generateCap( true ); if ( radiusBottom > 0 ) generateCap( false );

}

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

function generateTorso() {

var x, y; var normal = new Vector3(); var vertex = new Vector3();

var groupCount = 0;

// this will be used to calculate the normal var slope = ( radiusBottom - radiusTop ) / height;

// generate vertices, normals and uvs

for ( y = 0; y <= heightSegments; y ++ ) {

var indexRow = [];

var v = y / heightSegments;

// calculate the radius of the current row

var radius = v * ( radiusBottom - radiusTop ) + radiusTop;

for ( x = 0; x <= radialSegments; x ++ ) {

var u = x / radialSegments;

var theta = u * thetaLength + thetaStart;

var sinTheta = Math.sin( theta ); var cosTheta = Math.cos( theta );

// vertex

vertex.x = radius * sinTheta; vertex.y = - v * height + halfHeight; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z );

// normal

normal.set( sinTheta, slope, cosTheta ).normalize(); normals.push( normal.x, normal.y, normal.z );

// uv

uvs.push( u, 1 - v );

// save index of vertex in respective row

indexRow.push( index ++ );

}

// now save vertices of the row in our index array

indexArray.push( indexRow );

}

// generate indices

for ( x = 0; x < radialSegments; x ++ ) {

for ( y = 0; y < heightSegments; y ++ ) {

// we use the index array to access the correct indices

var a = indexArray[ y ][ x ]; var b = indexArray[ y + 1 ][ x ]; var c = indexArray[ y + 1 ][ x + 1 ]; var d = indexArray[ y ][ x + 1 ];

// faces

indices.push( a, b, d ); indices.push( b, c, d );

// update group counter

groupCount += 6;

}

}

// add a group to the geometry. this will ensure multi material support

scope.addGroup( groupStart, groupCount, 0 );

// calculate new start value for groups

groupStart += groupCount;

}

function generateCap( top ) {

var x, centerIndexStart, centerIndexEnd;

var uv = new Vector2(); var vertex = new Vector3();

var groupCount = 0;

var radius = ( top === true ) ? radiusTop : radiusBottom; var sign = ( top === true ) ? 1 : - 1;

// save the index of the first center vertex centerIndexStart = index;

// first we generate the center vertex data of the cap. // because the geometry needs one set of uvs per face, // we must generate a center vertex per face/segment

for ( x = 1; x <= radialSegments; x ++ ) {

// vertex

vertices.push( 0, halfHeight * sign, 0 );

// normal

normals.push( 0, sign, 0 );

// uv

uvs.push( 0.5, 0.5 );

// increase index

index ++;

}

// save the index of the last center vertex

centerIndexEnd = index;

// now we generate the surrounding vertices, normals and uvs

for ( x = 0; x <= radialSegments; x ++ ) {

var u = x / radialSegments; var theta = u * thetaLength + thetaStart;

var cosTheta = Math.cos( theta ); var sinTheta = Math.sin( theta );

// vertex

vertex.x = radius * sinTheta; vertex.y = halfHeight * sign; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z );

// normal

normals.push( 0, sign, 0 );

// uv

uv.x = ( cosTheta * 0.5 ) + 0.5; uv.y = ( sinTheta * 0.5 * sign ) + 0.5; uvs.push( uv.x, uv.y );

// increase index

index ++;

}

// generate indices

for ( x = 0; x < radialSegments; x ++ ) {

var c = centerIndexStart + x; var i = centerIndexEnd + x;

if ( top === true ) {

// face top

indices.push( i, i + 1, c );

} else {

// face bottom

indices.push( i + 1, i, c );

}

groupCount += 3;

}

// add a group to the geometry. this will ensure multi material support

scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );

// calculate new start value for groups

groupStart += groupCount;

}

}

CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry;

/** * @author abelnation / http://github.com/abelnation */

// ConeGeometry

function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );

this.type = 'ConeGeometry';

this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength };

}

ConeGeometry.prototype = Object.create( CylinderGeometry.prototype ); ConeGeometry.prototype.constructor = ConeGeometry;

// ConeBufferGeometry

function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );

this.type = 'ConeBufferGeometry';

this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength };

}

ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype ); ConeBufferGeometry.prototype.constructor = ConeBufferGeometry;

/** * @author benaadams / https://twitter.com/ben_a_adams * @author Mugen87 / https://github.com/Mugen87 * @author hughes */

// CircleGeometry

function CircleGeometry( radius, segments, thetaStart, thetaLength ) {

Geometry.call( this );

this.type = 'CircleGeometry';

this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength };

this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) ); this.mergeVertices();

}

CircleGeometry.prototype = Object.create( Geometry.prototype ); CircleGeometry.prototype.constructor = CircleGeometry;

// CircleBufferGeometry

function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) {

BufferGeometry.call( this );

this.type = 'CircleBufferGeometry';

this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength };

radius = radius || 1; segments = segments !== undefined ? Math.max( 3, segments ) : 8;

thetaStart = thetaStart !== undefined ? thetaStart : 0; thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

// buffers

var indices = []; var vertices = []; var normals = []; var uvs = [];

// helper variables

var i, s; var vertex = new Vector3(); var uv = new Vector2();

// center point

vertices.push( 0, 0, 0 ); normals.push( 0, 0, 1 ); uvs.push( 0.5, 0.5 );

for ( s = 0, i = 3; s <= segments; s ++, i += 3 ) {

var segment = thetaStart + s / segments * thetaLength;

// vertex

vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment );

vertices.push( vertex.x, vertex.y, vertex.z );

// normal

normals.push( 0, 0, 1 );

// uvs

uv.x = ( vertices[ i ] / radius + 1 ) / 2; uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2;

uvs.push( uv.x, uv.y );

}

// indices

for ( i = 1; i <= segments; i ++ ) {

indices.push( i, i + 1, 0 );

}

// build geometry

this.setIndex( indices ); this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

}

CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); CircleBufferGeometry.prototype.constructor = CircleBufferGeometry;


var Geometries = /*#__PURE__*/Object.freeze({ WireframeGeometry: WireframeGeometry, ParametricGeometry: ParametricGeometry, ParametricBufferGeometry: ParametricBufferGeometry, TetrahedronGeometry: TetrahedronGeometry, TetrahedronBufferGeometry: TetrahedronBufferGeometry, OctahedronGeometry: OctahedronGeometry, OctahedronBufferGeometry: OctahedronBufferGeometry, IcosahedronGeometry: IcosahedronGeometry, IcosahedronBufferGeometry: IcosahedronBufferGeometry, DodecahedronGeometry: DodecahedronGeometry, DodecahedronBufferGeometry: DodecahedronBufferGeometry, PolyhedronGeometry: PolyhedronGeometry, PolyhedronBufferGeometry: PolyhedronBufferGeometry, TubeGeometry: TubeGeometry, TubeBufferGeometry: TubeBufferGeometry, TorusKnotGeometry: TorusKnotGeometry, TorusKnotBufferGeometry: TorusKnotBufferGeometry, TorusGeometry: TorusGeometry, TorusBufferGeometry: TorusBufferGeometry, TextGeometry: TextGeometry, TextBufferGeometry: TextBufferGeometry, SphereGeometry: SphereGeometry, SphereBufferGeometry: SphereBufferGeometry, RingGeometry: RingGeometry, RingBufferGeometry: RingBufferGeometry, PlaneGeometry: PlaneGeometry, PlaneBufferGeometry: PlaneBufferGeometry, LatheGeometry: LatheGeometry, LatheBufferGeometry: LatheBufferGeometry, ShapeGeometry: ShapeGeometry, ShapeBufferGeometry: ShapeBufferGeometry, ExtrudeGeometry: ExtrudeGeometry, ExtrudeBufferGeometry: ExtrudeBufferGeometry, EdgesGeometry: EdgesGeometry, ConeGeometry: ConeGeometry, ConeBufferGeometry: ConeBufferGeometry, CylinderGeometry: CylinderGeometry, CylinderBufferGeometry: CylinderBufferGeometry, CircleGeometry: CircleGeometry, CircleBufferGeometry: CircleBufferGeometry, BoxGeometry: BoxGeometry, BoxBufferGeometry: BoxBufferGeometry });

/** * @author mrdoob / http://mrdoob.com/ * * parameters = { * color: <THREE.Color> * } */

function ShadowMaterial( parameters ) {

Material.call( this );

this.type = 'ShadowMaterial';

this.color = new Color( 0x000000 ); this.transparent = true;

this.setValues( parameters );

}

ShadowMaterial.prototype = Object.create( Material.prototype ); ShadowMaterial.prototype.constructor = ShadowMaterial;

ShadowMaterial.prototype.isShadowMaterial = true;

ShadowMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.color.copy( source.color );

return this;

};

/** * @author mrdoob / http://mrdoob.com/ */

function RawShaderMaterial( parameters ) {

ShaderMaterial.call( this, parameters );

this.type = 'RawShaderMaterial';

}

RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype ); RawShaderMaterial.prototype.constructor = RawShaderMaterial;

RawShaderMaterial.prototype.isRawShaderMaterial = true;

/** * @author WestLangley / http://github.com/WestLangley * * parameters = { * color: <hex>, * roughness: <float>, * metalness: <float>, * opacity: <float>, * * map: new THREE.Texture( <Image> ), * * lightMap: new THREE.Texture( <Image> ), * lightMapIntensity: <float> * * aoMap: new THREE.Texture( <Image> ), * aoMapIntensity: <float> * * emissive: <hex>, * emissiveIntensity: <float> * emissiveMap: new THREE.Texture( <Image> ), * * bumpMap: new THREE.Texture( <Image> ), * bumpScale: <float>, * * normalMap: new THREE.Texture( <Image> ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: <Vector2>, * * displacementMap: new THREE.Texture( <Image> ), * displacementScale: <float>, * displacementBias: <float>, * * roughnessMap: new THREE.Texture( <Image> ), * * metalnessMap: new THREE.Texture( <Image> ), * * alphaMap: new THREE.Texture( <Image> ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * envMapIntensity: <float> * * refractionRatio: <float>, * * wireframe: <boolean>, * wireframeLinewidth: <float>, * * skinning: <bool>, * morphTargets: <bool>, * morphNormals: <bool> * } */

function MeshStandardMaterial( parameters ) {

Material.call( this );

this.defines = { 'STANDARD': };

this.type = 'MeshStandardMaterial';

this.color = new Color( 0xffffff ); // diffuse this.roughness = 0.5; this.metalness = 0.5;

this.map = null;

this.lightMap = null; this.lightMapIntensity = 1.0;

this.aoMap = null; this.aoMapIntensity = 1.0;

this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null;

this.bumpMap = null; this.bumpScale = 1;

this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 );

this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0;

this.roughnessMap = null;

this.metalnessMap = null;

this.alphaMap = null;

this.envMap = null; this.envMapIntensity = 1.0;

this.refractionRatio = 0.98;

this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round';

this.skinning = false; this.morphTargets = false; this.morphNormals = false;

this.setValues( parameters );

}

MeshStandardMaterial.prototype = Object.create( Material.prototype ); MeshStandardMaterial.prototype.constructor = MeshStandardMaterial;

MeshStandardMaterial.prototype.isMeshStandardMaterial = true;

MeshStandardMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.defines = { 'STANDARD': };

this.color.copy( source.color ); this.roughness = source.roughness; this.metalness = source.metalness;

this.map = source.map;

this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity;

this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity;

this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity;

this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale;

this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale );

this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias;

this.roughnessMap = source.roughnessMap;

this.metalnessMap = source.metalnessMap;

this.alphaMap = source.alphaMap;

this.envMap = source.envMap; this.envMapIntensity = source.envMapIntensity;

this.refractionRatio = source.refractionRatio;

this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin;

this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals;

return this;

};

/** * @author WestLangley / http://github.com/WestLangley * * parameters = { * reflectivity: <float> * } */

function MeshPhysicalMaterial( parameters ) {

MeshStandardMaterial.call( this );

this.defines = { 'PHYSICAL': };

this.type = 'MeshPhysicalMaterial';

this.reflectivity = 0.5; // maps to F0 = 0.04

this.clearCoat = 0.0; this.clearCoatRoughness = 0.0;

this.setValues( parameters );

}

MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype ); MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial;

MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;

MeshPhysicalMaterial.prototype.copy = function ( source ) {

MeshStandardMaterial.prototype.copy.call( this, source );

this.defines = { 'PHYSICAL': };

this.reflectivity = source.reflectivity;

this.clearCoat = source.clearCoat; this.clearCoatRoughness = source.clearCoatRoughness;

return this;

};

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: <hex>, * specular: <hex>, * shininess: <float>, * opacity: <float>, * * map: new THREE.Texture( <Image> ), * * lightMap: new THREE.Texture( <Image> ), * lightMapIntensity: <float> * * aoMap: new THREE.Texture( <Image> ), * aoMapIntensity: <float> * * emissive: <hex>, * emissiveIntensity: <float> * emissiveMap: new THREE.Texture( <Image> ), * * bumpMap: new THREE.Texture( <Image> ), * bumpScale: <float>, * * normalMap: new THREE.Texture( <Image> ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: <Vector2>, * * displacementMap: new THREE.Texture( <Image> ), * displacementScale: <float>, * displacementBias: <float>, * * specularMap: new THREE.Texture( <Image> ), * * alphaMap: new THREE.Texture( <Image> ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: <float>, * refractionRatio: <float>, * * wireframe: <boolean>, * wireframeLinewidth: <float>, * * skinning: <bool>, * morphTargets: <bool>, * morphNormals: <bool> * } */

function MeshPhongMaterial( parameters ) {

Material.call( this );

this.type = 'MeshPhongMaterial';

this.color = new Color( 0xffffff ); // diffuse this.specular = new Color( 0x111111 ); this.shininess = 30;

this.map = null;

this.lightMap = null; this.lightMapIntensity = 1.0;

this.aoMap = null; this.aoMapIntensity = 1.0;

this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null;

this.bumpMap = null; this.bumpScale = 1;

this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 );

this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0;

this.specularMap = null;

this.alphaMap = null;

this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98;

this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round';

this.skinning = false; this.morphTargets = false; this.morphNormals = false;

this.setValues( parameters );

}

MeshPhongMaterial.prototype = Object.create( Material.prototype ); MeshPhongMaterial.prototype.constructor = MeshPhongMaterial;

MeshPhongMaterial.prototype.isMeshPhongMaterial = true;

MeshPhongMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.color.copy( source.color ); this.specular.copy( source.specular ); this.shininess = source.shininess;

this.map = source.map;

this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity;

this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity;

this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity;

this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale;

this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale );

this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias;

this.specularMap = source.specularMap;

this.alphaMap = source.alphaMap;

this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio;

this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin;

this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals;

return this;

};

/** * @author takahirox / http://github.com/takahirox * * parameters = { * gradientMap: new THREE.Texture( <Image> ) * } */

function MeshToonMaterial( parameters ) {

MeshPhongMaterial.call( this );

this.defines = { 'TOON': };

this.type = 'MeshToonMaterial';

this.gradientMap = null;

this.setValues( parameters );

}

MeshToonMaterial.prototype = Object.create( MeshPhongMaterial.prototype ); MeshToonMaterial.prototype.constructor = MeshToonMaterial;

MeshToonMaterial.prototype.isMeshToonMaterial = true;

MeshToonMaterial.prototype.copy = function ( source ) {

MeshPhongMaterial.prototype.copy.call( this, source );

this.gradientMap = source.gradientMap;

return this;

};

/** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley * * parameters = { * opacity: <float>, * * bumpMap: new THREE.Texture( <Image> ), * bumpScale: <float>, * * normalMap: new THREE.Texture( <Image> ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: <Vector2>, * * displacementMap: new THREE.Texture( <Image> ), * displacementScale: <float>, * displacementBias: <float>, * * wireframe: <boolean>, * wireframeLinewidth: <float> * * skinning: <bool>, * morphTargets: <bool>, * morphNormals: <bool> * } */

function MeshNormalMaterial( parameters ) {

Material.call( this );

this.type = 'MeshNormalMaterial';

this.bumpMap = null; this.bumpScale = 1;

this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 );

this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0;

this.wireframe = false; this.wireframeLinewidth = 1;

this.fog = false; this.lights = false;

this.skinning = false; this.morphTargets = false; this.morphNormals = false;

this.setValues( parameters );

}

MeshNormalMaterial.prototype = Object.create( Material.prototype ); MeshNormalMaterial.prototype.constructor = MeshNormalMaterial;

MeshNormalMaterial.prototype.isMeshNormalMaterial = true;

MeshNormalMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale;

this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale );

this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias;

this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth;

this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals;

return this;

};

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: <hex>, * opacity: <float>, * * map: new THREE.Texture( <Image> ), * * lightMap: new THREE.Texture( <Image> ), * lightMapIntensity: <float> * * aoMap: new THREE.Texture( <Image> ), * aoMapIntensity: <float> * * emissive: <hex>, * emissiveIntensity: <float> * emissiveMap: new THREE.Texture( <Image> ), * * specularMap: new THREE.Texture( <Image> ), * * alphaMap: new THREE.Texture( <Image> ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: <float>, * refractionRatio: <float>, * * wireframe: <boolean>, * wireframeLinewidth: <float>, * * skinning: <bool>, * morphTargets: <bool>, * morphNormals: <bool> * } */

function MeshLambertMaterial( parameters ) {

Material.call( this );

this.type = 'MeshLambertMaterial';

this.color = new Color( 0xffffff ); // diffuse

this.map = null;

this.lightMap = null; this.lightMapIntensity = 1.0;

this.aoMap = null; this.aoMapIntensity = 1.0;

this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null;

this.specularMap = null;

this.alphaMap = null;

this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98;

this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round';

this.skinning = false; this.morphTargets = false; this.morphNormals = false;

this.setValues( parameters );

}

MeshLambertMaterial.prototype = Object.create( Material.prototype ); MeshLambertMaterial.prototype.constructor = MeshLambertMaterial;

MeshLambertMaterial.prototype.isMeshLambertMaterial = true;

MeshLambertMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.color.copy( source.color );

this.map = source.map;

this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity;

this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity;

this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity;

this.specularMap = source.specularMap;

this.alphaMap = source.alphaMap;

this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio;

this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin;

this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals;

return this;

};

/** * @author WestLangley / http://github.com/WestLangley * * parameters = { * color: <hex>, * opacity: <float>, * * matcap: new THREE.Texture( <Image> ), * * map: new THREE.Texture( <Image> ), * * bumpMap: new THREE.Texture( <Image> ), * bumpScale: <float>, * * normalMap: new THREE.Texture( <Image> ), * normalMapType: THREE.TangentSpaceNormalMap, * normalScale: <Vector2>, * * displacementMap: new THREE.Texture( <Image> ), * displacementScale: <float>, * displacementBias: <float>, * * alphaMap: new THREE.Texture( <Image> ), * * skinning: <bool>, * morphTargets: <bool>, * morphNormals: <bool> * } */

function MeshMatcapMaterial( parameters ) {

Material.call( this );

this.defines = { 'MATCAP': };

this.type = 'MeshMatcapMaterial';

this.color = new Color( 0xffffff ); // diffuse

this.matcap = null;

this.map = null;

this.bumpMap = null; this.bumpScale = 1;

this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 );

this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0;

this.alphaMap = null;

this.skinning = false; this.morphTargets = false; this.morphNormals = false;

this.lights = false;

this.setValues( parameters );

// a matcap is required

if ( this.matcap === null ) {

var canvas = document.createElement( 'canvas' ); canvas.width = 1; canvas.height = 1;

var context = canvas.getContext( '2d' );

context.fillStyle = '#fff'; context.fillRect( 0, 0, 1, 1 );

this.matcap = new THREE.CanvasTexture( canvas );

}

}

MeshMatcapMaterial.prototype = Object.create( Material.prototype ); MeshMatcapMaterial.prototype.constructor = MeshMatcapMaterial;

MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;

MeshMatcapMaterial.prototype.copy = function ( source ) {

Material.prototype.copy.call( this, source );

this.defines = { 'MATCAP': };

this.color.copy( source.color );

this.matcap = source.matcap;

this.map = source.map;

this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale;

this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale );

this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias;

this.alphaMap = source.alphaMap;

this.skinning = source.skinning; this.morphTargets = source.morphTargets; this.morphNormals = source.morphNormals;

return this;

};

/** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: <hex>, * opacity: <float>, * * linewidth: <float>, * * scale: <float>, * dashSize: <float>, * gapSize: <float> * } */

function LineDashedMaterial( parameters ) {

LineBasicMaterial.call( this );

this.type = 'LineDashedMaterial';

this.scale = 1; this.dashSize = 3; this.gapSize = 1;

this.setValues( parameters );

}

LineDashedMaterial.prototype = Object.create( LineBasicMaterial.prototype ); LineDashedMaterial.prototype.constructor = LineDashedMaterial;

LineDashedMaterial.prototype.isLineDashedMaterial = true;

LineDashedMaterial.prototype.copy = function ( source ) {

LineBasicMaterial.prototype.copy.call( this, source );

this.scale = source.scale; this.dashSize = source.dashSize; this.gapSize = source.gapSize;

return this;

};


var Materials = /*#__PURE__*/Object.freeze({ ShadowMaterial: ShadowMaterial, SpriteMaterial: SpriteMaterial, RawShaderMaterial: RawShaderMaterial, ShaderMaterial: ShaderMaterial, PointsMaterial: PointsMaterial, MeshPhysicalMaterial: MeshPhysicalMaterial, MeshStandardMaterial: MeshStandardMaterial, MeshPhongMaterial: MeshPhongMaterial, MeshToonMaterial: MeshToonMaterial, MeshNormalMaterial: MeshNormalMaterial, MeshLambertMaterial: MeshLambertMaterial, MeshDepthMaterial: MeshDepthMaterial, MeshDistanceMaterial: MeshDistanceMaterial, MeshBasicMaterial: MeshBasicMaterial, MeshMatcapMaterial: MeshMatcapMaterial, LineDashedMaterial: LineDashedMaterial, LineBasicMaterial: LineBasicMaterial, Material: Material });

/** * @author mrdoob / http://mrdoob.com/ */

var Cache = {

enabled: false,

files: {},

add: function ( key, file ) {

if ( this.enabled === false ) return;

// console.log( 'THREE.Cache', 'Adding key:', key );

this.files[ key ] = file;

},

get: function ( key ) {

if ( this.enabled === false ) return;

// console.log( 'THREE.Cache', 'Checking key:', key );

return this.files[ key ];

},

remove: function ( key ) {

delete this.files[ key ];

},

clear: function () {

this.files = {};

}

};

/** * @author mrdoob / http://mrdoob.com/ */

function LoadingManager( onLoad, onProgress, onError ) {

var scope = this;

var isLoading = false; var itemsLoaded = 0; var itemsTotal = 0; var urlModifier = undefined;

// Refer to #5689 for the reason why we don't set .onStart // in the constructor

this.onStart = undefined; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError;

this.itemStart = function ( url ) {

itemsTotal ++;

if ( isLoading === false ) {

if ( scope.onStart !== undefined ) {

scope.onStart( url, itemsLoaded, itemsTotal );

}

}

isLoading = true;

};

this.itemEnd = function ( url ) {

itemsLoaded ++;

if ( scope.onProgress !== undefined ) {

scope.onProgress( url, itemsLoaded, itemsTotal );

}

if ( itemsLoaded === itemsTotal ) {

isLoading = false;

if ( scope.onLoad !== undefined ) {

scope.onLoad();

}

}

};

this.itemError = function ( url ) {

if ( scope.onError !== undefined ) {

scope.onError( url );

}

};

this.resolveURL = function ( url ) {

if ( urlModifier ) {

return urlModifier( url );

}

return url;

};

this.setURLModifier = function ( transform ) {

urlModifier = transform; return this;

};

}

var DefaultLoadingManager = new LoadingManager();

/** * @author mrdoob / http://mrdoob.com/ */

var loading = {};

function FileLoader( manager ) {

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( FileLoader.prototype, {

load: function ( url, onLoad, onProgress, onError ) {

if ( url === undefined ) url = ;

if ( this.path !== undefined ) url = this.path + url;

url = this.manager.resolveURL( url );

var scope = this;

var cached = Cache.get( url );

if ( cached !== undefined ) {

scope.manager.itemStart( url );

setTimeout( function () {

if ( onLoad ) onLoad( cached );

scope.manager.itemEnd( url );

}, 0 );

return cached;

}

// Check if request is duplicate

if ( loading[ url ] !== undefined ) {

loading[ url ].push( {

onLoad: onLoad, onProgress: onProgress, onError: onError

} );

return;

}

// Check for data: URI var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/; var dataUriRegexResult = url.match( dataUriRegex );

// Safari can not handle Data URIs through XMLHttpRequest so process manually if ( dataUriRegexResult ) {

var mimeType = dataUriRegexResult[ 1 ]; var isBase64 = !! dataUriRegexResult[ 2 ]; var data = dataUriRegexResult[ 3 ];

data = window.decodeURIComponent( data );

if ( isBase64 ) data = window.atob( data );

try {

var response; var responseType = ( this.responseType || ).toLowerCase();

switch ( responseType ) {

case 'arraybuffer': case 'blob':

var view = new Uint8Array( data.length );

for ( var i = 0; i < data.length; i ++ ) {

view[ i ] = data.charCodeAt( i );

}

if ( responseType === 'blob' ) {

response = new Blob( [ view.buffer ], { type: mimeType } );

} else {

response = view.buffer;

}

break;

case 'document':

var parser = new DOMParser(); response = parser.parseFromString( data, mimeType );

break;

case 'json':

response = JSON.parse( data );

break;

default: // 'text' or other

response = data;

break;

}

// Wait for next browser tick like standard XMLHttpRequest event dispatching does window.setTimeout( function () {

if ( onLoad ) onLoad( response );

scope.manager.itemEnd( url );

}, 0 );

} catch ( error ) {

// Wait for next browser tick like standard XMLHttpRequest event dispatching does window.setTimeout( function () {

if ( onError ) onError( error );

scope.manager.itemEnd( url ); scope.manager.itemError( url );

}, 0 );

}

} else {

// Initialise array for duplicate requests

loading[ url ] = [];

loading[ url ].push( {

onLoad: onLoad, onProgress: onProgress, onError: onError

} );

var request = new XMLHttpRequest();

request.open( 'GET', url, true );

request.addEventListener( 'load', function ( event ) {

var response = this.response;

Cache.add( url, response );

var callbacks = loading[ url ];

delete loading[ url ];

if ( this.status === 200 || this.status === 0 ) {

// Some browsers return HTTP Status 0 when using non-http protocol // e.g. 'file://' or 'data://'. Handle as success.

if ( this.status === 0 ) console.warn( 'THREE.FileLoader: HTTP Status 0 received.' );

for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

var callback = callbacks[ i ]; if ( callback.onLoad ) callback.onLoad( response );

}

scope.manager.itemEnd( url );

} else {

for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

var callback = callbacks[ i ]; if ( callback.onError ) callback.onError( event );

}

scope.manager.itemEnd( url ); scope.manager.itemError( url );

}

}, false );

request.addEventListener( 'progress', function ( event ) {

var callbacks = loading[ url ];

for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

var callback = callbacks[ i ]; if ( callback.onProgress ) callback.onProgress( event );

}

}, false );

request.addEventListener( 'error', function ( event ) {

var callbacks = loading[ url ];

delete loading[ url ];

for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

var callback = callbacks[ i ]; if ( callback.onError ) callback.onError( event );

}

scope.manager.itemEnd( url ); scope.manager.itemError( url );

}, false );

request.addEventListener( 'abort', function ( event ) {

var callbacks = loading[ url ];

delete loading[ url ];

for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

var callback = callbacks[ i ]; if ( callback.onError ) callback.onError( event );

}

scope.manager.itemEnd( url ); scope.manager.itemError( url );

}, false );

if ( this.responseType !== undefined ) request.responseType = this.responseType; if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials;

if ( request.overrideMimeType ) request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' );

for ( var header in this.requestHeader ) {

request.setRequestHeader( header, this.requestHeader[ header ] );

}

request.send( null );

}

scope.manager.itemStart( url );

return request;

},

setPath: function ( value ) {

this.path = value; return this;

},

setResponseType: function ( value ) {

this.responseType = value; return this;

},

setWithCredentials: function ( value ) {

this.withCredentials = value; return this;

},

setMimeType: function ( value ) {

this.mimeType = value; return this;

},

setRequestHeader: function ( value ) {

this.requestHeader = value; return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ * * Abstract Base class to block based textures loader (dds, pvr, ...) */

function CompressedTextureLoader( manager ) {

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

// override in sub classes this._parser = null;

}

Object.assign( CompressedTextureLoader.prototype, {

load: function ( url, onLoad, onProgress, onError ) {

var scope = this;

var images = [];

var texture = new CompressedTexture(); texture.image = images;

var loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' );

function loadTexture( i ) {

loader.load( url[ i ], function ( buffer ) {

var texDatas = scope._parser( buffer, true );

images[ i ] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps };

loaded += 1;

if ( loaded === 6 ) {

if ( texDatas.mipmapCount === 1 ) texture.minFilter = LinearFilter;

texture.format = texDatas.format; texture.needsUpdate = true;

if ( onLoad ) onLoad( texture );

}

}, onProgress, onError );

}

if ( Array.isArray( url ) ) {

var loaded = 0;

for ( var i = 0, il = url.length; i < il; ++ i ) {

loadTexture( i );

}

} else {

// compressed cubemap texture stored in a single DDS file

loader.load( url, function ( buffer ) {

var texDatas = scope._parser( buffer, true );

if ( texDatas.isCubemap ) {

var faces = texDatas.mipmaps.length / texDatas.mipmapCount;

for ( var f = 0; f < faces; f ++ ) {

images[ f ] = { mipmaps: [] };

for ( var i = 0; i < texDatas.mipmapCount; i ++ ) {

images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] ); images[ f ].format = texDatas.format; images[ f ].width = texDatas.width; images[ f ].height = texDatas.height;

}

}

} else {

texture.image.width = texDatas.width; texture.image.height = texDatas.height; texture.mipmaps = texDatas.mipmaps;

}

if ( texDatas.mipmapCount === 1 ) {

texture.minFilter = LinearFilter;

}

texture.format = texDatas.format; texture.needsUpdate = true;

if ( onLoad ) onLoad( texture );

}, onProgress, onError );

}

return texture;

},

setPath: function ( value ) {

this.path = value; return this;

}

} );

/** * @author Nikos M. / https://github.com/foo123/ * * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) */

function DataTextureLoader( manager ) {

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

// override in sub classes this._parser = null;

}

Object.assign( DataTextureLoader.prototype, {

load: function ( url, onLoad, onProgress, onError ) {

var scope = this;

var texture = new DataTexture();

var loader = new FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' );

loader.load( url, function ( buffer ) {

var texData = scope._parser( buffer );

if ( ! texData ) return;

if ( undefined !== texData.image ) {

texture.image = texData.image;

} else if ( undefined !== texData.data ) {

texture.image.width = texData.width; texture.image.height = texData.height; texture.image.data = texData.data;

}

texture.wrapS = undefined !== texData.wrapS ? texData.wrapS : ClampToEdgeWrapping; texture.wrapT = undefined !== texData.wrapT ? texData.wrapT : ClampToEdgeWrapping;

texture.magFilter = undefined !== texData.magFilter ? texData.magFilter : LinearFilter; texture.minFilter = undefined !== texData.minFilter ? texData.minFilter : LinearMipMapLinearFilter;

texture.anisotropy = undefined !== texData.anisotropy ? texData.anisotropy : 1;

if ( undefined !== texData.format ) {

texture.format = texData.format;

} if ( undefined !== texData.type ) {

texture.type = texData.type;

}

if ( undefined !== texData.mipmaps ) {

texture.mipmaps = texData.mipmaps;

}

if ( 1 === texData.mipmapCount ) {

texture.minFilter = LinearFilter;

}

texture.needsUpdate = true;

if ( onLoad ) onLoad( texture, texData );

}, onProgress, onError );


return texture;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */


function ImageLoader( manager ) {

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( ImageLoader.prototype, {

crossOrigin: 'anonymous',

load: function ( url, onLoad, onProgress, onError ) {

if ( url === undefined ) url = ;

if ( this.path !== undefined ) url = this.path + url;

url = this.manager.resolveURL( url );

var scope = this;

var cached = Cache.get( url );

if ( cached !== undefined ) {

scope.manager.itemStart( url );

setTimeout( function () {

if ( onLoad ) onLoad( cached );

scope.manager.itemEnd( url );

}, 0 );

return cached;

}

var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' );

function onImageLoad() {

image.removeEventListener( 'load', onImageLoad, false ); image.removeEventListener( 'error', onImageError, false );

Cache.add( url, this );

if ( onLoad ) onLoad( this );

scope.manager.itemEnd( url );

}

function onImageError( event ) {

image.removeEventListener( 'load', onImageLoad, false ); image.removeEventListener( 'error', onImageError, false );

if ( onError ) onError( event );

scope.manager.itemEnd( url ); scope.manager.itemError( url );

}

image.addEventListener( 'load', onImageLoad, false ); image.addEventListener( 'error', onImageError, false );

if ( url.substr( 0, 5 ) !== 'data:' ) {

if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin;

}

scope.manager.itemStart( url );

image.src = url;

return image;

},

setCrossOrigin: function ( value ) {

this.crossOrigin = value; return this;

},

setPath: function ( value ) {

this.path = value; return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */


function CubeTextureLoader( manager ) {

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( CubeTextureLoader.prototype, {

crossOrigin: 'anonymous',

load: function ( urls, onLoad, onProgress, onError ) {

var texture = new CubeTexture();

var loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path );

var loaded = 0;

function loadTexture( i ) {

loader.load( urls[ i ], function ( image ) {

texture.images[ i ] = image;

loaded ++;

if ( loaded === 6 ) {

texture.needsUpdate = true;

if ( onLoad ) onLoad( texture );

}

}, undefined, onError );

}

for ( var i = 0; i < urls.length; ++ i ) {

loadTexture( i );

}

return texture;

},

setCrossOrigin: function ( value ) {

this.crossOrigin = value; return this;

},

setPath: function ( value ) {

this.path = value; return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */


function TextureLoader( manager ) {

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( TextureLoader.prototype, {

crossOrigin: 'anonymous',

load: function ( url, onLoad, onProgress, onError ) {

var texture = new Texture();

var loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path );

loader.load( url, function ( image ) {

texture.image = image;

// JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB. var isJPEG = url.search( /\.jpe?g$/i ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0;

texture.format = isJPEG ? RGBFormat : RGBAFormat; texture.needsUpdate = true;

if ( onLoad !== undefined ) {

onLoad( texture );

}

}, onProgress, onError );

return texture;

},

setCrossOrigin: function ( value ) {

this.crossOrigin = value; return this;

},

setPath: function ( value ) {

this.path = value; return this;

}

} );

/** * @author zz85 / http://www.lab4games.net/zz85/blog * Extensible curve object * * Some common of curve methods: * .getPoint( t, optionalTarget ), .getTangent( t ) * .getPointAt( u, optionalTarget ), .getTangentAt( u ) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following curves inherit from THREE.Curve: * * -- 2D curves -- * THREE.ArcCurve * THREE.CubicBezierCurve * THREE.EllipseCurve * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.SplineCurve * * -- 3D curves -- * THREE.CatmullRomCurve3 * THREE.CubicBezierCurve3 * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * * A series of curves can be represented as a THREE.CurvePath. * **/

/************************************************************** * Abstract Curve base class **************************************************************/

function Curve() {

this.type = 'Curve';

this.arcLengthDivisions = 200;

}

Object.assign( Curve.prototype, {

// Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1]

getPoint: function ( /* t, optionalTarget */ ) {

console.warn( 'THREE.Curve: .getPoint() not implemented.' ); return null;

},

// Get point at relative position in curve according to arc length // - u [0 .. 1]

getPointAt: function ( u, optionalTarget ) {

var t = this.getUtoTmapping( u ); return this.getPoint( t, optionalTarget );

},

// Get sequence of points using getPoint( t )

getPoints: function ( divisions ) {

if ( divisions === undefined ) divisions = 5;

var points = [];

for ( var d = 0; d <= divisions; d ++ ) {

points.push( this.getPoint( d / divisions ) );

}

return points;

},

// Get sequence of points using getPointAt( u )

getSpacedPoints: function ( divisions ) {

if ( divisions === undefined ) divisions = 5;

var points = [];

for ( var d = 0; d <= divisions; d ++ ) {

points.push( this.getPointAt( d / divisions ) );

}

return points;

},

// Get total curve arc length

getLength: function () {

var lengths = this.getLengths(); return lengths[ lengths.length - 1 ];

},

// Get list of cumulative segment lengths

getLengths: function ( divisions ) {

if ( divisions === undefined ) divisions = this.arcLengthDivisions;

if ( this.cacheArcLengths && ( this.cacheArcLengths.length === divisions + 1 ) && ! this.needsUpdate ) {

return this.cacheArcLengths;

}

this.needsUpdate = false;

var cache = []; var current, last = this.getPoint( 0 ); var p, sum = 0;

cache.push( 0 );

for ( p = 1; p <= divisions; p ++ ) {

current = this.getPoint( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current;

}

this.cacheArcLengths = cache;

return cache; // { sums: cache, sum: sum }; Sum is in the last element.

},

updateArcLengths: function () {

this.needsUpdate = true; this.getLengths();

},

// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant

getUtoTmapping: function ( u, distance ) {

var arcLengths = this.getLengths();

var i = 0, il = arcLengths.length;

var targetArcLength; // The targeted u distance value to get

if ( distance ) {

targetArcLength = distance;

} else {

targetArcLength = u * arcLengths[ il - 1 ];

}

// binary search for the index with largest value smaller than target u distance

var low = 0, high = il - 1, comparison;

while ( low <= high ) {

i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats

comparison = arcLengths[ i ] - targetArcLength;

if ( comparison < 0 ) {

low = i + 1;

} else if ( comparison > 0 ) {

high = i - 1;

} else {

high = i; break;

// DONE

}

}

i = high;

if ( arcLengths[ i ] === targetArcLength ) {

return i / ( il - 1 );

}

// we could get finer grain at lengths, or use simple interpolation between two points

var lengthBefore = arcLengths[ i ]; var lengthAfter = arcLengths[ i + 1 ];

var segmentLength = lengthAfter - lengthBefore;

// determine where we are between the 'before' and 'after' points

var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;

// add that fractional amount to t

var t = ( i + segmentFraction ) / ( il - 1 );

return t;

},

// Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation

getTangent: function ( t ) {

var delta = 0.0001; var t1 = t - delta; var t2 = t + delta;

// Capping in case of danger

if ( t1 < 0 ) t1 = 0; if ( t2 > 1 ) t2 = 1;

var pt1 = this.getPoint( t1 ); var pt2 = this.getPoint( t2 );

var vec = pt2.clone().sub( pt1 ); return vec.normalize();

},

getTangentAt: function ( u ) {

var t = this.getUtoTmapping( u ); return this.getTangent( t );

},

computeFrenetFrames: function ( segments, closed ) {

// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf

var normal = new Vector3();

var tangents = []; var normals = []; var binormals = [];

var vec = new Vector3(); var mat = new Matrix4();

var i, u, theta;

// compute the tangent vectors for each segment on the curve

for ( i = 0; i <= segments; i ++ ) {

u = i / segments;

tangents[ i ] = this.getTangentAt( u ); tangents[ i ].normalize();

}

// select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component

normals[ 0 ] = new Vector3(); binormals[ 0 ] = new Vector3(); var min = Number.MAX_VALUE; var tx = Math.abs( tangents[ 0 ].x ); var ty = Math.abs( tangents[ 0 ].y ); var tz = Math.abs( tangents[ 0 ].z );

if ( tx <= min ) {

min = tx; normal.set( 1, 0, 0 );

}

if ( ty <= min ) {

min = ty; normal.set( 0, 1, 0 );

}

if ( tz <= min ) {

normal.set( 0, 0, 1 );

}

vec.crossVectors( tangents[ 0 ], normal ).normalize();

normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );


// compute the slowly-varying normal and binormal vectors for each segment on the curve

for ( i = 1; i <= segments; i ++ ) {

normals[ i ] = normals[ i - 1 ].clone();

binormals[ i ] = binormals[ i - 1 ].clone();

vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );

if ( vec.length() > Number.EPSILON ) {

vec.normalize();

theta = Math.acos( _Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors

normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );

}

binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );

}

// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same

if ( closed === true ) {

theta = Math.acos( _Math.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) ); theta /= segments;

if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {

theta = - theta;

}

for ( i = 1; i <= segments; i ++ ) {

// twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );

}

}

return { tangents: tangents, normals: normals, binormals: binormals };

},

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( source ) {

this.arcLengthDivisions = source.arcLengthDivisions;

return this;

},

toJSON: function () {

var data = { metadata: { version: 4.5, type: 'Curve', generator: 'Curve.toJSON' } };

data.arcLengthDivisions = this.arcLengthDivisions; data.type = this.type;

return data;

},

fromJSON: function ( json ) {

this.arcLengthDivisions = json.arcLengthDivisions;

return this;

}

} );

function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

Curve.call( this );

this.type = 'EllipseCurve';

this.aX = aX || 0; this.aY = aY || 0;

this.xRadius = xRadius || 1; this.yRadius = yRadius || 1;

this.aStartAngle = aStartAngle || 0; this.aEndAngle = aEndAngle || 2 * Math.PI;

this.aClockwise = aClockwise || false;

this.aRotation = aRotation || 0;

}

EllipseCurve.prototype = Object.create( Curve.prototype ); EllipseCurve.prototype.constructor = EllipseCurve;

EllipseCurve.prototype.isEllipseCurve = true;

EllipseCurve.prototype.getPoint = function ( t, optionalTarget ) {

var point = optionalTarget || new Vector2();

var twoPi = Math.PI * 2; var deltaAngle = this.aEndAngle - this.aStartAngle; var samePoints = Math.abs( deltaAngle ) < Number.EPSILON;

// ensures that deltaAngle is 0 .. 2 PI while ( deltaAngle < 0 ) deltaAngle += twoPi; while ( deltaAngle > twoPi ) deltaAngle -= twoPi;

if ( deltaAngle < Number.EPSILON ) {

if ( samePoints ) {

deltaAngle = 0;

} else {

deltaAngle = twoPi;

}

}

if ( this.aClockwise === true && ! samePoints ) {

if ( deltaAngle === twoPi ) {

deltaAngle = - twoPi;

} else {

deltaAngle = deltaAngle - twoPi;

}

}

var angle = this.aStartAngle + t * deltaAngle; var x = this.aX + this.xRadius * Math.cos( angle ); var y = this.aY + this.yRadius * Math.sin( angle );

if ( this.aRotation !== 0 ) {

var cos = Math.cos( this.aRotation ); var sin = Math.sin( this.aRotation );

var tx = x - this.aX; var ty = y - this.aY;

// Rotate the point about the center of the ellipse. x = tx * cos - ty * sin + this.aX; y = tx * sin + ty * cos + this.aY;

}

return point.set( x, y );

};

EllipseCurve.prototype.copy = function ( source ) {

Curve.prototype.copy.call( this, source );

this.aX = source.aX; this.aY = source.aY;

this.xRadius = source.xRadius; this.yRadius = source.yRadius;

this.aStartAngle = source.aStartAngle; this.aEndAngle = source.aEndAngle;

this.aClockwise = source.aClockwise;

this.aRotation = source.aRotation;

return this;

};


EllipseCurve.prototype.toJSON = function () {

var data = Curve.prototype.toJSON.call( this );

data.aX = this.aX; data.aY = this.aY;

data.xRadius = this.xRadius; data.yRadius = this.yRadius;

data.aStartAngle = this.aStartAngle; data.aEndAngle = this.aEndAngle;

data.aClockwise = this.aClockwise;

data.aRotation = this.aRotation;

return data;

};

EllipseCurve.prototype.fromJSON = function ( json ) {

Curve.prototype.fromJSON.call( this, json );

this.aX = json.aX; this.aY = json.aY;

this.xRadius = json.xRadius; this.yRadius = json.yRadius;

this.aStartAngle = json.aStartAngle; this.aEndAngle = json.aEndAngle;

this.aClockwise = json.aClockwise;

this.aRotation = json.aRotation;

return this;

};

function ArcCurve( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );

this.type = 'ArcCurve';

}

ArcCurve.prototype = Object.create( EllipseCurve.prototype ); ArcCurve.prototype.constructor = ArcCurve;

ArcCurve.prototype.isArcCurve = true;

/** * @author zz85 https://github.com/zz85 * * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */


/* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM

This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */

function CubicPoly() {

var c0 = 0, c1 = 0, c2 = 0, c3 = 0;

/* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ function init( x0, x1, t0, t1 ) {

c0 = x0; c1 = t0; c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1; c3 = 2 * x0 - 2 * x1 + t0 + t1;

}

return {

initCatmullRom: function ( x0, x1, x2, x3, tension ) {

init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) );

},

initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) {

// compute tangents when parameterized in [t1,t2] var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2;

// rescale tangents for parametrization in [0,1] t1 *= dt1; t2 *= dt1;

init( x1, x2, t1, t2 );

},

calc: function ( t ) {

var t2 = t * t; var t3 = t2 * t; return c0 + c1 * t + c2 * t2 + c3 * t3;

}

};

}

//

var tmp = new Vector3(); var px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly();

function CatmullRomCurve3( points, closed, curveType, tension ) {

Curve.call( this );

this.type = 'CatmullRomCurve3';

this.points = points || []; this.closed = closed || false; this.curveType = curveType || 'centripetal'; this.tension = tension || 0.5;

}

CatmullRomCurve3.prototype = Object.create( Curve.prototype ); CatmullRomCurve3.prototype.constructor = CatmullRomCurve3;

CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;

CatmullRomCurve3.prototype.getPoint = function ( t, optionalTarget ) {

var point = optionalTarget || new Vector3();

var points = this.points; var l = points.length;

var p = ( l - ( this.closed ? 0 : 1 ) ) * t; var intPoint = Math.floor( p ); var weight = p - intPoint;

if ( this.closed ) {

intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l;

} else if ( weight === 0 && intPoint === l - 1 ) {

intPoint = l - 2; weight = 1;

}

var p0, p1, p2, p3; // 4 points

if ( this.closed || intPoint > 0 ) {

p0 = points[ ( intPoint - 1 ) % l ];

} else {

// extrapolate first point tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); p0 = tmp;

}

p1 = points[ intPoint % l ]; p2 = points[ ( intPoint + 1 ) % l ];

if ( this.closed || intPoint + 2 < l ) {

p3 = points[ ( intPoint + 2 ) % l ];

} else {

// extrapolate last point tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); p3 = tmp;

}

if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) {

// init Centripetal / Chordal Catmull-Rom var pow = this.curveType === 'chordal' ? 0.5 : 0.25; var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow );

// safety check for repeated points if ( dt1 < 1e-4 ) dt1 = 1.0; if ( dt0 < 1e-4 ) dt0 = dt1; if ( dt2 < 1e-4 ) dt2 = dt1;

px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 );

} else if ( this.curveType === 'catmullrom' ) {

px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension ); py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension ); pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension );

}

point.set( px.calc( weight ), py.calc( weight ), pz.calc( weight ) );

return point;

};

CatmullRomCurve3.prototype.copy = function ( source ) {

Curve.prototype.copy.call( this, source );

this.points = [];

for ( var i = 0, l = source.points.length; i < l; i ++ ) {

var point = source.points[ i ];

this.points.push( point.clone() );

}

this.closed = source.closed; this.curveType = source.curveType; this.tension = source.tension;

return this;

};

CatmullRomCurve3.prototype.toJSON = function () {

var data = Curve.prototype.toJSON.call( this );

data.points = [];

for ( var i = 0, l = this.points.length; i < l; i ++ ) {

var point = this.points[ i ]; data.points.push( point.toArray() );

}

data.closed = this.closed; data.curveType = this.curveType; data.tension = this.tension;

return data;

};

CatmullRomCurve3.prototype.fromJSON = function ( json ) {

Curve.prototype.fromJSON.call( this, json );

this.points = [];

for ( var i = 0, l = json.points.length; i < l; i ++ ) {

var point = json.points[ i ]; this.points.push( new Vector3().fromArray( point ) );

}

this.closed = json.closed; this.curveType = json.curveType; this.tension = json.tension;

return this;

};

/** * @author zz85 / http://www.lab4games.net/zz85/blog * * Bezier Curves formulas obtained from * http://en.wikipedia.org/wiki/Bézier_curve */

function CatmullRom( t, p0, p1, p2, p3 ) {

var v0 = ( p2 - p0 ) * 0.5; var v1 = ( p3 - p1 ) * 0.5; var t2 = t * t; var t3 = t * t2; return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;

}

//

function QuadraticBezierP0( t, p ) {

var k = 1 - t; return k * k * p;

}

function QuadraticBezierP1( t, p ) {

return 2 * ( 1 - t ) * t * p;

}

function QuadraticBezierP2( t, p ) {

return t * t * p;

}

function QuadraticBezier( t, p0, p1, p2 ) {

return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) + QuadraticBezierP2( t, p2 );

}

//

function CubicBezierP0( t, p ) {

var k = 1 - t; return k * k * k * p;

}

function CubicBezierP1( t, p ) {

var k = 1 - t; return 3 * k * k * t * p;

}

function CubicBezierP2( t, p ) {

return 3 * ( 1 - t ) * t * t * p;

}

function CubicBezierP3( t, p ) {

return t * t * t * p;

}

function CubicBezier( t, p0, p1, p2, p3 ) {

return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) + CubicBezierP3( t, p3 );

}

function CubicBezierCurve( v0, v1, v2, v3 ) {

Curve.call( this );

this.type = 'CubicBezierCurve';

this.v0 = v0 || new Vector2(); this.v1 = v1 || new Vector2(); this.v2 = v2 || new Vector2(); this.v3 = v3 || new Vector2();

}

CubicBezierCurve.prototype = Object.create( Curve.prototype ); CubicBezierCurve.prototype.constructor = CubicBezierCurve;

CubicBezierCurve.prototype.isCubicBezierCurve = true;

CubicBezierCurve.prototype.getPoint = function ( t, optionalTarget ) {

var point = optionalTarget || new Vector2();

var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;

point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ) );

return point;

};

CubicBezierCurve.prototype.copy = function ( source ) {

Curve.prototype.copy.call( this, source );

this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 );

return this;

};

CubicBezierCurve.prototype.toJSON = function () {

var data = Curve.prototype.toJSON.call( this );

data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray();

return data;

};

CubicBezierCurve.prototype.fromJSON = function ( json ) {

Curve.prototype.fromJSON.call( this, json );

this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 );

return this;

};

function CubicBezierCurve3( v0, v1, v2, v3 ) {

Curve.call( this );

this.type = 'CubicBezierCurve3';

this.v0 = v0 || new Vector3(); this.v1 = v1 || new Vector3(); this.v2 = v2 || new Vector3(); this.v3 = v3 || new Vector3();

}

CubicBezierCurve3.prototype = Object.create( Curve.prototype ); CubicBezierCurve3.prototype.constructor = CubicBezierCurve3;

CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;

CubicBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) {

var point = optionalTarget || new Vector3();

var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;

point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ), CubicBezier( t, v0.z, v1.z, v2.z, v3.z ) );

return point;

};

CubicBezierCurve3.prototype.copy = function ( source ) {

Curve.prototype.copy.call( this, source );

this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 );

return this;

};

CubicBezierCurve3.prototype.toJSON = function () {

var data = Curve.prototype.toJSON.call( this );

data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray();

return data;

};

CubicBezierCurve3.prototype.fromJSON = function ( json ) {

Curve.prototype.fromJSON.call( this, json );

this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 );

return this;

};

function LineCurve( v1, v2 ) {

Curve.call( this );

this.type = 'LineCurve';

this.v1 = v1 || new Vector2(); this.v2 = v2 || new Vector2();

}

LineCurve.prototype = Object.create( Curve.prototype ); LineCurve.prototype.constructor = LineCurve;

LineCurve.prototype.isLineCurve = true;

LineCurve.prototype.getPoint = function ( t, optionalTarget ) {

var point = optionalTarget || new Vector2();

if ( t === 1 ) {

point.copy( this.v2 );

} else {

point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 );

}

return point;

};

// Line curve is linear, so we can overwrite default getPointAt

LineCurve.prototype.getPointAt = function ( u, optionalTarget ) {

return this.getPoint( u, optionalTarget );

};

LineCurve.prototype.getTangent = function ( /* t */ ) {

var tangent = this.v2.clone().sub( this.v1 );

return tangent.normalize();

};

LineCurve.prototype.copy = function ( source ) {

Curve.prototype.copy.call( this, source );

this.v1.copy( source.v1 ); this.v2.copy( source.v2 );

return this;

};

LineCurve.prototype.toJSON = function () {

var data = Curve.prototype.toJSON.call( this );

data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray();

return data;

};

LineCurve.prototype.fromJSON = function ( json ) {

Curve.prototype.fromJSON.call( this, json );

this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 );

return this;

};

function LineCurve3( v1, v2 ) {

Curve.call( this );

this.type = 'LineCurve3';

this.v1 = v1 || new Vector3(); this.v2 = v2 || new Vector3();

}

LineCurve3.prototype = Object.create( Curve.prototype ); LineCurve3.prototype.constructor = LineCurve3;

LineCurve3.prototype.isLineCurve3 = true;

LineCurve3.prototype.getPoint = function ( t, optionalTarget ) {

var point = optionalTarget || new Vector3();

if ( t === 1 ) {

point.copy( this.v2 );

} else {

point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 );

}

return point;

};

// Line curve is linear, so we can overwrite default getPointAt

LineCurve3.prototype.getPointAt = function ( u, optionalTarget ) {

return this.getPoint( u, optionalTarget );

};

LineCurve3.prototype.copy = function ( source ) {

Curve.prototype.copy.call( this, source );

this.v1.copy( source.v1 ); this.v2.copy( source.v2 );

return this;

};

LineCurve3.prototype.toJSON = function () {

var data = Curve.prototype.toJSON.call( this );

data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray();

return data;

};

LineCurve3.prototype.fromJSON = function ( json ) {

Curve.prototype.fromJSON.call( this, json );

this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 );

return this;

};

function QuadraticBezierCurve( v0, v1, v2 ) {

Curve.call( this );

this.type = 'QuadraticBezierCurve';

this.v0 = v0 || new Vector2(); this.v1 = v1 || new Vector2(); this.v2 = v2 || new Vector2();

}

QuadraticBezierCurve.prototype = Object.create( Curve.prototype ); QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve;

QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;

QuadraticBezierCurve.prototype.getPoint = function ( t, optionalTarget ) {

var point = optionalTarget || new Vector2();

var v0 = this.v0, v1 = this.v1, v2 = this.v2;

point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ) );

return point;

};

QuadraticBezierCurve.prototype.copy = function ( source ) {

Curve.prototype.copy.call( this, source );

this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 );

return this;

};

QuadraticBezierCurve.prototype.toJSON = function () {

var data = Curve.prototype.toJSON.call( this );

data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray();

return data;

};

QuadraticBezierCurve.prototype.fromJSON = function ( json ) {

Curve.prototype.fromJSON.call( this, json );

this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 );

return this;

};

function QuadraticBezierCurve3( v0, v1, v2 ) {

Curve.call( this );

this.type = 'QuadraticBezierCurve3';

this.v0 = v0 || new Vector3(); this.v1 = v1 || new Vector3(); this.v2 = v2 || new Vector3();

}

QuadraticBezierCurve3.prototype = Object.create( Curve.prototype ); QuadraticBezierCurve3.prototype.constructor = QuadraticBezierCurve3;

QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;

QuadraticBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) {

var point = optionalTarget || new Vector3();

var v0 = this.v0, v1 = this.v1, v2 = this.v2;

point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ), QuadraticBezier( t, v0.z, v1.z, v2.z ) );

return point;

};

QuadraticBezierCurve3.prototype.copy = function ( source ) {

Curve.prototype.copy.call( this, source );

this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 );

return this;

};

QuadraticBezierCurve3.prototype.toJSON = function () {

var data = Curve.prototype.toJSON.call( this );

data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray();

return data;

};

QuadraticBezierCurve3.prototype.fromJSON = function ( json ) {

Curve.prototype.fromJSON.call( this, json );

this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 );

return this;

};

function SplineCurve( points /* array of Vector2 */ ) {

Curve.call( this );

this.type = 'SplineCurve';

this.points = points || [];

}

SplineCurve.prototype = Object.create( Curve.prototype ); SplineCurve.prototype.constructor = SplineCurve;

SplineCurve.prototype.isSplineCurve = true;

SplineCurve.prototype.getPoint = function ( t, optionalTarget ) {

var point = optionalTarget || new Vector2();

var points = this.points; var p = ( points.length - 1 ) * t;

var intPoint = Math.floor( p ); var weight = p - intPoint;

var p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; var p1 = points[ intPoint ]; var p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; var p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];

point.set( CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ), CatmullRom( weight, p0.y, p1.y, p2.y, p3.y ) );

return point;

};

SplineCurve.prototype.copy = function ( source ) {

Curve.prototype.copy.call( this, source );

this.points = [];

for ( var i = 0, l = source.points.length; i < l; i ++ ) {

var point = source.points[ i ];

this.points.push( point.clone() );

}

return this;

};

SplineCurve.prototype.toJSON = function () {

var data = Curve.prototype.toJSON.call( this );

data.points = [];

for ( var i = 0, l = this.points.length; i < l; i ++ ) {

var point = this.points[ i ]; data.points.push( point.toArray() );

}

return data;

};

SplineCurve.prototype.fromJSON = function ( json ) {

Curve.prototype.fromJSON.call( this, json );

this.points = [];

for ( var i = 0, l = json.points.length; i < l; i ++ ) {

var point = json.points[ i ]; this.points.push( new Vector2().fromArray( point ) );

}

return this;

};


var Curves = /*#__PURE__*/Object.freeze({ ArcCurve: ArcCurve, CatmullRomCurve3: CatmullRomCurve3, CubicBezierCurve: CubicBezierCurve, CubicBezierCurve3: CubicBezierCurve3, EllipseCurve: EllipseCurve, LineCurve: LineCurve, LineCurve3: LineCurve3, QuadraticBezierCurve: QuadraticBezierCurve, QuadraticBezierCurve3: QuadraticBezierCurve3, SplineCurve: SplineCurve });

/** * @author zz85 / http://www.lab4games.net/zz85/blog * **/

/************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/

function CurvePath() {

Curve.call( this );

this.type = 'CurvePath';

this.curves = []; this.autoClose = false; // Automatically closes the path

}

CurvePath.prototype = Object.assign( Object.create( Curve.prototype ), {

constructor: CurvePath,

add: function ( curve ) {

this.curves.push( curve );

},

closePath: function () {

// Add a line curve if start and end of lines are not connected var startPoint = this.curves[ 0 ].getPoint( 0 ); var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 );

if ( ! startPoint.equals( endPoint ) ) {

this.curves.push( new LineCurve( endPoint, startPoint ) );

}

},

// To get accurate point with reference to // entire path distance at time t, // following has to be done:

// 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t')

getPoint: function ( t ) {

var d = t * this.getLength(); var curveLengths = this.getCurveLengths(); var i = 0;

// To think about boundaries points.

while ( i < curveLengths.length ) {

if ( curveLengths[ i ] >= d ) {

var diff = curveLengths[ i ] - d; var curve = this.curves[ i ];

var segmentLength = curve.getLength(); var u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;

return curve.getPointAt( u );

}

i ++;

}

return null;

// loop where sum != 0, sum > d , sum+1 <d

},

// We cannot use the default THREE.Curve getPoint() with getLength() because in // THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath // getPoint() depends on getLength

getLength: function () {

var lens = this.getCurveLengths(); return lens[ lens.length - 1 ];

},

// cacheLengths must be recalculated. updateArcLengths: function () {

this.needsUpdate = true; this.cacheLengths = null; this.getCurveLengths();

},

// Compute lengths and cache them // We cannot overwrite getLengths() because UtoT mapping uses it.

getCurveLengths: function () {

// We use cache values if curves and cache array are same length

if ( this.cacheLengths && this.cacheLengths.length === this.curves.length ) {

return this.cacheLengths;

}

// Get length of sub-curve // Push sums into cached array

var lengths = [], sums = 0;

for ( var i = 0, l = this.curves.length; i < l; i ++ ) {

sums += this.curves[ i ].getLength(); lengths.push( sums );

}

this.cacheLengths = lengths;

return lengths;

},

getSpacedPoints: function ( divisions ) {

if ( divisions === undefined ) divisions = 40;

var points = [];

for ( var i = 0; i <= divisions; i ++ ) {

points.push( this.getPoint( i / divisions ) );

}

if ( this.autoClose ) {

points.push( points[ 0 ] );

}

return points;

},

getPoints: function ( divisions ) {

divisions = divisions || 12;

var points = [], last;

for ( var i = 0, curves = this.curves; i < curves.length; i ++ ) {

var curve = curves[ i ]; var resolution = ( curve && curve.isEllipseCurve ) ? divisions * 2 : ( curve && ( curve.isLineCurve || curve.isLineCurve3 ) ) ? 1 : ( curve && curve.isSplineCurve ) ? divisions * curve.points.length : divisions;

var pts = curve.getPoints( resolution );

for ( var j = 0; j < pts.length; j ++ ) {

var point = pts[ j ];

if ( last && last.equals( point ) ) continue; // ensures no consecutive points are duplicates

points.push( point ); last = point;

}

}

if ( this.autoClose && points.length > 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) {

points.push( points[ 0 ] );

}

return points;

},

copy: function ( source ) {

Curve.prototype.copy.call( this, source );

this.curves = [];

for ( var i = 0, l = source.curves.length; i < l; i ++ ) {

var curve = source.curves[ i ];

this.curves.push( curve.clone() );

}

this.autoClose = source.autoClose;

return this;

},

toJSON: function () {

var data = Curve.prototype.toJSON.call( this );

data.autoClose = this.autoClose; data.curves = [];

for ( var i = 0, l = this.curves.length; i < l; i ++ ) {

var curve = this.curves[ i ]; data.curves.push( curve.toJSON() );

}

return data;

},

fromJSON: function ( json ) {

Curve.prototype.fromJSON.call( this, json );

this.autoClose = json.autoClose; this.curves = [];

for ( var i = 0, l = json.curves.length; i < l; i ++ ) {

var curve = json.curves[ i ]; this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) );

}

return this;

}

} );

/** * @author zz85 / http://www.lab4games.net/zz85/blog * Creates free form 2d path using series of points, lines or curves. **/

function Path( points ) {

CurvePath.call( this );

this.type = 'Path';

this.currentPoint = new Vector2();

if ( points ) {

this.setFromPoints( points );

}

}

Path.prototype = Object.assign( Object.create( CurvePath.prototype ), {

constructor: Path,

setFromPoints: function ( points ) {

this.moveTo( points[ 0 ].x, points[ 0 ].y );

for ( var i = 1, l = points.length; i < l; i ++ ) {

this.lineTo( points[ i ].x, points[ i ].y );

}

},

moveTo: function ( x, y ) {

this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying?

},

lineTo: function ( x, y ) {

var curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) ); this.curves.push( curve );

this.currentPoint.set( x, y );

},

quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {

var curve = new QuadraticBezierCurve( this.currentPoint.clone(), new Vector2( aCPx, aCPy ), new Vector2( aX, aY ) );

this.curves.push( curve );

this.currentPoint.set( aX, aY );

},

bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {

var curve = new CubicBezierCurve( this.currentPoint.clone(), new Vector2( aCP1x, aCP1y ), new Vector2( aCP2x, aCP2y ), new Vector2( aX, aY ) );

this.curves.push( curve );

this.currentPoint.set( aX, aY );

},

splineThru: function ( pts /*Array of Vector*/ ) {

var npts = [ this.currentPoint.clone() ].concat( pts );

var curve = new SplineCurve( npts ); this.curves.push( curve );

this.currentPoint.copy( pts[ pts.length - 1 ] );

},

arc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

var x0 = this.currentPoint.x; var y0 = this.currentPoint.y;

this.absarc( aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise );

},

absarc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );

},

ellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

var x0 = this.currentPoint.x; var y0 = this.currentPoint.y;

this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );

},

absellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

var curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );

if ( this.curves.length > 0 ) {

// if a previous curve is present, attempt to join var firstPoint = curve.getPoint( 0 );

if ( ! firstPoint.equals( this.currentPoint ) ) {

this.lineTo( firstPoint.x, firstPoint.y );

}

}

this.curves.push( curve );

var lastPoint = curve.getPoint( 1 ); this.currentPoint.copy( lastPoint );

},

copy: function ( source ) {

CurvePath.prototype.copy.call( this, source );

this.currentPoint.copy( source.currentPoint );

return this;

},

toJSON: function () {

var data = CurvePath.prototype.toJSON.call( this );

data.currentPoint = this.currentPoint.toArray();

return data;

},

fromJSON: function ( json ) {

CurvePath.prototype.fromJSON.call( this, json );

this.currentPoint.fromArray( json.currentPoint );

return this;

}

} );

/** * @author zz85 / http://www.lab4games.net/zz85/blog * Defines a 2d shape plane using paths. **/

// STEP 1 Create a path. // STEP 2 Turn path into shape. // STEP 3 ExtrudeGeometry takes in Shape/Shapes // STEP 3a - Extract points from each shape, turn to vertices // STEP 3b - Triangulate each shape, add faces.

function Shape( points ) {

Path.call( this, points );

this.uuid = _Math.generateUUID();

this.type = 'Shape';

this.holes = [];

}

Shape.prototype = Object.assign( Object.create( Path.prototype ), {

constructor: Shape,

getPointsHoles: function ( divisions ) {

var holesPts = [];

for ( var i = 0, l = this.holes.length; i < l; i ++ ) {

holesPts[ i ] = this.holes[ i ].getPoints( divisions );

}

return holesPts;

},

// get points of shape and holes (keypoints based on segments parameter)

extractPoints: function ( divisions ) {

return {

shape: this.getPoints( divisions ), holes: this.getPointsHoles( divisions )

};

},

copy: function ( source ) {

Path.prototype.copy.call( this, source );

this.holes = [];

for ( var i = 0, l = source.holes.length; i < l; i ++ ) {

var hole = source.holes[ i ];

this.holes.push( hole.clone() );

}

return this;

},

toJSON: function () {

var data = Path.prototype.toJSON.call( this );

data.uuid = this.uuid; data.holes = [];

for ( var i = 0, l = this.holes.length; i < l; i ++ ) {

var hole = this.holes[ i ]; data.holes.push( hole.toJSON() );

}

return data;

},

fromJSON: function ( json ) {

Path.prototype.fromJSON.call( this, json );

this.uuid = json.uuid; this.holes = [];

for ( var i = 0, l = json.holes.length; i < l; i ++ ) {

var hole = json.holes[ i ]; this.holes.push( new Path().fromJSON( hole ) );

}

return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */

function Light( color, intensity ) {

Object3D.call( this );

this.type = 'Light';

this.color = new Color( color ); this.intensity = intensity !== undefined ? intensity : 1;

this.receiveShadow = undefined;

}

Light.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: Light,

isLight: true,

copy: function ( source ) {

Object3D.prototype.copy.call( this, source );

this.color.copy( source.color ); this.intensity = source.intensity;

return this;

},

toJSON: function ( meta ) {

var data = Object3D.prototype.toJSON.call( this, meta );

data.object.color = this.color.getHex(); data.object.intensity = this.intensity;

if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex();

if ( this.distance !== undefined ) data.object.distance = this.distance; if ( this.angle !== undefined ) data.object.angle = this.angle; if ( this.decay !== undefined ) data.object.decay = this.decay; if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra;

if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON();

return data;

}

} );

/** * @author alteredq / http://alteredqualia.com/ */

function HemisphereLight( skyColor, groundColor, intensity ) {

Light.call( this, skyColor, intensity );

this.type = 'HemisphereLight';

this.castShadow = undefined;

this.position.copy( Object3D.DefaultUp ); this.updateMatrix();

this.groundColor = new Color( groundColor );

}

HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), {

constructor: HemisphereLight,

isHemisphereLight: true,

copy: function ( source ) {

Light.prototype.copy.call( this, source );

this.groundColor.copy( source.groundColor );

return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function LightShadow( camera ) {

this.camera = camera;

this.bias = 0; this.radius = 1;

this.mapSize = new Vector2( 512, 512 );

this.map = null; this.matrix = new Matrix4();

}

Object.assign( LightShadow.prototype, {

copy: function ( source ) {

this.camera = source.camera.clone();

this.bias = source.bias; this.radius = source.radius;

this.mapSize.copy( source.mapSize );

return this;

},

clone: function () {

return new this.constructor().copy( this );

},

toJSON: function () {

var object = {};

if ( this.bias !== 0 ) object.bias = this.bias; if ( this.radius !== 1 ) object.radius = this.radius; if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray();

object.camera = this.camera.toJSON( false ).object; delete object.camera.matrix;

return object;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function SpotLightShadow() {

LightShadow.call( this, new PerspectiveCamera( 50, 1, 0.5, 500 ) );

}

SpotLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

constructor: SpotLightShadow,

isSpotLightShadow: true,

update: function ( light ) {

var camera = this.camera;

var fov = _Math.RAD2DEG * 2 * light.angle; var aspect = this.mapSize.width / this.mapSize.height; var far = light.distance || camera.far;

if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) {

camera.fov = fov; camera.aspect = aspect; camera.far = far; camera.updateProjectionMatrix();

}

}

} );

/** * @author alteredq / http://alteredqualia.com/ */

function SpotLight( color, intensity, distance, angle, penumbra, decay ) {

Light.call( this, color, intensity );

this.type = 'SpotLight';

this.position.copy( Object3D.DefaultUp ); this.updateMatrix();

this.target = new Object3D();

Object.defineProperty( this, 'power', { get: function () {

// intensity = power per solid angle. // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf return this.intensity * Math.PI;

}, set: function ( power ) {

// intensity = power per solid angle. // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf this.intensity = power / Math.PI;

} } );

this.distance = ( distance !== undefined ) ? distance : 0; this.angle = ( angle !== undefined ) ? angle : Math.PI / 3; this.penumbra = ( penumbra !== undefined ) ? penumbra : 0; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2.

this.shadow = new SpotLightShadow();

}

SpotLight.prototype = Object.assign( Object.create( Light.prototype ), {

constructor: SpotLight,

isSpotLight: true,

copy: function ( source ) {

Light.prototype.copy.call( this, source );

this.distance = source.distance; this.angle = source.angle; this.penumbra = source.penumbra; this.decay = source.decay;

this.target = source.target.clone();

this.shadow = source.shadow.clone();

return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */


function PointLight( color, intensity, distance, decay ) {

Light.call( this, color, intensity );

this.type = 'PointLight';

Object.defineProperty( this, 'power', { get: function () {

// intensity = power per solid angle. // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf return this.intensity * 4 * Math.PI;

}, set: function ( power ) {

// intensity = power per solid angle. // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf this.intensity = power / ( 4 * Math.PI );

} } );

this.distance = ( distance !== undefined ) ? distance : 0; this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2.

this.shadow = new LightShadow( new PerspectiveCamera( 90, 1, 0.5, 500 ) );

}

PointLight.prototype = Object.assign( Object.create( Light.prototype ), {

constructor: PointLight,

isPointLight: true,

copy: function ( source ) {

Light.prototype.copy.call( this, source );

this.distance = source.distance; this.decay = source.decay;

this.shadow = source.shadow.clone();

return this;

}

} );

/** * @author alteredq / http://alteredqualia.com/ * @author arose / http://github.com/arose */

function OrthographicCamera( left, right, top, bottom, near, far ) {

Camera.call( this );

this.type = 'OrthographicCamera';

this.zoom = 1; this.view = null;

this.left = left; this.right = right; this.top = top; this.bottom = bottom;

this.near = ( near !== undefined ) ? near : 0.1; this.far = ( far !== undefined ) ? far : 2000;

this.updateProjectionMatrix();

}

OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), {

constructor: OrthographicCamera,

isOrthographicCamera: true,

copy: function ( source, recursive ) {

Camera.prototype.copy.call( this, source, recursive );

this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far;

this.zoom = source.zoom; this.view = source.view === null ? null : Object.assign( {}, source.view );

return this;

},

setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {

if ( this.view === null ) {

this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 };

}

this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height;

this.updateProjectionMatrix();

},

clearViewOffset: function () {

if ( this.view !== null ) {

this.view.enabled = false;

}

this.updateProjectionMatrix();

},

updateProjectionMatrix: function () {

var dx = ( this.right - this.left ) / ( 2 * this.zoom ); var dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); var cx = ( this.right + this.left ) / 2; var cy = ( this.top + this.bottom ) / 2;

var left = cx - dx; var right = cx + dx; var top = cy + dy; var bottom = cy - dy;

if ( this.view !== null && this.view.enabled ) {

var zoomW = this.zoom / ( this.view.width / this.view.fullWidth ); var zoomH = this.zoom / ( this.view.height / this.view.fullHeight ); var scaleW = ( this.right - this.left ) / this.view.width; var scaleH = ( this.top - this.bottom ) / this.view.height;

left += scaleW * ( this.view.offsetX / zoomW ); right = left + scaleW * ( this.view.width / zoomW ); top -= scaleH * ( this.view.offsetY / zoomH ); bottom = top - scaleH * ( this.view.height / zoomH );

}

this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far );

this.projectionMatrixInverse.getInverse( this.projectionMatrix );

},

toJSON: function ( meta ) {

var data = Object3D.prototype.toJSON.call( this, meta );

data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far;

if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );

return data;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function DirectionalLightShadow( ) {

LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );

}

DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

constructor: DirectionalLightShadow

} );

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */

function DirectionalLight( color, intensity ) {

Light.call( this, color, intensity );

this.type = 'DirectionalLight';

this.position.copy( Object3D.DefaultUp ); this.updateMatrix();

this.target = new Object3D();

this.shadow = new DirectionalLightShadow();

}

DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), {

constructor: DirectionalLight,

isDirectionalLight: true,

copy: function ( source ) {

Light.prototype.copy.call( this, source );

this.target = source.target.clone();

this.shadow = source.shadow.clone();

return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function AmbientLight( color, intensity ) {

Light.call( this, color, intensity );

this.type = 'AmbientLight';

this.castShadow = undefined;

}

AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), {

constructor: AmbientLight,

isAmbientLight: true

} );

/** * @author abelnation / http://github.com/abelnation */

function RectAreaLight( color, intensity, width, height ) {

Light.call( this, color, intensity );

this.type = 'RectAreaLight';

this.width = ( width !== undefined ) ? width : 10; this.height = ( height !== undefined ) ? height : 10;

}

RectAreaLight.prototype = Object.assign( Object.create( Light.prototype ), {

constructor: RectAreaLight,

isRectAreaLight: true,

copy: function ( source ) {

Light.prototype.copy.call( this, source );

this.width = source.width; this.height = source.height;

return this;

},

toJSON: function ( meta ) {

var data = Light.prototype.toJSON.call( this, meta );

data.object.width = this.width; data.object.height = this.height;

return data;

}

} );

/** * @author tschw * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */

var AnimationUtils = {

// same as Array.prototype.slice, but also works on typed arrays arraySlice: function ( array, from, to ) {

if ( AnimationUtils.isTypedArray( array ) ) {

// in ios9 array.subarray(from, undefined) will return empty array // but array.subarray(from) or array.subarray(from, len) is correct return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) );

}

return array.slice( from, to );

},

// converts an array to a specific type convertArray: function ( array, type, forceClone ) {

if ( ! array || // let 'undefined' and 'null' pass ! forceClone && array.constructor === type ) return array;

if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {

return new type( array ); // create typed array

}

return Array.prototype.slice.call( array ); // create Array

},

isTypedArray: function ( object ) {

return ArrayBuffer.isView( object ) && ! ( object instanceof DataView );

},

// returns an array by which times and values can be sorted getKeyframeOrder: function ( times ) {

function compareTime( i, j ) {

return times[ i ] - times[ j ];

}

var n = times.length; var result = new Array( n ); for ( var i = 0; i !== n; ++ i ) result[ i ] = i;

result.sort( compareTime );

return result;

},

// uses the array previously returned by 'getKeyframeOrder' to sort data sortedArray: function ( values, stride, order ) {

var nValues = values.length; var result = new values.constructor( nValues );

for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {

var srcOffset = order[ i ] * stride;

for ( var j = 0; j !== stride; ++ j ) {

result[ dstOffset ++ ] = values[ srcOffset + j ];

}

}

return result;

},

// function for parsing AOS keyframe formats flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) {

var i = 1, key = jsonKeys[ 0 ];

while ( key !== undefined && key[ valuePropertyName ] === undefined ) {

key = jsonKeys[ i ++ ];

}

if ( key === undefined ) return; // no data

var value = key[ valuePropertyName ]; if ( value === undefined ) return; // no data

if ( Array.isArray( value ) ) {

do {

value = key[ valuePropertyName ];

if ( value !== undefined ) {

times.push( key.time ); values.push.apply( values, value ); // push all elements

}

key = jsonKeys[ i ++ ];

} while ( key !== undefined );

} else if ( value.toArray !== undefined ) {

// ...assume THREE.Math-ish

do {

value = key[ valuePropertyName ];

if ( value !== undefined ) {

times.push( key.time ); value.toArray( values, values.length );

}

key = jsonKeys[ i ++ ];

} while ( key !== undefined );

} else {

// otherwise push as-is

do {

value = key[ valuePropertyName ];

if ( value !== undefined ) {

times.push( key.time ); values.push( value );

}

key = jsonKeys[ i ++ ];

} while ( key !== undefined );

}

}

};

/** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * * @author tschw */

function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

this.parameterPositions = parameterPositions; this._cachedIndex = 0;

this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor( sampleSize ); this.sampleValues = sampleValues; this.valueSize = sampleSize;

}

Object.assign( Interpolant.prototype, {

evaluate: function ( t ) {

var pp = this.parameterPositions, i1 = this._cachedIndex,

t1 = pp[ i1 ], t0 = pp[ i1 - 1 ];

validate_interval: {

seek: {

var right;

linear_scan: {

//- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if ( ! ( t < t1 ) ) {

for ( var giveUpAt = i1 + 2; ; ) {

if ( t1 === undefined ) {

if ( t < t0 ) break forward_scan;

// after end

i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t, t0 );

}

if ( i1 === giveUpAt ) break; // this loop

t0 = t1; t1 = pp[ ++ i1 ];

if ( t < t1 ) {

// we have arrived at the sought interval break seek;

}

}

// prepare binary search on the right side of the index right = pp.length; break linear_scan;

}

//- slower code: //- if ( t < t0 || t0 === undefined ) { if ( ! ( t >= t0 ) ) {

// looping?

var t1global = pp[ 1 ];

if ( t < t1global ) {

i1 = 2; // + 1, using the scan for the details t0 = t1global;

}

// linear reverse scan

for ( var giveUpAt = i1 - 2; ; ) {

if ( t0 === undefined ) {

// before start

this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 );

}

if ( i1 === giveUpAt ) break; // this loop

t1 = t0; t0 = pp[ -- i1 - 1 ];

if ( t >= t0 ) {

// we have arrived at the sought interval break seek;

}

}

// prepare binary search on the left side of the index right = i1; i1 = 0; break linear_scan;

}

// the interval is valid

break validate_interval;

} // linear scan

// binary search

while ( i1 < right ) {

var mid = ( i1 + right ) >>> 1;

if ( t < pp[ mid ] ) {

right = mid;

} else {

i1 = mid + 1;

}

}

t1 = pp[ i1 ]; t0 = pp[ i1 - 1 ];

// check boundary cases, again

if ( t0 === undefined ) {

this._cachedIndex = 0; return this.beforeStart_( 0, t, t1 );

}

if ( t1 === undefined ) {

i1 = pp.length; this._cachedIndex = i1; return this.afterEnd_( i1 - 1, t0, t );

}

} // seek

this._cachedIndex = i1;

this.intervalChanged_( i1, t0, t1 );

} // validate_interval

return this.interpolate_( i1, t0, t, t1 );

},

settings: null, // optional, subclass-specific settings structure // Note: The indirection allows central control of many interpolants.

// --- Protected interface

DefaultSettings_: {},

getSettings_: function () {

return this.settings || this.DefaultSettings_;

},

copySampleValue_: function ( index ) {

// copies a sample value to the result buffer

var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride;

for ( var i = 0; i !== stride; ++ i ) {

result[ i ] = values[ offset + i ];

}

return result;

},

// Template methods for derived classes:

interpolate_: function ( /* i1, t0, t, t1 */ ) {

throw new Error( 'call to abstract method' ); // implementations shall return this.resultBuffer

},

intervalChanged_: function ( /* i1, t0, t1 */ ) {

// empty

}

} );

//!\ DECLARE ALIAS AFTER assign prototype ! Object.assign( Interpolant.prototype, {

//( 0, t, t0 ), returns this.resultBuffer beforeStart_: Interpolant.prototype.copySampleValue_,

//( N-1, tN-1, t ), returns this.resultBuffer afterEnd_: Interpolant.prototype.copySampleValue_,

} );

/** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. * * @author tschw */

function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

this._weightPrev = - 0; this._offsetPrev = - 0; this._weightNext = - 0; this._offsetNext = - 0;

}

CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

constructor: CubicInterpolant,

DefaultSettings_: {

endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding

},

intervalChanged_: function ( i1, t0, t1 ) {

var pp = this.parameterPositions, iPrev = i1 - 2, iNext = i1 + 1,

tPrev = pp[ iPrev ], tNext = pp[ iNext ];

if ( tPrev === undefined ) {

switch ( this.getSettings_().endingStart ) {

case ZeroSlopeEnding:

// f'(t0) = 0 iPrev = i1; tPrev = 2 * t0 - t1;

break;

case WrapAroundEnding:

// use the other end of the curve iPrev = pp.length - 2; tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];

break;

default: // ZeroCurvatureEnding

// f(t0) = 0 a.k.a. Natural Spline iPrev = i1; tPrev = t1;

}

}

if ( tNext === undefined ) {

switch ( this.getSettings_().endingEnd ) {

case ZeroSlopeEnding:

// f'(tN) = 0 iNext = i1; tNext = 2 * t1 - t0;

break;

case WrapAroundEnding:

// use the other end of the curve iNext = 1; tNext = t1 + pp[ 1 ] - pp[ 0 ];

break;

default: // ZeroCurvatureEnding

// f(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1; tNext = t0;

}

}

var halfDt = ( t1 - t0 ) * 0.5, stride = this.valueSize;

this._weightPrev = halfDt / ( t0 - tPrev ); this._weightNext = halfDt / ( tNext - t1 ); this._offsetPrev = iPrev * stride; this._offsetNext = iNext * stride;

},

interpolate_: function ( i1, t0, t, t1 ) {

var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize,

o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext,

p = ( t - t0 ) / ( t1 - t0 ), pp = p * p, ppp = pp * p;

// evaluate polynomials

var sP = - wP * ppp + 2 * wP * pp - wP * p; var s0 = ( 1 + wP ) * ppp + ( - 1.5 - 2 * wP ) * pp + ( - 0.5 + wP ) * p + 1; var s1 = ( - 1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p; var sN = wN * ppp - wN * pp;

// combine data linearly

for ( var i = 0; i !== stride; ++ i ) {

result[ i ] = sP * values[ oP + i ] + s0 * values[ o0 + i ] + s1 * values[ o1 + i ] + sN * values[ oN + i ];

}

return result;

}

} );

/** * @author tschw */

function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

}

LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

constructor: LinearInterpolant,

interpolate_: function ( i1, t0, t, t1 ) {

var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize,

offset1 = i1 * stride, offset0 = offset1 - stride,

weight1 = ( t - t0 ) / ( t1 - t0 ), weight0 = 1 - weight1;

for ( var i = 0; i !== stride; ++ i ) {

result[ i ] = values[ offset0 + i ] * weight0 + values[ offset1 + i ] * weight1;

}

return result;

}

} );

/** * * Interpolant that evaluates to the sample value at the position preceeding * the parameter. * * @author tschw */

function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

}

DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

constructor: DiscreteInterpolant,

interpolate_: function ( i1 /*, t0, t, t1 */ ) {

return this.copySampleValue_( i1 - 1 );

}

} );

/** * * A timed sequence of keyframes for a specific property. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */

function KeyframeTrack( name, times, values, interpolation ) {

if ( name === undefined ) throw new Error( 'THREE.KeyframeTrack: track name is undefined' ); if ( times === undefined || times.length === 0 ) throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name );

this.name = name;

this.times = AnimationUtils.convertArray( times, this.TimeBufferType ); this.values = AnimationUtils.convertArray( values, this.ValueBufferType );

this.setInterpolation( interpolation || this.DefaultInterpolation );

}

// Static methods

Object.assign( KeyframeTrack, {

// Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON):

toJSON: function ( track ) {

var trackType = track.constructor;

var json;

// derived classes can define a static toJSON method if ( trackType.toJSON !== undefined ) {

json = trackType.toJSON( track );

} else {

// by default, we assume the data can be serialized as-is json = {

'name': track.name, 'times': AnimationUtils.convertArray( track.times, Array ), 'values': AnimationUtils.convertArray( track.values, Array )

};

var interpolation = track.getInterpolation();

if ( interpolation !== track.DefaultInterpolation ) {

json.interpolation = interpolation;

}

}

json.type = track.ValueTypeName; // mandatory

return json;

}

} );

Object.assign( KeyframeTrack.prototype, {

constructor: KeyframeTrack,

TimeBufferType: Float32Array,

ValueBufferType: Float32Array,

DefaultInterpolation: InterpolateLinear,

InterpolantFactoryMethodDiscrete: function ( result ) {

return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result );

},

InterpolantFactoryMethodLinear: function ( result ) {

return new LinearInterpolant( this.times, this.values, this.getValueSize(), result );

},

InterpolantFactoryMethodSmooth: function ( result ) {

return new CubicInterpolant( this.times, this.values, this.getValueSize(), result );

},

setInterpolation: function ( interpolation ) {

var factoryMethod;

switch ( interpolation ) {

case InterpolateDiscrete:

factoryMethod = this.InterpolantFactoryMethodDiscrete;

break;

case InterpolateLinear:

factoryMethod = this.InterpolantFactoryMethodLinear;

break;

case InterpolateSmooth:

factoryMethod = this.InterpolantFactoryMethodSmooth;

break;

}

if ( factoryMethod === undefined ) {

var message = "unsupported interpolation for " + this.ValueTypeName + " keyframe track named " + this.name;

if ( this.createInterpolant === undefined ) {

// fall back to default, unless the default itself is messed up if ( interpolation !== this.DefaultInterpolation ) {

this.setInterpolation( this.DefaultInterpolation );

} else {

throw new Error( message ); // fatal, in this case

}

}

console.warn( 'THREE.KeyframeTrack:', message ); return this;

}

this.createInterpolant = factoryMethod;

return this;

},

getInterpolation: function () {

switch ( this.createInterpolant ) {

case this.InterpolantFactoryMethodDiscrete:

return InterpolateDiscrete;

case this.InterpolantFactoryMethodLinear:

return InterpolateLinear;

case this.InterpolantFactoryMethodSmooth:

return InterpolateSmooth;

}

},

getValueSize: function () {

return this.values.length / this.times.length;

},

// move all keyframes either forwards or backwards in time shift: function ( timeOffset ) {

if ( timeOffset !== 0.0 ) {

var times = this.times;

for ( var i = 0, n = times.length; i !== n; ++ i ) {

times[ i ] += timeOffset;

}

}

return this;

},

// scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale: function ( timeScale ) {

if ( timeScale !== 1.0 ) {

var times = this.times;

for ( var i = 0, n = times.length; i !== n; ++ i ) {

times[ i ] *= timeScale;

}

}

return this;

},

// removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim: function ( startTime, endTime ) {

var times = this.times, nKeys = times.length, from = 0, to = nKeys - 1;

while ( from !== nKeys && times[ from ] < startTime ) {

++ from;

}

while ( to !== - 1 && times[ to ] > endTime ) {

-- to;

}

++ to; // inclusive -> exclusive bound

if ( from !== 0 || to !== nKeys ) {

// empty tracks are forbidden, so keep at least one keyframe if ( from >= to ) to = Math.max( to, 1 ), from = to - 1;

var stride = this.getValueSize(); this.times = AnimationUtils.arraySlice( times, from, to ); this.values = AnimationUtils.arraySlice( this.values, from * stride, to * stride );

}

return this;

},

// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate: function () {

var valid = true;

var valueSize = this.getValueSize(); if ( valueSize - Math.floor( valueSize ) !== 0 ) {

console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this ); valid = false;

}

var times = this.times, values = this.values,

nKeys = times.length;

if ( nKeys === 0 ) {

console.error( 'THREE.KeyframeTrack: Track is empty.', this ); valid = false;

}

var prevTime = null;

for ( var i = 0; i !== nKeys; i ++ ) {

var currTime = times[ i ];

if ( typeof currTime === 'number' && isNaN( currTime ) ) {

console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime ); valid = false; break;

}

if ( prevTime !== null && prevTime > currTime ) {

console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime ); valid = false; break;

}

prevTime = currTime;

}

if ( values !== undefined ) {

if ( AnimationUtils.isTypedArray( values ) ) {

for ( var i = 0, n = values.length; i !== n; ++ i ) {

var value = values[ i ];

if ( isNaN( value ) ) {

console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i, value ); valid = false; break;

}

}

}

}

return valid;

},

// removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize: function () {

var times = this.times, values = this.values, stride = this.getValueSize(),

smoothInterpolation = this.getInterpolation() === InterpolateSmooth,

writeIndex = 1, lastIndex = times.length - 1;

for ( var i = 1; i < lastIndex; ++ i ) {

var keep = false;

var time = times[ i ]; var timeNext = times[ i + 1 ];

// remove adjacent keyframes scheduled at the same time

if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {

if ( ! smoothInterpolation ) {

// remove unnecessary keyframes same as their neighbors

var offset = i * stride, offsetP = offset - stride, offsetN = offset + stride;

for ( var j = 0; j !== stride; ++ j ) {

var value = values[ offset + j ];

if ( value !== values[ offsetP + j ] || value !== values[ offsetN + j ] ) {

keep = true; break;

}

}

} else {

keep = true;

}

}

// in-place compaction

if ( keep ) {

if ( i !== writeIndex ) {

times[ writeIndex ] = times[ i ];

var readOffset = i * stride, writeOffset = writeIndex * stride;

for ( var j = 0; j !== stride; ++ j ) {

values[ writeOffset + j ] = values[ readOffset + j ];

}

}

++ writeIndex;

}

}

// flush last keyframe (compaction looks ahead)

if ( lastIndex > 0 ) {

times[ writeIndex ] = times[ lastIndex ];

for ( var readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) {

values[ writeOffset + j ] = values[ readOffset + j ];

}

++ writeIndex;

}

if ( writeIndex !== times.length ) {

this.times = AnimationUtils.arraySlice( times, 0, writeIndex ); this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride );

}

return this;

}

} );

/** * * A Track of Boolean keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */

function BooleanKeyframeTrack( name, times, values ) {

KeyframeTrack.call( this, name, times, values );

}

BooleanKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

constructor: BooleanKeyframeTrack,

ValueTypeName: 'bool', ValueBufferType: Array,

DefaultInterpolation: InterpolateDiscrete,

InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined

// Note: Actually this track could have a optimized / compressed // representation of a single value and a custom interpolant that // computes "firstValue ^ isOdd( index )".

} );

/** * * A Track of keyframe values that represent color. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */

function ColorKeyframeTrack( name, times, values, interpolation ) {

KeyframeTrack.call( this, name, times, values, interpolation );

}

ColorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

constructor: ColorKeyframeTrack,

ValueTypeName: 'color'

// ValueBufferType is inherited

// DefaultInterpolation is inherited

// Note: Very basic implementation and nothing special yet. // However, this is the place for color space parameterization.

} );

/** * * A Track of numeric keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */

function NumberKeyframeTrack( name, times, values, interpolation ) {

KeyframeTrack.call( this, name, times, values, interpolation );

}

NumberKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

constructor: NumberKeyframeTrack,

ValueTypeName: 'number'

// ValueBufferType is inherited

// DefaultInterpolation is inherited

} );

/** * Spherical linear unit quaternion interpolant. * * @author tschw */

function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

}

QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

constructor: QuaternionLinearInterpolant,

interpolate_: function ( i1, t0, t, t1 ) {

var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize,

offset = i1 * stride,

alpha = ( t - t0 ) / ( t1 - t0 );

for ( var end = offset + stride; offset !== end; offset += 4 ) {

Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha );

}

return result;

}

} );

/** * * A Track of quaternion keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */

function QuaternionKeyframeTrack( name, times, values, interpolation ) {

KeyframeTrack.call( this, name, times, values, interpolation );

}

QuaternionKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

constructor: QuaternionKeyframeTrack,

ValueTypeName: 'quaternion',

// ValueBufferType is inherited

DefaultInterpolation: InterpolateLinear,

InterpolantFactoryMethodLinear: function ( result ) {

return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result );

},

InterpolantFactoryMethodSmooth: undefined // not yet implemented

} );

/** * * A Track that interpolates Strings * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */

function StringKeyframeTrack( name, times, values, interpolation ) {

KeyframeTrack.call( this, name, times, values, interpolation );

}

StringKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

constructor: StringKeyframeTrack,

ValueTypeName: 'string', ValueBufferType: Array,

DefaultInterpolation: InterpolateDiscrete,

InterpolantFactoryMethodLinear: undefined,

InterpolantFactoryMethodSmooth: undefined

} );

/** * * A Track of vectored keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */

function VectorKeyframeTrack( name, times, values, interpolation ) {

KeyframeTrack.call( this, name, times, values, interpolation );

}

VectorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

constructor: VectorKeyframeTrack,

ValueTypeName: 'vector'

// ValueBufferType is inherited

// DefaultInterpolation is inherited

} );

/** * * Reusable set of Tracks that represent an animation. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */

function AnimationClip( name, duration, tracks ) {

this.name = name; this.tracks = tracks; this.duration = ( duration !== undefined ) ? duration : - 1;

this.uuid = _Math.generateUUID();

// this means it should figure out its duration by scanning the tracks if ( this.duration < 0 ) {

this.resetDuration();

}

}

function getTrackTypeForValueTypeName( typeName ) {

switch ( typeName.toLowerCase() ) {

case 'scalar': case 'double': case 'float': case 'number': case 'integer':

return NumberKeyframeTrack;

case 'vector': case 'vector2': case 'vector3': case 'vector4':

return VectorKeyframeTrack;

case 'color':

return ColorKeyframeTrack;

case 'quaternion':

return QuaternionKeyframeTrack;

case 'bool': case 'boolean':

return BooleanKeyframeTrack;

case 'string':

return StringKeyframeTrack;

}

throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName );

}

function parseKeyframeTrack( json ) {

if ( json.type === undefined ) {

throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' );

}

var trackType = getTrackTypeForValueTypeName( json.type );

if ( json.times === undefined ) {

var times = [], values = [];

AnimationUtils.flattenJSON( json.keys, times, values, 'value' );

json.times = times; json.values = values;

}

// derived classes can define a static parse method if ( trackType.parse !== undefined ) {

return trackType.parse( json );

} else {

// by default, we assume a constructor compatible with the base return new trackType( json.name, json.times, json.values, json.interpolation );

}

}

Object.assign( AnimationClip, {

parse: function ( json ) {

var tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / ( json.fps || 1.0 );

for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) {

tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) );

}

return new AnimationClip( json.name, json.duration, tracks );

},

toJSON: function ( clip ) {

var tracks = [], clipTracks = clip.tracks;

var json = {

'name': clip.name, 'duration': clip.duration, 'tracks': tracks, 'uuid': clip.uuid

};

for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) {

tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) );

}

return json;

},

CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) {

var numMorphTargets = morphTargetSequence.length; var tracks = [];

for ( var i = 0; i < numMorphTargets; i ++ ) {

var times = []; var values = [];

times.push( ( i + numMorphTargets - 1 ) % numMorphTargets, i, ( i + 1 ) % numMorphTargets );

values.push( 0, 1, 0 );

var order = AnimationUtils.getKeyframeOrder( times ); times = AnimationUtils.sortedArray( times, 1, order ); values = AnimationUtils.sortedArray( values, 1, order );

// if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if ( ! noLoop && times[ 0 ] === 0 ) {

times.push( numMorphTargets ); values.push( values[ 0 ] );

}

tracks.push( new NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']', times, values ).scale( 1.0 / fps ) );

}

return new AnimationClip( name, - 1, tracks );

},

findByName: function ( objectOrClipArray, name ) {

var clipArray = objectOrClipArray;

if ( ! Array.isArray( objectOrClipArray ) ) {

var o = objectOrClipArray; clipArray = o.geometry && o.geometry.animations || o.animations;

}

for ( var i = 0; i < clipArray.length; i ++ ) {

if ( clipArray[ i ].name === name ) {

return clipArray[ i ];

}

}

return null;

},

CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) {

var animationToMorphTargets = {};

// tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 var pattern = /^([\w-]*?)([\d]+)$/;

// sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for ( var i = 0, il = morphTargets.length; i < il; i ++ ) {

var morphTarget = morphTargets[ i ]; var parts = morphTarget.name.match( pattern );

if ( parts && parts.length > 1 ) {

var name = parts[ 1 ];

var animationMorphTargets = animationToMorphTargets[ name ]; if ( ! animationMorphTargets ) {

animationToMorphTargets[ name ] = animationMorphTargets = [];

}

animationMorphTargets.push( morphTarget );

}

}

var clips = [];

for ( var name in animationToMorphTargets ) {

clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );

}

return clips;

},

// parse the animation.hierarchy format parseAnimation: function ( animation, bones ) {

if ( ! animation ) {

console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' ); return null;

}

var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) {

// only return track if there are actually keys. if ( animationKeys.length !== 0 ) {

var times = []; var values = [];

AnimationUtils.flattenJSON( animationKeys, times, values, propertyName );

// empty keys are filtered out, so check again if ( times.length !== 0 ) {

destTracks.push( new trackType( trackName, times, values ) );

}

}

};

var tracks = [];

var clipName = animation.name || 'default'; // automatic length determination in AnimationClip. var duration = animation.length || - 1; var fps = animation.fps || 30;

var hierarchyTracks = animation.hierarchy || [];

for ( var h = 0; h < hierarchyTracks.length; h ++ ) {

var animationKeys = hierarchyTracks[ h ].keys;

// skip empty tracks if ( ! animationKeys || animationKeys.length === 0 ) continue;

// process morph targets if ( animationKeys[ 0 ].morphTargets ) {

// figure out all morph targets used in this track var morphTargetNames = {};

for ( var k = 0; k < animationKeys.length; k ++ ) {

if ( animationKeys[ k ].morphTargets ) {

for ( var m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) {

morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1;

}

}

}

// create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for ( var morphTargetName in morphTargetNames ) {

var times = []; var values = [];

for ( var m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) {

var animationKey = animationKeys[ k ];

times.push( animationKey.time ); values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 );

}

tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) );

}

duration = morphTargetNames.length * ( fps || 1.0 );

} else {

// ...assume skeletal animation

var boneName = '.bones[' + bones[ h ].name + ']';

addNonemptyTrack( VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks );

addNonemptyTrack( QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks );

addNonemptyTrack( VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks );

}

}

if ( tracks.length === 0 ) {

return null;

}

var clip = new AnimationClip( clipName, duration, tracks );

return clip;

}

} );

Object.assign( AnimationClip.prototype, {

resetDuration: function () {

var tracks = this.tracks, duration = 0;

for ( var i = 0, n = tracks.length; i !== n; ++ i ) {

var track = this.tracks[ i ];

duration = Math.max( duration, track.times[ track.times.length - 1 ] );

}

this.duration = duration;

return this;

},

trim: function () {

for ( var i = 0; i < this.tracks.length; i ++ ) {

this.tracks[ i ].trim( 0, this.duration );

}

return this;

},

validate: function () {

var valid = true;

for ( var i = 0; i < this.tracks.length; i ++ ) {

valid = valid && this.tracks[ i ].validate();

}

return valid;

},

optimize: function () {

for ( var i = 0; i < this.tracks.length; i ++ ) {

this.tracks[ i ].optimize();

}

return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function MaterialLoader( manager ) {

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.textures = {};

}

Object.assign( MaterialLoader.prototype, {

load: function ( url, onLoad, onProgress, onError ) {

var scope = this;

var loader = new FileLoader( scope.manager ); loader.load( url, function ( text ) {

onLoad( scope.parse( JSON.parse( text ) ) );

}, onProgress, onError );

},

setTextures: function ( value ) {

this.textures = value;

},

parse: function ( json ) {

var textures = this.textures;

function getTexture( name ) {

if ( textures[ name ] === undefined ) {

console.warn( 'THREE.MaterialLoader: Undefined texture', name );

}

return textures[ name ];

}

var material = new Materials[ json.type ]();

if ( json.uuid !== undefined ) material.uuid = json.uuid; if ( json.name !== undefined ) material.name = json.name; if ( json.color !== undefined ) material.color.setHex( json.color ); if ( json.roughness !== undefined ) material.roughness = json.roughness; if ( json.metalness !== undefined ) material.metalness = json.metalness; if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive ); if ( json.specular !== undefined ) material.specular.setHex( json.specular ); if ( json.shininess !== undefined ) material.shininess = json.shininess; if ( json.clearCoat !== undefined ) material.clearCoat = json.clearCoat; if ( json.clearCoatRoughness !== undefined ) material.clearCoatRoughness = json.clearCoatRoughness; if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors; if ( json.fog !== undefined ) material.fog = json.fog; if ( json.flatShading !== undefined ) material.flatShading = json.flatShading; if ( json.blending !== undefined ) material.blending = json.blending; if ( json.combine !== undefined ) material.combine = json.combine; if ( json.side !== undefined ) material.side = json.side; if ( json.opacity !== undefined ) material.opacity = json.opacity; if ( json.transparent !== undefined ) material.transparent = json.transparent; if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest; if ( json.depthTest !== undefined ) material.depthTest = json.depthTest; if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite; if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite; if ( json.wireframe !== undefined ) material.wireframe = json.wireframe; if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth; if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap; if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin;

if ( json.rotation !== undefined ) material.rotation = json.rotation;

if ( json.linewidth !== 1 ) material.linewidth = json.linewidth; if ( json.dashSize !== undefined ) material.dashSize = json.dashSize; if ( json.gapSize !== undefined ) material.gapSize = json.gapSize; if ( json.scale !== undefined ) material.scale = json.scale;

if ( json.polygonOffset !== undefined ) material.polygonOffset = json.polygonOffset; if ( json.polygonOffsetFactor !== undefined ) material.polygonOffsetFactor = json.polygonOffsetFactor; if ( json.polygonOffsetUnits !== undefined ) material.polygonOffsetUnits = json.polygonOffsetUnits;

if ( json.skinning !== undefined ) material.skinning = json.skinning; if ( json.morphTargets !== undefined ) material.morphTargets = json.morphTargets; if ( json.dithering !== undefined ) material.dithering = json.dithering;

if ( json.visible !== undefined ) material.visible = json.visible; if ( json.userData !== undefined ) material.userData = json.userData;

// Shader Material

if ( json.uniforms !== undefined ) {

for ( var name in json.uniforms ) {

var uniform = json.uniforms[ name ];

material.uniforms[ name ] = {};

switch ( uniform.type ) {

case 't': material.uniforms[ name ].value = getTexture( uniform.value ); break;

case 'c': material.uniforms[ name ].value = new Color().setHex( uniform.value ); break;

case 'v2': material.uniforms[ name ].value = new Vector2().fromArray( uniform.value ); break;

case 'v3': material.uniforms[ name ].value = new Vector3().fromArray( uniform.value ); break;

case 'v4': material.uniforms[ name ].value = new Vector4().fromArray( uniform.value ); break;

case 'm4': material.uniforms[ name ].value = new Matrix4().fromArray( uniform.value ); break;

default: material.uniforms[ name ].value = uniform.value;

}

}

}

if ( json.defines !== undefined ) material.defines = json.defines; if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader; if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader;

// Deprecated

if ( json.shading !== undefined ) material.flatShading = json.shading === 1; // THREE.FlatShading

// for PointsMaterial

if ( json.size !== undefined ) material.size = json.size; if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation;

// maps

if ( json.map !== undefined ) material.map = getTexture( json.map );

if ( json.alphaMap !== undefined ) {

material.alphaMap = getTexture( json.alphaMap ); material.transparent = true;

}

if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap ); if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale;

if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap ); if ( json.normalMapType !== undefined ) material.normalMapType = json.normalMapType; if ( json.normalScale !== undefined ) {

var normalScale = json.normalScale;

if ( Array.isArray( normalScale ) === false ) {

// Blender exporter used to export a scalar. See #7459

normalScale = [ normalScale, normalScale ];

}

material.normalScale = new Vector2().fromArray( normalScale );

}

if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap ); if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale; if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias;

if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap ); if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap );

if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap ); if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity;

if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap );

if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap ); if ( json.envMapIntensity !== undefined ) material.envMapIntensity = json.envMapIntensity;

if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity;

if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap ); if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity;

if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap ); if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity;

if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap );

return material;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function BufferGeometryLoader( manager ) {

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( BufferGeometryLoader.prototype, {

load: function ( url, onLoad, onProgress, onError ) {

var scope = this;

var loader = new FileLoader( scope.manager ); loader.load( url, function ( text ) {

onLoad( scope.parse( JSON.parse( text ) ) );

}, onProgress, onError );

},

parse: function ( json ) {

var geometry = new BufferGeometry();

var index = json.data.index;

if ( index !== undefined ) {

var typedArray = new TYPED_ARRAYS[ index.type ]( index.array ); geometry.setIndex( new BufferAttribute( typedArray, 1 ) );

}

var attributes = json.data.attributes;

for ( var key in attributes ) {

var attribute = attributes[ key ]; var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );

geometry.addAttribute( key, new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized ) );

}

var groups = json.data.groups || json.data.drawcalls || json.data.offsets;

if ( groups !== undefined ) {

for ( var i = 0, n = groups.length; i !== n; ++ i ) {

var group = groups[ i ];

geometry.addGroup( group.start, group.count, group.materialIndex );

}

}

var boundingSphere = json.data.boundingSphere;

if ( boundingSphere !== undefined ) {

var center = new Vector3();

if ( boundingSphere.center !== undefined ) {

center.fromArray( boundingSphere.center );

}

geometry.boundingSphere = new Sphere( center, boundingSphere.radius );

}

return geometry;

}

} );

var TYPED_ARRAYS = { Int8Array: Int8Array, Uint8Array: Uint8Array, // Workaround for IE11 pre KB2929437. See #11440 Uint8ClampedArray: typeof Uint8ClampedArray !== 'undefined' ? Uint8ClampedArray : Uint8Array, Int16Array: Int16Array, Uint16Array: Uint16Array, Int32Array: Int32Array, Uint32Array: Uint32Array, Float32Array: Float32Array, Float64Array: Float64Array };

/** * @author alteredq / http://alteredqualia.com/ */

function Loader() {}

Loader.Handlers = {

handlers: [],

add: function ( regex, loader ) {

this.handlers.push( regex, loader );

},

get: function ( file ) {

var handlers = this.handlers;

for ( var i = 0, l = handlers.length; i < l; i += 2 ) {

var regex = handlers[ i ]; var loader = handlers[ i + 1 ];

if ( regex.test( file ) ) {

return loader;

}

}

return null;

}

};

Object.assign( Loader.prototype, {

crossOrigin: 'anonymous',

onLoadStart: function () {},

onLoadProgress: function () {},

onLoadComplete: function () {},

initMaterials: function ( materials, texturePath, crossOrigin ) {

var array = [];

for ( var i = 0; i < materials.length; ++ i ) {

array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin );

}

return array;

},

createMaterial: ( function () {

var BlendingMode = { NoBlending: NoBlending, NormalBlending: NormalBlending, AdditiveBlending: AdditiveBlending, SubtractiveBlending: SubtractiveBlending, MultiplyBlending: MultiplyBlending, CustomBlending: CustomBlending };

var color = new Color(); var textureLoader = new TextureLoader(); var materialLoader = new MaterialLoader();

return function createMaterial( m, texturePath, crossOrigin ) {

// convert from old material format

var textures = {};

function loadTexture( path, repeat, offset, wrap, anisotropy ) {

var fullPath = texturePath + path; var loader = Loader.Handlers.get( fullPath );

var texture;

if ( loader !== null ) {

texture = loader.load( fullPath );

} else {

textureLoader.setCrossOrigin( crossOrigin ); texture = textureLoader.load( fullPath );

}

if ( repeat !== undefined ) {

texture.repeat.fromArray( repeat );

if ( repeat[ 0 ] !== 1 ) texture.wrapS = RepeatWrapping; if ( repeat[ 1 ] !== 1 ) texture.wrapT = RepeatWrapping;

}

if ( offset !== undefined ) {

texture.offset.fromArray( offset );

}

if ( wrap !== undefined ) {

if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = RepeatWrapping; if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = MirroredRepeatWrapping;

if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = RepeatWrapping; if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = MirroredRepeatWrapping;

}

if ( anisotropy !== undefined ) {

texture.anisotropy = anisotropy;

}

var uuid = _Math.generateUUID();

textures[ uuid ] = texture;

return uuid;

}

//

var json = { uuid: _Math.generateUUID(), type: 'MeshLambertMaterial' };

for ( var name in m ) {

var value = m[ name ];

switch ( name ) {

case 'DbgColor': case 'DbgIndex': case 'opticalDensity': case 'illumination': break; case 'DbgName': json.name = value; break; case 'blending': json.blending = BlendingMode[ value ]; break; case 'colorAmbient': case 'mapAmbient': console.warn( 'THREE.Loader.createMaterial:', name, 'is no longer supported.' ); break; case 'colorDiffuse': json.color = color.fromArray( value ).getHex(); break; case 'colorSpecular': json.specular = color.fromArray( value ).getHex(); break; case 'colorEmissive': json.emissive = color.fromArray( value ).getHex(); break; case 'specularCoef': json.shininess = value; break; case 'shading': if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial'; if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial'; if ( value.toLowerCase() === 'standard' ) json.type = 'MeshStandardMaterial'; break; case 'mapDiffuse': json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy ); break; case 'mapDiffuseRepeat': case 'mapDiffuseOffset': case 'mapDiffuseWrap': case 'mapDiffuseAnisotropy': break; case 'mapEmissive': json.emissiveMap = loadTexture( value, m.mapEmissiveRepeat, m.mapEmissiveOffset, m.mapEmissiveWrap, m.mapEmissiveAnisotropy ); break; case 'mapEmissiveRepeat': case 'mapEmissiveOffset': case 'mapEmissiveWrap': case 'mapEmissiveAnisotropy': break; case 'mapLight': json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy ); break; case 'mapLightRepeat': case 'mapLightOffset': case 'mapLightWrap': case 'mapLightAnisotropy': break; case 'mapAO': json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy ); break; case 'mapAORepeat': case 'mapAOOffset': case 'mapAOWrap': case 'mapAOAnisotropy': break; case 'mapBump': json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy ); break; case 'mapBumpScale': json.bumpScale = value; break; case 'mapBumpRepeat': case 'mapBumpOffset': case 'mapBumpWrap': case 'mapBumpAnisotropy': break; case 'mapNormal': json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy ); break; case 'mapNormalFactor': json.normalScale = value; break; case 'mapNormalRepeat': case 'mapNormalOffset': case 'mapNormalWrap': case 'mapNormalAnisotropy': break; case 'mapSpecular': json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy ); break; case 'mapSpecularRepeat': case 'mapSpecularOffset': case 'mapSpecularWrap': case 'mapSpecularAnisotropy': break; case 'mapMetalness': json.metalnessMap = loadTexture( value, m.mapMetalnessRepeat, m.mapMetalnessOffset, m.mapMetalnessWrap, m.mapMetalnessAnisotropy ); break; case 'mapMetalnessRepeat': case 'mapMetalnessOffset': case 'mapMetalnessWrap': case 'mapMetalnessAnisotropy': break; case 'mapRoughness': json.roughnessMap = loadTexture( value, m.mapRoughnessRepeat, m.mapRoughnessOffset, m.mapRoughnessWrap, m.mapRoughnessAnisotropy ); break; case 'mapRoughnessRepeat': case 'mapRoughnessOffset': case 'mapRoughnessWrap': case 'mapRoughnessAnisotropy': break; case 'mapAlpha': json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy ); break; case 'mapAlphaRepeat': case 'mapAlphaOffset': case 'mapAlphaWrap': case 'mapAlphaAnisotropy': break; case 'flipSided': json.side = BackSide; break; case 'doubleSided': json.side = DoubleSide; break; case 'transparency': console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' ); json.opacity = value; break; case 'depthTest': case 'depthWrite': case 'colorWrite': case 'opacity': case 'reflectivity': case 'transparent': case 'visible': case 'wireframe': json[ name ] = value; break; case 'vertexColors': if ( value === true ) json.vertexColors = VertexColors; if ( value === 'face' ) json.vertexColors = FaceColors; break; default: console.error( 'THREE.Loader.createMaterial: Unsupported', name, value ); break;

}

}

if ( json.type === 'MeshBasicMaterial' ) delete json.emissive; if ( json.type !== 'MeshPhongMaterial' ) delete json.specular;

if ( json.opacity < 1 ) json.transparent = true;

materialLoader.setTextures( textures );

return materialLoader.parse( json );

};

} )()

} );

/** * @author Don McCurdy / https://www.donmccurdy.com */

var LoaderUtils = {

decodeText: function ( array ) {

if ( typeof TextDecoder !== 'undefined' ) {

return new TextDecoder().decode( array );

}

// Avoid the String.fromCharCode.apply(null, array) shortcut, which // throws a "maximum call stack size exceeded" error for large arrays.

var s = ;

for ( var i = 0, il = array.length; i < il; i ++ ) {

// Implicitly assumes little-endian. s += String.fromCharCode( array[ i ] );

}

// Merges multi-byte utf-8 characters. return decodeURIComponent( escape( s ) );

},

extractUrlBase: function ( url ) {

var index = url.lastIndexOf( '/' );

if ( index === - 1 ) return './';

return url.substr( 0, index + 1 );

}

};

/** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */

function JSONLoader( manager ) {

if ( typeof manager === 'boolean' ) {

console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' ); manager = undefined;

}

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

this.withCredentials = false;

}

Object.assign( JSONLoader.prototype, {

crossOrigin: 'anonymous',

load: function ( url, onLoad, onProgress, onError ) {

var scope = this;

var path = ( this.path === undefined ) ? LoaderUtils.extractUrlBase( url ) : this.path;

var loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( text ) {

var json = JSON.parse( text ); var metadata = json.metadata;

if ( metadata !== undefined ) {

var type = metadata.type;

if ( type !== undefined ) {

if ( type.toLowerCase() === 'object' ) {

console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' ); return;

}

}

}

var object = scope.parse( json, path ); onLoad( object.geometry, object.materials );

}, onProgress, onError );

},

setPath: function ( value ) {

this.path = value; return this;

},

setResourcePath: function ( value ) {

this.resourcePath = value; return this;

},

setCrossOrigin: function ( value ) {

this.crossOrigin = value; return this;

},

parse: ( function () {

function parseModel( json, geometry ) {

function isBitSet( value, position ) {

return value & ( 1 << position );

}

var i, j, fi,

offset, zLength,

colorIndex, normalIndex, uvIndex, materialIndex,

type, isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor,

vertex, face, faceA, faceB, hex, normal,

uvLayer, uv, u, v,

faces = json.faces, vertices = json.vertices, normals = json.normals, colors = json.colors,

scale = json.scale,

nUvLayers = 0;


if ( json.uvs !== undefined ) {

// disregard empty arrays

for ( i = 0; i < json.uvs.length; i ++ ) {

if ( json.uvs[ i ].length ) nUvLayers ++;

}

for ( i = 0; i < nUvLayers; i ++ ) {

geometry.faceVertexUvs[ i ] = [];

}

}

offset = 0; zLength = vertices.length;

while ( offset < zLength ) {

vertex = new Vector3();

vertex.x = vertices[ offset ++ ] * scale; vertex.y = vertices[ offset ++ ] * scale; vertex.z = vertices[ offset ++ ] * scale;

geometry.vertices.push( vertex );

}

offset = 0; zLength = faces.length;

while ( offset < zLength ) {

type = faces[ offset ++ ];

isQuad = isBitSet( type, 0 ); hasMaterial = isBitSet( type, 1 ); hasFaceVertexUv = isBitSet( type, 3 ); hasFaceNormal = isBitSet( type, 4 ); hasFaceVertexNormal = isBitSet( type, 5 ); hasFaceColor = isBitSet( type, 6 ); hasFaceVertexColor = isBitSet( type, 7 );

// console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor);

if ( isQuad ) {

faceA = new Face3(); faceA.a = faces[ offset ]; faceA.b = faces[ offset + 1 ]; faceA.c = faces[ offset + 3 ];

faceB = new Face3(); faceB.a = faces[ offset + 1 ]; faceB.b = faces[ offset + 2 ]; faceB.c = faces[ offset + 3 ];

offset += 4;

if ( hasMaterial ) {

materialIndex = faces[ offset ++ ]; faceA.materialIndex = materialIndex; faceB.materialIndex = materialIndex;

}

// to get face <=> uv index correspondence

fi = geometry.faces.length;

if ( hasFaceVertexUv ) {

for ( i = 0; i < nUvLayers; i ++ ) {

uvLayer = json.uvs[ i ];

geometry.faceVertexUvs[ i ][ fi ] = []; geometry.faceVertexUvs[ i ][ fi + 1 ] = [];

for ( j = 0; j < 4; j ++ ) {

uvIndex = faces[ offset ++ ];

u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ];

uv = new Vector2( u, v );

if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv ); if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv );

}

}

}

if ( hasFaceNormal ) {

normalIndex = faces[ offset ++ ] * 3;

faceA.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] );

faceB.normal.copy( faceA.normal );

}

if ( hasFaceVertexNormal ) {

for ( i = 0; i < 4; i ++ ) {

normalIndex = faces[ offset ++ ] * 3;

normal = new Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] );


if ( i !== 2 ) faceA.vertexNormals.push( normal ); if ( i !== 0 ) faceB.vertexNormals.push( normal );

}

}


if ( hasFaceColor ) {

colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ];

faceA.color.setHex( hex ); faceB.color.setHex( hex );

}


if ( hasFaceVertexColor ) {

for ( i = 0; i < 4; i ++ ) {

colorIndex = faces[ offset ++ ]; hex = colors[ colorIndex ];

if ( i !== 2 ) faceA.vertexColors.push( new Color( hex ) ); if ( i !== 0 ) faceB.vertexColors.push( new Color( hex ) );

}

}

geometry.faces.push( faceA ); geometry.faces.push( faceB );

} else {

face = new Face3(); face.a = faces[ offset ++ ]; face.b = faces[ offset ++ ]; face.c = faces[ offset ++ ];

if ( hasMaterial ) {

materialIndex = faces[ offset ++ ]; face.materialIndex = materialIndex;

}

// to get face <=> uv index correspondence

fi = geometry.faces.length;

if ( hasFaceVertexUv ) {

for ( i = 0; i < nUvLayers; i ++ ) {

uvLayer = json.uvs[ i ];

geometry.faceVertexUvs[ i ][ fi ] = [];

for ( j = 0; j < 3; j ++ ) {

uvIndex = faces[ offset ++ ];

u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ];

uv = new Vector2( u, v );

geometry.faceVertexUvs[ i ][ fi ].push( uv );

}

}

}

if ( hasFaceNormal ) {

normalIndex = faces[ offset ++ ] * 3;

face.normal.set( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] );

}

if ( hasFaceVertexNormal ) {

for ( i = 0; i < 3; i ++ ) {

normalIndex = faces[ offset ++ ] * 3;

normal = new Vector3( normals[ normalIndex ++ ], normals[ normalIndex ++ ], normals[ normalIndex ] );

face.vertexNormals.push( normal );

}

}


if ( hasFaceColor ) {

colorIndex = faces[ offset ++ ]; face.color.setHex( colors[ colorIndex ] );

}


if ( hasFaceVertexColor ) {

for ( i = 0; i < 3; i ++ ) {

colorIndex = faces[ offset ++ ]; face.vertexColors.push( new Color( colors[ colorIndex ] ) );

}

}

geometry.faces.push( face );

}

}

}

function parseSkin( json, geometry ) {

var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2;

if ( json.skinWeights ) {

for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) {

var x = json.skinWeights[ i ]; var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0; var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0; var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0;

geometry.skinWeights.push( new Vector4( x, y, z, w ) );

}

}

if ( json.skinIndices ) {

for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) {

var a = json.skinIndices[ i ]; var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0; var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0; var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0;

geometry.skinIndices.push( new Vector4( a, b, c, d ) );

}

}

geometry.bones = json.bones;

if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) {

console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' + geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' );

}

}

function parseMorphing( json, geometry ) {

var scale = json.scale;

if ( json.morphTargets !== undefined ) {

for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) {

geometry.morphTargets[ i ] = {}; geometry.morphTargets[ i ].name = json.morphTargets[ i ].name; geometry.morphTargets[ i ].vertices = [];

var dstVertices = geometry.morphTargets[ i ].vertices; var srcVertices = json.morphTargets[ i ].vertices;

for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) {

var vertex = new Vector3(); vertex.x = srcVertices[ v ] * scale; vertex.y = srcVertices[ v + 1 ] * scale; vertex.z = srcVertices[ v + 2 ] * scale;

dstVertices.push( vertex );

}

}

}

if ( json.morphColors !== undefined && json.morphColors.length > 0 ) {

console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' );

var faces = geometry.faces; var morphColors = json.morphColors[ 0 ].colors;

for ( var i = 0, l = faces.length; i < l; i ++ ) {

faces[ i ].color.fromArray( morphColors, i * 3 );

}

}

}

function parseAnimations( json, geometry ) {

var outputAnimations = [];

// parse old style Bone/Hierarchy animations var animations = [];

if ( json.animation !== undefined ) {

animations.push( json.animation );

}

if ( json.animations !== undefined ) {

if ( json.animations.length ) {

animations = animations.concat( json.animations );

} else {

animations.push( json.animations );

}

}

for ( var i = 0; i < animations.length; i ++ ) {

var clip = AnimationClip.parseAnimation( animations[ i ], geometry.bones ); if ( clip ) outputAnimations.push( clip );

}

// parse implicit morph animations if ( geometry.morphTargets ) {

// TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary. var morphAnimationClips = AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 ); outputAnimations = outputAnimations.concat( morphAnimationClips );

}

if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations;

}

return function parse( json, path ) {

if ( json.data !== undefined ) {

// Geometry 4.0 spec json = json.data;

}

if ( json.scale !== undefined ) {

json.scale = 1.0 / json.scale;

} else {

json.scale = 1.0;

}

var geometry = new Geometry();

parseModel( json, geometry ); parseSkin( json, geometry ); parseMorphing( json, geometry ); parseAnimations( json, geometry );

geometry.computeFaceNormals(); geometry.computeBoundingSphere();

if ( json.materials === undefined || json.materials.length === 0 ) {

return { geometry: geometry };

} else {

var materials = Loader.prototype.initMaterials( json.materials, this.resourcePath || path, this.crossOrigin );

return { geometry: geometry, materials: materials };

}

};

} )()

} );

/** * @author mrdoob / http://mrdoob.com/ */

function ObjectLoader( manager ) {

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.texturePath = ;

}

Object.assign( ObjectLoader.prototype, {

crossOrigin: 'anonymous',

load: function ( url, onLoad, onProgress, onError ) {

if ( this.texturePath === ) {

this.texturePath = url.substring( 0, url.lastIndexOf( '/' ) + 1 );

}

var scope = this;

var loader = new FileLoader( scope.manager ); loader.load( url, function ( text ) {

var json = null;

try {

json = JSON.parse( text );

} catch ( error ) {

if ( onError !== undefined ) onError( error );

console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message );

return;

}

var metadata = json.metadata;

if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) {

console.error( 'THREE.ObjectLoader: Can\'t load ' + url + '. Use THREE.JSONLoader instead.' ); return;

}

scope.parse( json, onLoad );

}, onProgress, onError );

},

setTexturePath: function ( value ) {

this.texturePath = value; return this;

},

setCrossOrigin: function ( value ) {

this.crossOrigin = value; return this;

},

parse: function ( json, onLoad ) {

var shapes = this.parseShape( json.shapes ); var geometries = this.parseGeometries( json.geometries, shapes );

var images = this.parseImages( json.images, function () {

if ( onLoad !== undefined ) onLoad( object );

} );

var textures = this.parseTextures( json.textures, images ); var materials = this.parseMaterials( json.materials, textures );

var object = this.parseObject( json.object, geometries, materials );

if ( json.animations ) {

object.animations = this.parseAnimations( json.animations );

}

if ( json.images === undefined || json.images.length === 0 ) {

if ( onLoad !== undefined ) onLoad( object );

}

return object;

},

parseShape: function ( json ) {

var shapes = {};

if ( json !== undefined ) {

for ( var i = 0, l = json.length; i < l; i ++ ) {

var shape = new Shape().fromJSON( json[ i ] );

shapes[ shape.uuid ] = shape;

}

}

return shapes;

},

parseGeometries: function ( json, shapes ) {

var geometries = {};

if ( json !== undefined ) {

var geometryLoader = new JSONLoader(); var bufferGeometryLoader = new BufferGeometryLoader();

for ( var i = 0, l = json.length; i < l; i ++ ) {

var geometry; var data = json[ i ];

switch ( data.type ) {

case 'PlaneGeometry': case 'PlaneBufferGeometry':

geometry = new Geometries[ data.type ]( data.width, data.height, data.widthSegments, data.heightSegments );

break;

case 'BoxGeometry': case 'BoxBufferGeometry': case 'CubeGeometry': // backwards compatible

geometry = new Geometries[ data.type ]( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments );

break;

case 'CircleGeometry': case 'CircleBufferGeometry':

geometry = new Geometries[ data.type ]( data.radius, data.segments, data.thetaStart, data.thetaLength );

break;

case 'CylinderGeometry': case 'CylinderBufferGeometry':

geometry = new Geometries[ data.type ]( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength );

break;

case 'ConeGeometry': case 'ConeBufferGeometry':

geometry = new Geometries[ data.type ]( data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength );

break;

case 'SphereGeometry': case 'SphereBufferGeometry':

geometry = new Geometries[ data.type ]( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength );

break;

case 'DodecahedronGeometry': case 'DodecahedronBufferGeometry': case 'IcosahedronGeometry': case 'IcosahedronBufferGeometry': case 'OctahedronGeometry': case 'OctahedronBufferGeometry': case 'TetrahedronGeometry': case 'TetrahedronBufferGeometry':

geometry = new Geometries[ data.type ]( data.radius, data.detail );

break;

case 'RingGeometry': case 'RingBufferGeometry':

geometry = new Geometries[ data.type ]( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength );

break;

case 'TorusGeometry': case 'TorusBufferGeometry':

geometry = new Geometries[ data.type ]( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc );

break;

case 'TorusKnotGeometry': case 'TorusKnotBufferGeometry':

geometry = new Geometries[ data.type ]( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q );

break;

case 'LatheGeometry': case 'LatheBufferGeometry':

geometry = new Geometries[ data.type ]( data.points, data.segments, data.phiStart, data.phiLength );

break;

case 'PolyhedronGeometry': case 'PolyhedronBufferGeometry':

geometry = new Geometries[ data.type ]( data.vertices, data.indices, data.radius, data.details );

break;

case 'ShapeGeometry': case 'ShapeBufferGeometry':

var geometryShapes = [];

for ( var j = 0, jl = data.shapes.length; j < jl; j ++ ) {

var shape = shapes[ data.shapes[ j ] ];

geometryShapes.push( shape );

}

geometry = new Geometries[ data.type ]( geometryShapes, data.curveSegments );

break;


case 'ExtrudeGeometry': case 'ExtrudeBufferGeometry':

var geometryShapes = [];

for ( var j = 0, jl = data.shapes.length; j < jl; j ++ ) {

var shape = shapes[ data.shapes[ j ] ];

geometryShapes.push( shape );

}

var extrudePath = data.options.extrudePath;

if ( extrudePath !== undefined ) {

data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath );

}

geometry = new Geometries[ data.type ]( geometryShapes, data.options );

break;

case 'BufferGeometry':

geometry = bufferGeometryLoader.parse( data );

break;

case 'Geometry':

geometry = geometryLoader.parse( data, this.texturePath ).geometry;

break;

default:

console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' );

continue;

}

geometry.uuid = data.uuid;

if ( data.name !== undefined ) geometry.name = data.name; if ( geometry.isBufferGeometry === true && data.userData !== undefined ) geometry.userData = data.userData;

geometries[ data.uuid ] = geometry;

}

}

return geometries;

},

parseMaterials: function ( json, textures ) {

var materials = {};

if ( json !== undefined ) {

var loader = new MaterialLoader(); loader.setTextures( textures );

for ( var i = 0, l = json.length; i < l; i ++ ) {

var data = json[ i ];

if ( data.type === 'MultiMaterial' ) {

// Deprecated

var array = [];

for ( var j = 0; j < data.materials.length; j ++ ) {

array.push( loader.parse( data.materials[ j ] ) );

}

materials[ data.uuid ] = array;

} else {

materials[ data.uuid ] = loader.parse( data );

}

}

}

return materials;

},

parseAnimations: function ( json ) {

var animations = [];

for ( var i = 0; i < json.length; i ++ ) {

var data = json[ i ];

var clip = AnimationClip.parse( data );

if ( data.uuid !== undefined ) clip.uuid = data.uuid;

animations.push( clip );

}

return animations;

},

parseImages: function ( json, onLoad ) {

var scope = this; var images = {};

function loadImage( url ) {

scope.manager.itemStart( url );

return loader.load( url, function () {

scope.manager.itemEnd( url );

}, undefined, function () {

scope.manager.itemEnd( url ); scope.manager.itemError( url );

} );

}

if ( json !== undefined && json.length > 0 ) {

var manager = new LoadingManager( onLoad );

var loader = new ImageLoader( manager ); loader.setCrossOrigin( this.crossOrigin );

for ( var i = 0, il = json.length; i < il; i ++ ) {

var image = json[ i ]; var url = image.url;

if ( Array.isArray( url ) ) {

// load array of images e.g CubeTexture

images[ image.uuid ] = [];

for ( var j = 0, jl = url.length; j < jl; j ++ ) {

var currentUrl = url[ j ];

var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( currentUrl ) ? currentUrl : scope.texturePath + currentUrl;

images[ image.uuid ].push( loadImage( path ) );

}

} else {

// load single image

var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.texturePath + image.url;

images[ image.uuid ] = loadImage( path );

}

}

}

return images;

},

parseTextures: function ( json, images ) {

function parseConstant( value, type ) {

if ( typeof value === 'number' ) return value;

console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value );

return type[ value ];

}

var textures = {};

if ( json !== undefined ) {

for ( var i = 0, l = json.length; i < l; i ++ ) {

var data = json[ i ];

if ( data.image === undefined ) {

console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid );

}

if ( images[ data.image ] === undefined ) {

console.warn( 'THREE.ObjectLoader: Undefined image', data.image );

}

var texture;

if ( Array.isArray( images[ data.image ] ) ) {

texture = new CubeTexture( images[ data.image ] );

} else {

texture = new Texture( images[ data.image ] );

}

texture.needsUpdate = true;

texture.uuid = data.uuid;

if ( data.name !== undefined ) texture.name = data.name;

if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING );

if ( data.offset !== undefined ) texture.offset.fromArray( data.offset ); if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat ); if ( data.center !== undefined ) texture.center.fromArray( data.center ); if ( data.rotation !== undefined ) texture.rotation = data.rotation;

if ( data.wrap !== undefined ) {

texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING ); texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING );

}

if ( data.format !== undefined ) texture.format = data.format;

if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER ); if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER ); if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy;

if ( data.flipY !== undefined ) texture.flipY = data.flipY;

textures[ data.uuid ] = texture;

}

}

return textures;

},

parseObject: function ( data, geometries, materials ) {

var object;

function getGeometry( name ) {

if ( geometries[ name ] === undefined ) {

console.warn( 'THREE.ObjectLoader: Undefined geometry', name );

}

return geometries[ name ];

}

function getMaterial( name ) {

if ( name === undefined ) return undefined;

if ( Array.isArray( name ) ) {

var array = [];

for ( var i = 0, l = name.length; i < l; i ++ ) {

var uuid = name[ i ];

if ( materials[ uuid ] === undefined ) {

console.warn( 'THREE.ObjectLoader: Undefined material', uuid );

}

array.push( materials[ uuid ] );

}

return array;

}

if ( materials[ name ] === undefined ) {

console.warn( 'THREE.ObjectLoader: Undefined material', name );

}

return materials[ name ];

}

switch ( data.type ) {

case 'Scene':

object = new Scene();

if ( data.background !== undefined ) {

if ( Number.isInteger( data.background ) ) {

object.background = new Color( data.background );

}

}

if ( data.fog !== undefined ) {

if ( data.fog.type === 'Fog' ) {

object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far );

} else if ( data.fog.type === 'FogExp2' ) {

object.fog = new FogExp2( data.fog.color, data.fog.density );

}

}

break;

case 'PerspectiveCamera':

object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far );

if ( data.focus !== undefined ) object.focus = data.focus; if ( data.zoom !== undefined ) object.zoom = data.zoom; if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge; if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset; if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );

break;

case 'OrthographicCamera':

object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far );

if ( data.zoom !== undefined ) object.zoom = data.zoom; if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );

break;

case 'AmbientLight':

object = new AmbientLight( data.color, data.intensity );

break;

case 'DirectionalLight':

object = new DirectionalLight( data.color, data.intensity );

break;

case 'PointLight':

object = new PointLight( data.color, data.intensity, data.distance, data.decay );

break;

case 'RectAreaLight':

object = new RectAreaLight( data.color, data.intensity, data.width, data.height );

break;

case 'SpotLight':

object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay );

break;

case 'HemisphereLight':

object = new HemisphereLight( data.color, data.groundColor, data.intensity );

break;

case 'SkinnedMesh':

console.warn( 'THREE.ObjectLoader.parseObject() does not support SkinnedMesh yet.' );

case 'Mesh':

var geometry = getGeometry( data.geometry ); var material = getMaterial( data.material );

if ( geometry.bones && geometry.bones.length > 0 ) {

object = new SkinnedMesh( geometry, material );

} else {

object = new Mesh( geometry, material );

}

break;

case 'LOD':

object = new LOD();

break;

case 'Line':

object = new Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode );

break;

case 'LineLoop':

object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) );

break;

case 'LineSegments':

object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) );

break;

case 'PointCloud': case 'Points':

object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) );

break;

case 'Sprite':

object = new Sprite( getMaterial( data.material ) );

break;

case 'Group':

object = new Group();

break;

default:

object = new Object3D();

}

object.uuid = data.uuid;

if ( data.name !== undefined ) object.name = data.name;

if ( data.matrix !== undefined ) {

object.matrix.fromArray( data.matrix );

if ( data.matrixAutoUpdate !== undefined ) object.matrixAutoUpdate = data.matrixAutoUpdate; if ( object.matrixAutoUpdate ) object.matrix.decompose( object.position, object.quaternion, object.scale );

} else {

if ( data.position !== undefined ) object.position.fromArray( data.position ); if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation ); if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion ); if ( data.scale !== undefined ) object.scale.fromArray( data.scale );

}

if ( data.castShadow !== undefined ) object.castShadow = data.castShadow; if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow;

if ( data.shadow ) {

if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias; if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius; if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize ); if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera );

}

if ( data.visible !== undefined ) object.visible = data.visible; if ( data.frustumCulled !== undefined ) object.frustumCulled = data.frustumCulled; if ( data.renderOrder !== undefined ) object.renderOrder = data.renderOrder; if ( data.userData !== undefined ) object.userData = data.userData; if ( data.layers !== undefined ) object.layers.mask = data.layers;

if ( data.children !== undefined ) {

var children = data.children;

for ( var i = 0; i < children.length; i ++ ) {

object.add( this.parseObject( children[ i ], geometries, materials ) );

}

}

if ( data.type === 'LOD' ) {

var levels = data.levels;

for ( var l = 0; l < levels.length; l ++ ) {

var level = levels[ l ]; var child = object.getObjectByProperty( 'uuid', level.object );

if ( child !== undefined ) {

object.addLevel( child, level.distance );

}

}

}

return object;

}

} );

var TEXTURE_MAPPING = { UVMapping: UVMapping, CubeReflectionMapping: CubeReflectionMapping, CubeRefractionMapping: CubeRefractionMapping, EquirectangularReflectionMapping: EquirectangularReflectionMapping, EquirectangularRefractionMapping: EquirectangularRefractionMapping, SphericalReflectionMapping: SphericalReflectionMapping, CubeUVReflectionMapping: CubeUVReflectionMapping, CubeUVRefractionMapping: CubeUVRefractionMapping };

var TEXTURE_WRAPPING = { RepeatWrapping: RepeatWrapping, ClampToEdgeWrapping: ClampToEdgeWrapping, MirroredRepeatWrapping: MirroredRepeatWrapping };

var TEXTURE_FILTER = { NearestFilter: NearestFilter, NearestMipMapNearestFilter: NearestMipMapNearestFilter, NearestMipMapLinearFilter: NearestMipMapLinearFilter, LinearFilter: LinearFilter, LinearMipMapNearestFilter: LinearMipMapNearestFilter, LinearMipMapLinearFilter: LinearMipMapLinearFilter };

/** * @author thespite / http://clicktorelease.com/ */


function ImageBitmapLoader( manager ) {

if ( typeof createImageBitmap === 'undefined' ) {

console.warn( 'THREE.ImageBitmapLoader: createImageBitmap() not supported.' );

}

if ( typeof fetch === 'undefined' ) {

console.warn( 'THREE.ImageBitmapLoader: fetch() not supported.' );

}

this.manager = manager !== undefined ? manager : DefaultLoadingManager; this.options = undefined;

}

ImageBitmapLoader.prototype = {

constructor: ImageBitmapLoader,

setOptions: function setOptions( options ) {

this.options = options;

return this;

},

load: function ( url, onLoad, onProgress, onError ) {

if ( url === undefined ) url = ;

if ( this.path !== undefined ) url = this.path + url;

url = this.manager.resolveURL( url );

var scope = this;

var cached = Cache.get( url );

if ( cached !== undefined ) {

scope.manager.itemStart( url );

setTimeout( function () {

if ( onLoad ) onLoad( cached );

scope.manager.itemEnd( url );

}, 0 );

return cached;

}

fetch( url ).then( function ( res ) {

return res.blob();

} ).then( function ( blob ) {

return createImageBitmap( blob, scope.options );

} ).then( function ( imageBitmap ) {

Cache.add( url, imageBitmap );

if ( onLoad ) onLoad( imageBitmap );

scope.manager.itemEnd( url );

} ).catch( function ( e ) {

if ( onError ) onError( e );

scope.manager.itemEnd( url ); scope.manager.itemError( url );

} );

},

setCrossOrigin: function ( /* value */ ) {

return this;

},

setPath: function ( value ) {

this.path = value; return this;

}

};

/** * @author zz85 / http://www.lab4games.net/zz85/blog * minimal class for proxing functions to Path. Replaces old "extractSubpaths()" **/

function ShapePath() {

this.type = 'ShapePath';

this.color = new Color();

this.subPaths = []; this.currentPath = null;

}

Object.assign( ShapePath.prototype, {

moveTo: function ( x, y ) {

this.currentPath = new Path(); this.subPaths.push( this.currentPath ); this.currentPath.moveTo( x, y );

},

lineTo: function ( x, y ) {

this.currentPath.lineTo( x, y );

},

quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {

this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY );

},

bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {

this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY );

},

splineThru: function ( pts ) {

this.currentPath.splineThru( pts );

},

toShapes: function ( isCCW, noHoles ) {

function toShapesNoHoles( inSubpaths ) {

var shapes = [];

for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) {

var tmpPath = inSubpaths[ i ];

var tmpShape = new Shape(); tmpShape.curves = tmpPath.curves;

shapes.push( tmpShape );

}

return shapes;

}

function isPointInsidePolygon( inPt, inPolygon ) {

var polyLen = inPolygon.length;

// inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line var inside = false; for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) {

var edgeLowPt = inPolygon[ p ]; var edgeHighPt = inPolygon[ q ];

var edgeDx = edgeHighPt.x - edgeLowPt.x; var edgeDy = edgeHighPt.y - edgeLowPt.y;

if ( Math.abs( edgeDy ) > Number.EPSILON ) {

// not parallel if ( edgeDy < 0 ) {

edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx; edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy;

} if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue;

if ( inPt.y === edgeLowPt.y ) {

if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!!

} else {

var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y ); if ( perpEdge === 0 ) return true; // inPt is on contour ? if ( perpEdge < 0 ) continue; inside = ! inside; // true intersection left of inPt

}

} else {

// parallel or collinear if ( inPt.y !== edgeLowPt.y ) continue; // parallel // edge lies on the same horizontal line as inPt if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) || ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour ! // continue;

}

}

return inside;

}

var isClockWise = ShapeUtils.isClockWise;

var subPaths = this.subPaths; if ( subPaths.length === 0 ) return [];

if ( noHoles === true ) return toShapesNoHoles( subPaths );


var solid, tmpPath, tmpShape, shapes = [];

if ( subPaths.length === 1 ) {

tmpPath = subPaths[ 0 ]; tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); return shapes;

}

var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() ); holesFirst = isCCW ? ! holesFirst : holesFirst;

// console.log("Holes first", holesFirst);

var betterShapeHoles = []; var newShapes = []; var newShapeHoles = []; var mainIdx = 0; var tmpPoints;

newShapes[ mainIdx ] = undefined; newShapeHoles[ mainIdx ] = [];

for ( var i = 0, l = subPaths.length; i < l; i ++ ) {

tmpPath = subPaths[ i ]; tmpPoints = tmpPath.getPoints(); solid = isClockWise( tmpPoints ); solid = isCCW ? ! solid : solid;

if ( solid ) {

if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++;

newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints }; newShapes[ mainIdx ].s.curves = tmpPath.curves;

if ( holesFirst ) mainIdx ++; newShapeHoles[ mainIdx ] = [];

//console.log('cw', i);

} else {

newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } );

//console.log('ccw', i);

}

}

// only Holes? -> probably all Shapes with wrong orientation if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths );


if ( newShapes.length > 1 ) {

var ambiguous = false; var toChange = [];

for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {

betterShapeHoles[ sIdx ] = [];

}

for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {

var sho = newShapeHoles[ sIdx ];

for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) {

var ho = sho[ hIdx ]; var hole_unassigned = true;

for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) {

if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) {

if ( sIdx !== s2Idx ) toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } ); if ( hole_unassigned ) {

hole_unassigned = false; betterShapeHoles[ s2Idx ].push( ho );

} else {

ambiguous = true;

}

}

} if ( hole_unassigned ) {

betterShapeHoles[ sIdx ].push( ho );

}

}

} // console.log("ambiguous: ", ambiguous); if ( toChange.length > 0 ) {

// console.log("to change: ", toChange); if ( ! ambiguous ) newShapeHoles = betterShapeHoles;

}

}

var tmpHoles;

for ( var i = 0, il = newShapes.length; i < il; i ++ ) {

tmpShape = newShapes[ i ].s; shapes.push( tmpShape ); tmpHoles = newShapeHoles[ i ];

for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) {

tmpShape.holes.push( tmpHoles[ j ].h );

}

}

//console.log("shape", shapes);

return shapes;

}

} );

/** * @author zz85 / http://www.lab4games.net/zz85/blog * @author mrdoob / http://mrdoob.com/ */


function Font( data ) {

this.type = 'Font';

this.data = data;

}

Object.assign( Font.prototype, {

isFont: true,

generateShapes: function ( text, size ) {

if ( size === undefined ) size = 100;

var shapes = []; var paths = createPaths( text, size, this.data );

for ( var p = 0, pl = paths.length; p < pl; p ++ ) {

Array.prototype.push.apply( shapes, paths[ p ].toShapes() );

}

return shapes;

}

} );

function createPaths( text, size, data ) {

var chars = Array.from ? Array.from( text ) : String( text ).split( ); // see #13988 var scale = size / data.resolution; var line_height = ( data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness ) * scale;

var paths = [];

var offsetX = 0, offsetY = 0;

for ( var i = 0; i < chars.length; i ++ ) {

var char = chars[ i ];

if ( char === '\n' ) {

offsetX = 0; offsetY -= line_height;

} else {

var ret = createPath( char, scale, offsetX, offsetY, data ); offsetX += ret.offsetX; paths.push( ret.path );

}

}

return paths;

}

function createPath( char, scale, offsetX, offsetY, data ) {

var glyph = data.glyphs[ char ] || data.glyphs[ '?' ];

if ( ! glyph ) return;

var path = new ShapePath();

var x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2;

if ( glyph.o ) {

var outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) );

for ( var i = 0, l = outline.length; i < l; ) {

var action = outline[ i ++ ];

switch ( action ) {

case 'm': // moveTo

x = outline[ i ++ ] * scale + offsetX; y = outline[ i ++ ] * scale + offsetY;

path.moveTo( x, y );

break;

case 'l': // lineTo

x = outline[ i ++ ] * scale + offsetX; y = outline[ i ++ ] * scale + offsetY;

path.lineTo( x, y );

break;

case 'q': // quadraticCurveTo

cpx = outline[ i ++ ] * scale + offsetX; cpy = outline[ i ++ ] * scale + offsetY; cpx1 = outline[ i ++ ] * scale + offsetX; cpy1 = outline[ i ++ ] * scale + offsetY;

path.quadraticCurveTo( cpx1, cpy1, cpx, cpy );

break;

case 'b': // bezierCurveTo

cpx = outline[ i ++ ] * scale + offsetX; cpy = outline[ i ++ ] * scale + offsetY; cpx1 = outline[ i ++ ] * scale + offsetX; cpy1 = outline[ i ++ ] * scale + offsetY; cpx2 = outline[ i ++ ] * scale + offsetX; cpy2 = outline[ i ++ ] * scale + offsetY;

path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy );

break;

}

}

}

return { offsetX: glyph.ha * scale, path: path };

}

/** * @author mrdoob / http://mrdoob.com/ */

function FontLoader( manager ) {

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( FontLoader.prototype, {

load: function ( url, onLoad, onProgress, onError ) {

var scope = this;

var loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.load( url, function ( text ) {

var json;

try {

json = JSON.parse( text );

} catch ( e ) {

console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' ); json = JSON.parse( text.substring( 65, text.length - 2 ) );

}

var font = scope.parse( json );

if ( onLoad ) onLoad( font );

}, onProgress, onError );

},

parse: function ( json ) {

return new Font( json );

},

setPath: function ( value ) {

this.path = value; return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

var context;

var AudioContext = {

getContext: function () {

if ( context === undefined ) {

context = new ( window.AudioContext || window.webkitAudioContext )();

}

return context;

},

setContext: function ( value ) {

context = value;

}

};

/** * @author Reece Aaron Lecrivain / http://reecenotes.com/ */

function AudioLoader( manager ) {

this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

}

Object.assign( AudioLoader.prototype, {

load: function ( url, onLoad, onProgress, onError ) {

var loader = new FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) {

// Create a copy of the buffer. The `decodeAudioData` method // detaches the buffer when complete, preventing reuse. var bufferCopy = buffer.slice( 0 );

var context = AudioContext.getContext(); context.decodeAudioData( bufferCopy, function ( audioBuffer ) {

onLoad( audioBuffer );

} );

}, onProgress, onError );

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function StereoCamera() {

this.type = 'StereoCamera';

this.aspect = 1;

this.eyeSep = 0.064;

this.cameraL = new PerspectiveCamera(); this.cameraL.layers.enable( 1 ); this.cameraL.matrixAutoUpdate = false;

this.cameraR = new PerspectiveCamera(); this.cameraR.layers.enable( 2 ); this.cameraR.matrixAutoUpdate = false;

}

Object.assign( StereoCamera.prototype, {

update: ( function () {

var instance, focus, fov, aspect, near, far, zoom, eyeSep;

var eyeRight = new Matrix4(); var eyeLeft = new Matrix4();

return function update( camera ) {

var needsUpdate = instance !== this || focus !== camera.focus || fov !== camera.fov || aspect !== camera.aspect * this.aspect || near !== camera.near || far !== camera.far || zoom !== camera.zoom || eyeSep !== this.eyeSep;

if ( needsUpdate ) {

instance = this; focus = camera.focus; fov = camera.fov; aspect = camera.aspect * this.aspect; near = camera.near; far = camera.far; zoom = camera.zoom;

// Off-axis stereoscopic effect based on // http://paulbourke.net/stereographics/stereorender/

var projectionMatrix = camera.projectionMatrix.clone(); eyeSep = this.eyeSep / 2; var eyeSepOnProjection = eyeSep * near / focus; var ymax = ( near * Math.tan( _Math.DEG2RAD * fov * 0.5 ) ) / zoom; var xmin, xmax;

// translate xOffset

eyeLeft.elements[ 12 ] = - eyeSep; eyeRight.elements[ 12 ] = eyeSep;

// for left eye

xmin = - ymax * aspect + eyeSepOnProjection; xmax = ymax * aspect + eyeSepOnProjection;

projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );

this.cameraL.projectionMatrix.copy( projectionMatrix );

// for right eye

xmin = - ymax * aspect - eyeSepOnProjection; xmax = ymax * aspect - eyeSepOnProjection;

projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin ); projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );

this.cameraR.projectionMatrix.copy( projectionMatrix );

}

this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft ); this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight );

};

} )()

} );

/** * Camera for rendering cube maps * - renders scene into axis-aligned cube * * @author alteredq / http://alteredqualia.com/ */

function CubeCamera( near, far, cubeResolution ) {

Object3D.call( this );

this.type = 'CubeCamera';

var fov = 90, aspect = 1;

var cameraPX = new PerspectiveCamera( fov, aspect, near, far ); cameraPX.up.set( 0, - 1, 0 ); cameraPX.lookAt( new Vector3( 1, 0, 0 ) ); this.add( cameraPX );

var cameraNX = new PerspectiveCamera( fov, aspect, near, far ); cameraNX.up.set( 0, - 1, 0 ); cameraNX.lookAt( new Vector3( - 1, 0, 0 ) ); this.add( cameraNX );

var cameraPY = new PerspectiveCamera( fov, aspect, near, far ); cameraPY.up.set( 0, 0, 1 ); cameraPY.lookAt( new Vector3( 0, 1, 0 ) ); this.add( cameraPY );

var cameraNY = new PerspectiveCamera( fov, aspect, near, far ); cameraNY.up.set( 0, 0, - 1 ); cameraNY.lookAt( new Vector3( 0, - 1, 0 ) ); this.add( cameraNY );

var cameraPZ = new PerspectiveCamera( fov, aspect, near, far ); cameraPZ.up.set( 0, - 1, 0 ); cameraPZ.lookAt( new Vector3( 0, 0, 1 ) ); this.add( cameraPZ );

var cameraNZ = new PerspectiveCamera( fov, aspect, near, far ); cameraNZ.up.set( 0, - 1, 0 ); cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) ); this.add( cameraNZ );

var options = { format: RGBFormat, magFilter: LinearFilter, minFilter: LinearFilter };

this.renderTarget = new WebGLRenderTargetCube( cubeResolution, cubeResolution, options ); this.renderTarget.texture.name = "CubeCamera";

this.update = function ( renderer, scene ) {

if ( this.parent === null ) this.updateMatrixWorld();

var renderTarget = this.renderTarget; var generateMipmaps = renderTarget.texture.generateMipmaps;

renderTarget.texture.generateMipmaps = false;

renderTarget.activeCubeFace = 0; renderer.render( scene, cameraPX, renderTarget );

renderTarget.activeCubeFace = 1; renderer.render( scene, cameraNX, renderTarget );

renderTarget.activeCubeFace = 2; renderer.render( scene, cameraPY, renderTarget );

renderTarget.activeCubeFace = 3; renderer.render( scene, cameraNY, renderTarget );

renderTarget.activeCubeFace = 4; renderer.render( scene, cameraPZ, renderTarget );

renderTarget.texture.generateMipmaps = generateMipmaps;

renderTarget.activeCubeFace = 5; renderer.render( scene, cameraNZ, renderTarget );

renderer.setRenderTarget( null );

};

this.clear = function ( renderer, color, depth, stencil ) {

var renderTarget = this.renderTarget;

for ( var i = 0; i < 6; i ++ ) {

renderTarget.activeCubeFace = i; renderer.setRenderTarget( renderTarget );

renderer.clear( color, depth, stencil );

}

renderer.setRenderTarget( null );

};

}

CubeCamera.prototype = Object.create( Object3D.prototype ); CubeCamera.prototype.constructor = CubeCamera;

/** * @author mrdoob / http://mrdoob.com/ */

function AudioListener() {

Object3D.call( this );

this.type = 'AudioListener';

this.context = AudioContext.getContext();

this.gain = this.context.createGain(); this.gain.connect( this.context.destination );

this.filter = null;

}

AudioListener.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: AudioListener,

getInput: function () {

return this.gain;

},

removeFilter: function ( ) {

if ( this.filter !== null ) {

this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); this.gain.connect( this.context.destination ); this.filter = null;

}

return this;

},

getFilter: function () {

return this.filter;

},

setFilter: function ( value ) {

if ( this.filter !== null ) {

this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination );

} else {

this.gain.disconnect( this.context.destination );

}

this.filter = value; this.gain.connect( this.filter ); this.filter.connect( this.context.destination );

return this;

},

getMasterVolume: function () {

return this.gain.gain.value;

},

setMasterVolume: function ( value ) {

this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );

return this;

},

updateMatrixWorld: ( function () {

var position = new Vector3(); var quaternion = new Quaternion(); var scale = new Vector3();

var orientation = new Vector3();

return function updateMatrixWorld( force ) {

Object3D.prototype.updateMatrixWorld.call( this, force );

var listener = this.context.listener; var up = this.up;

this.matrixWorld.decompose( position, quaternion, scale );

orientation.set( 0, 0, - 1 ).applyQuaternion( quaternion );

if ( listener.positionX ) {

listener.positionX.setValueAtTime( position.x, this.context.currentTime ); listener.positionY.setValueAtTime( position.y, this.context.currentTime ); listener.positionZ.setValueAtTime( position.z, this.context.currentTime ); listener.forwardX.setValueAtTime( orientation.x, this.context.currentTime ); listener.forwardY.setValueAtTime( orientation.y, this.context.currentTime ); listener.forwardZ.setValueAtTime( orientation.z, this.context.currentTime ); listener.upX.setValueAtTime( up.x, this.context.currentTime ); listener.upY.setValueAtTime( up.y, this.context.currentTime ); listener.upZ.setValueAtTime( up.z, this.context.currentTime );

} else {

listener.setPosition( position.x, position.y, position.z ); listener.setOrientation( orientation.x, orientation.y, orientation.z, up.x, up.y, up.z );

}

};

} )()

} );

/** * @author mrdoob / http://mrdoob.com/ * @author Reece Aaron Lecrivain / http://reecenotes.com/ */

function Audio( listener ) {

Object3D.call( this );

this.type = 'Audio';

this.context = listener.context;

this.gain = this.context.createGain(); this.gain.connect( listener.getInput() );

this.autoplay = false;

this.buffer = null; this.loop = false; this.startTime = 0; this.offset = 0; this.playbackRate = 1; this.isPlaying = false; this.hasPlaybackControl = true; this.sourceType = 'empty';

this.filters = [];

}

Audio.prototype = Object.assign( Object.create( Object3D.prototype ), {

constructor: Audio,

getOutput: function () {

return this.gain;

},

setNodeSource: function ( audioNode ) {

this.hasPlaybackControl = false; this.sourceType = 'audioNode'; this.source = audioNode; this.connect();

return this;

},

setMediaElementSource: function ( mediaElement ) {

this.hasPlaybackControl = false; this.sourceType = 'mediaNode'; this.source = this.context.createMediaElementSource( mediaElement ); this.connect();

return this;

},

setBuffer: function ( audioBuffer ) {

this.buffer = audioBuffer; this.sourceType = 'buffer';

if ( this.autoplay ) this.play();

return this;

},

play: function () {

if ( this.isPlaying === true ) {

console.warn( 'THREE.Audio: Audio is already playing.' ); return;

}

if ( this.hasPlaybackControl === false ) {

console.warn( 'THREE.Audio: this Audio has no playback control.' ); return;

}

var source = this.context.createBufferSource();

source.buffer = this.buffer; source.loop = this.loop; source.onended = this.onEnded.bind( this ); source.playbackRate.setValueAtTime( this.playbackRate, this.startTime ); this.startTime = this.context.currentTime; source.start( this.startTime, this.offset );

this.isPlaying = true;

this.source = source;

return this.connect();

},

pause: function () {

if ( this.hasPlaybackControl === false ) {

console.warn( 'THREE.Audio: this Audio has no playback control.' ); return;

}

if ( this.isPlaying === true ) {

this.source.stop(); this.source.onended = null; this.offset += ( this.context.currentTime - this.startTime ) * this.playbackRate; this.isPlaying = false;

}

return this;

},

stop: function () {

if ( this.hasPlaybackControl === false ) {

console.warn( 'THREE.Audio: this Audio has no playback control.' ); return;

}

this.source.stop(); this.source.onended = null; this.offset = 0; this.isPlaying = false;

return this;

},

connect: function () {

if ( this.filters.length > 0 ) {

this.source.connect( this.filters[ 0 ] );

for ( var i = 1, l = this.filters.length; i < l; i ++ ) {

this.filters[ i - 1 ].connect( this.filters[ i ] );

}

this.filters[ this.filters.length - 1 ].connect( this.getOutput() );

} else {

this.source.connect( this.getOutput() );

}

return this;

},

disconnect: function () {

if ( this.filters.length > 0 ) {

this.source.disconnect( this.filters[ 0 ] );

for ( var i = 1, l = this.filters.length; i < l; i ++ ) {

this.filters[ i - 1 ].disconnect( this.filters[ i ] );

}

this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() );

} else {

this.source.disconnect( this.getOutput() );

}

return this;

},

getFilters: function () {

return this.filters;

},

setFilters: function ( value ) {

if ( ! value ) value = [];

if ( this.isPlaying === true ) {

this.disconnect(); this.filters = value; this.connect();

} else {

this.filters = value;

}

return this;

},

getFilter: function () {

return this.getFilters()[ 0 ];

},

setFilter: function ( filter ) {

return this.setFilters( filter ? [ filter ] : [] );

},

setPlaybackRate: function ( value ) {

if ( this.hasPlaybackControl === false ) {

console.warn( 'THREE.Audio: this Audio has no playback control.' ); return;

}

this.playbackRate = value;

if ( this.isPlaying === true ) {

this.source.playbackRate.setValueAtTime( this.playbackRate, this.context.currentTime );

}

return this;

},

getPlaybackRate: function () {

return this.playbackRate;

},

onEnded: function () {

this.isPlaying = false;

},

getLoop: function () {

if ( this.hasPlaybackControl === false ) {

console.warn( 'THREE.Audio: this Audio has no playback control.' ); return false;

}

return this.loop;

},

setLoop: function ( value ) {

if ( this.hasPlaybackControl === false ) {

console.warn( 'THREE.Audio: this Audio has no playback control.' ); return;

}

this.loop = value;

if ( this.isPlaying === true ) {

this.source.loop = this.loop;

}

return this;

},

getVolume: function () {

return this.gain.gain.value;

},

setVolume: function ( value ) {

this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );

return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function PositionalAudio( listener ) {

Audio.call( this, listener );

this.panner = this.context.createPanner(); this.panner.connect( this.gain );

}

PositionalAudio.prototype = Object.assign( Object.create( Audio.prototype ), {

constructor: PositionalAudio,

getOutput: function () {

return this.panner;

},

getRefDistance: function () {

return this.panner.refDistance;

},

setRefDistance: function ( value ) {

this.panner.refDistance = value;

return this;

},

getRolloffFactor: function () {

return this.panner.rolloffFactor;

},

setRolloffFactor: function ( value ) {

this.panner.rolloffFactor = value;

return this;

},

getDistanceModel: function () {

return this.panner.distanceModel;

},

setDistanceModel: function ( value ) {

this.panner.distanceModel = value;

return this;

},

getMaxDistance: function () {

return this.panner.maxDistance;

},

setMaxDistance: function ( value ) {

this.panner.maxDistance = value;

return this;

},

setDirectionalCone: function ( coneInnerAngle, coneOuterAngle, coneOuterGain ) {

this.panner.coneInnerAngle = coneInnerAngle; this.panner.coneOuterAngle = coneOuterAngle; this.panner.coneOuterGain = coneOuterGain;

return this;

},

updateMatrixWorld: ( function () {

var position = new Vector3(); var quaternion = new Quaternion(); var scale = new Vector3();

var orientation = new Vector3();

return function updateMatrixWorld( force ) {

Object3D.prototype.updateMatrixWorld.call( this, force );

var panner = this.panner; this.matrixWorld.decompose( position, quaternion, scale );

orientation.set( 0, 0, 1 ).applyQuaternion( quaternion );

panner.setPosition( position.x, position.y, position.z ); panner.setOrientation( orientation.x, orientation.y, orientation.z );

};

} )()


} );

/** * @author mrdoob / http://mrdoob.com/ */

function AudioAnalyser( audio, fftSize ) {

this.analyser = audio.context.createAnalyser(); this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048;

this.data = new Uint8Array( this.analyser.frequencyBinCount );

audio.getOutput().connect( this.analyser );

}

Object.assign( AudioAnalyser.prototype, {

getFrequencyData: function () {

this.analyser.getByteFrequencyData( this.data );

return this.data;

},

getAverageFrequency: function () {

var value = 0, data = this.getFrequencyData();

for ( var i = 0; i < data.length; i ++ ) {

value += data[ i ];

}

return value / data.length;

}

} );

/** * * Buffered scene graph property that allows weighted accumulation. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */

function PropertyMixer( binding, typeName, valueSize ) {

this.binding = binding; this.valueSize = valueSize;

var bufferType = Float64Array, mixFunction;

switch ( typeName ) {

case 'quaternion': mixFunction = this._slerp; break;

case 'string': case 'bool': bufferType = Array; mixFunction = this._select; break;

default: mixFunction = this._lerp;

}

this.buffer = new bufferType( valueSize * 4 ); // layout: [ incoming | accu0 | accu1 | orig ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property

this._mixBufferRegion = mixFunction;

this.cumulativeWeight = 0;

this.useCount = 0; this.referenceCount = 0;

}

Object.assign( PropertyMixer.prototype, {

// accumulate data in the 'incoming' region into 'accu' accumulate: function ( accuIndex, weight ) {

// note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place

var buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride,

currentWeight = this.cumulativeWeight;

if ( currentWeight === 0 ) {

// accuN := incoming * weight

for ( var i = 0; i !== stride; ++ i ) {

buffer[ offset + i ] = buffer[ i ];

}

currentWeight = weight;

} else {

// accuN := accuN + incoming * weight

currentWeight += weight; var mix = weight / currentWeight; this._mixBufferRegion( buffer, offset, 0, mix, stride );

}

this.cumulativeWeight = currentWeight;

},

// apply the state of 'accu<i>' to the binding when accus differ apply: function ( accuIndex ) {

var stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride,

weight = this.cumulativeWeight,

binding = this.binding;

this.cumulativeWeight = 0;

if ( weight < 1 ) {

// accuN := accuN + original * ( 1 - cumulativeWeight )

var originalValueOffset = stride * 3;

this._mixBufferRegion( buffer, offset, originalValueOffset, 1 - weight, stride );

}

for ( var i = stride, e = stride + stride; i !== e; ++ i ) {

if ( buffer[ i ] !== buffer[ i + stride ] ) {

// value has changed -> update scene graph

binding.setValue( buffer, offset ); break;

}

}

},

// remember the state of the bound property and copy it to both accus saveOriginalState: function () {

var binding = this.binding;

var buffer = this.buffer, stride = this.valueSize,

originalValueOffset = stride * 3;

binding.getValue( buffer, originalValueOffset );

// accu[0..1] := orig -- initially detect changes against the original for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) {

buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ];

}

this.cumulativeWeight = 0;

},

// apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState: function () {

var originalValueOffset = this.valueSize * 3; this.binding.setValue( this.buffer, originalValueOffset );

},


// mix functions

_select: function ( buffer, dstOffset, srcOffset, t, stride ) {

if ( t >= 0.5 ) {

for ( var i = 0; i !== stride; ++ i ) {

buffer[ dstOffset + i ] = buffer[ srcOffset + i ];

}

}

},

_slerp: function ( buffer, dstOffset, srcOffset, t ) {

Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t );

},

_lerp: function ( buffer, dstOffset, srcOffset, t, stride ) {

var s = 1 - t;

for ( var i = 0; i !== stride; ++ i ) {

var j = dstOffset + i;

buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t;

}

}

} );

/** * * A reference to a real property in the scene graph. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */

// Characters [].:/ are reserved for track binding syntax. var RESERVED_CHARS_RE = '\\[\\]\\.:\\/';

function Composite( targetGroup, path, optionalParsedPath ) {

var parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path );

this._targetGroup = targetGroup; this._bindings = targetGroup.subscribe_( path, parsedPath );

}

Object.assign( Composite.prototype, {

getValue: function ( array, offset ) {

this.bind(); // bind all binding

var firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[ firstValidIndex ];

// and only call .getValue on the first if ( binding !== undefined ) binding.getValue( array, offset );

},

setValue: function ( array, offset ) {

var bindings = this._bindings;

for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {

bindings[ i ].setValue( array, offset );

}

},

bind: function () {

var bindings = this._bindings;

for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {

bindings[ i ].bind();

}

},

unbind: function () {

var bindings = this._bindings;

for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {

bindings[ i ].unbind();

}

}

} );


function PropertyBinding( rootNode, path, parsedPath ) {

this.path = path; this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path );

this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode;

this.rootNode = rootNode;

}

Object.assign( PropertyBinding, {

Composite: Composite,

create: function ( root, path, parsedPath ) {

if ( ! ( root && root.isAnimationObjectGroup ) ) {

return new PropertyBinding( root, path, parsedPath );

} else {

return new PropertyBinding.Composite( root, path, parsedPath );

}

},

/** * Replaces spaces with underscores and removes unsupported characters from * node names, to ensure compatibility with parseTrackName(). * * @param {string} name Node name to be sanitized. * @return {string} */ sanitizeNodeName: ( function () {

var reservedRe = new RegExp( '[' + RESERVED_CHARS_RE + ']', 'g' );

return function sanitizeNodeName( name ) {

return name.replace( /\s/g, '_' ).replace( reservedRe, );

};

}() ),

parseTrackName: function () {

// Attempts to allow node names from any language. ES5's `\w` regexp matches // only latin characters, and the unicode \p{L} is not yet supported. So // instead, we exclude reserved characters and match everything else. var wordChar = '[^' + RESERVED_CHARS_RE + ']'; var wordCharOrDot = '[^' + RESERVED_CHARS_RE.replace( '\\.', ) + ']';

// Parent directories, delimited by '/' or ':'. Currently unused, but must // be matched to parse the rest of the track name. var directoryRe = /((?:WC+[\/:])*)/.source.replace( 'WC', wordChar );

// Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. var nodeRe = /(WCOD+)?/.source.replace( 'WCOD', wordCharOrDot );

// Object on target node, and accessor. May not contain reserved // characters. Accessor may contain any character except closing bracket. var objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', wordChar );

// Property and accessor. May not contain reserved characters. Accessor may // contain any non-bracket characters. var propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', wordChar );

var trackRe = new RegExp( + '^' + directoryRe + nodeRe + objectRe + propertyRe + '$' );

var supportedObjectNames = [ 'material', 'materials', 'bones' ];

return function parseTrackName( trackName ) {

var matches = trackRe.exec( trackName );

if ( ! matches ) {

throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName );

}

var results = { // directoryName: matches[ 1 ], // (tschw) currently unused nodeName: matches[ 2 ], objectName: matches[ 3 ], objectIndex: matches[ 4 ], propertyName: matches[ 5 ], // required propertyIndex: matches[ 6 ] };

var lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' );

if ( lastDot !== undefined && lastDot !== - 1 ) {

var objectName = results.nodeName.substring( lastDot + 1 );

// Object names must be checked against a whitelist. Otherwise, there // is no way to parse 'foo.bar.baz': 'baz' must be a property, but // 'bar' could be the objectName, or part of a nodeName (which can // include '.' characters). if ( supportedObjectNames.indexOf( objectName ) !== - 1 ) {

results.nodeName = results.nodeName.substring( 0, lastDot ); results.objectName = objectName;

}

}

if ( results.propertyName === null || results.propertyName.length === 0 ) {

throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName );

}

return results;

};

}(),

findNode: function ( root, nodeName ) {

if ( ! nodeName || nodeName === "" || nodeName === "root" || nodeName === "." || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) {

return root;

}

// search into skeleton bones. if ( root.skeleton ) {

var bone = root.skeleton.getBoneByName( nodeName );

if ( bone !== undefined ) {

return bone;

}

}

// search into node subtree. if ( root.children ) {

var searchNodeSubtree = function ( children ) {

for ( var i = 0; i < children.length; i ++ ) {

var childNode = children[ i ];

if ( childNode.name === nodeName || childNode.uuid === nodeName ) {

return childNode;

}

var result = searchNodeSubtree( childNode.children );

if ( result ) return result;

}

return null;

};

var subTreeNode = searchNodeSubtree( root.children );

if ( subTreeNode ) {

return subTreeNode;

}

}

return null;

}

} );

Object.assign( PropertyBinding.prototype, { // prototype, continued

// these are used to "bind" a nonexistent property _getValue_unavailable: function () {}, _setValue_unavailable: function () {},

BindingType: { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 },

Versioning: { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 },

GetterByBindingType: [

function getValue_direct( buffer, offset ) {

buffer[ offset ] = this.node[ this.propertyName ];

},

function getValue_array( buffer, offset ) {

var source = this.resolvedProperty;

for ( var i = 0, n = source.length; i !== n; ++ i ) {

buffer[ offset ++ ] = source[ i ];

}

},

function getValue_arrayElement( buffer, offset ) {

buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ];

},

function getValue_toArray( buffer, offset ) {

this.resolvedProperty.toArray( buffer, offset );

}

],

SetterByBindingTypeAndVersioning: [

[ // Direct

function setValue_direct( buffer, offset ) {

this.targetObject[ this.propertyName ] = buffer[ offset ];

},

function setValue_direct_setNeedsUpdate( buffer, offset ) {

this.targetObject[ this.propertyName ] = buffer[ offset ]; this.targetObject.needsUpdate = true;

},

function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) {

this.targetObject[ this.propertyName ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true;

}

], [

// EntireArray

function setValue_array( buffer, offset ) {

var dest = this.resolvedProperty;

for ( var i = 0, n = dest.length; i !== n; ++ i ) {

dest[ i ] = buffer[ offset ++ ];

}

},

function setValue_array_setNeedsUpdate( buffer, offset ) {

var dest = this.resolvedProperty;

for ( var i = 0, n = dest.length; i !== n; ++ i ) {

dest[ i ] = buffer[ offset ++ ];

}

this.targetObject.needsUpdate = true;

},

function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) {

var dest = this.resolvedProperty;

for ( var i = 0, n = dest.length; i !== n; ++ i ) {

dest[ i ] = buffer[ offset ++ ];

}

this.targetObject.matrixWorldNeedsUpdate = true;

}

], [

// ArrayElement

function setValue_arrayElement( buffer, offset ) {

this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];

},

function setValue_arrayElement_setNeedsUpdate( buffer, offset ) {

this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.needsUpdate = true;

},

function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) {

this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true;

}

], [

// HasToFromArray

function setValue_fromArray( buffer, offset ) {

this.resolvedProperty.fromArray( buffer, offset );

},

function setValue_fromArray_setNeedsUpdate( buffer, offset ) {

this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.needsUpdate = true;

},

function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) {

this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.matrixWorldNeedsUpdate = true;

}

]

],

getValue: function getValue_unbound( targetArray, offset ) {

this.bind(); this.getValue( targetArray, offset );

// Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops.

},

setValue: function getValue_unbound( sourceArray, offset ) {

this.bind(); this.setValue( sourceArray, offset );

},

// create getter / setter pair for a property in the scene graph bind: function () {

var targetObject = this.node, parsedPath = this.parsedPath,

objectName = parsedPath.objectName, propertyName = parsedPath.propertyName, propertyIndex = parsedPath.propertyIndex;

if ( ! targetObject ) {

targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode;

this.node = targetObject;

}

// set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable; this.setValue = this._setValue_unavailable;

// ensure there is a value node if ( ! targetObject ) {

console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.' ); return;

}

if ( objectName ) {

var objectIndex = parsedPath.objectIndex;

// special cases were we need to reach deeper into the hierarchy to get the face materials.... switch ( objectName ) {

case 'materials':

if ( ! targetObject.material ) {

console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); return;

}

if ( ! targetObject.material.materials ) {

console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this ); return;

}

targetObject = targetObject.material.materials;

break;

case 'bones':

if ( ! targetObject.skeleton ) {

console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this ); return;

}

// potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer.

targetObject = targetObject.skeleton.bones;

// support resolving morphTarget names into indices. for ( var i = 0; i < targetObject.length; i ++ ) {

if ( targetObject[ i ].name === objectIndex ) {

objectIndex = i; break;

}

}

break;

default:

if ( targetObject[ objectName ] === undefined ) {

console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this ); return;

}

targetObject = targetObject[ objectName ];

}


if ( objectIndex !== undefined ) {

if ( targetObject[ objectIndex ] === undefined ) {

console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject ); return;

}

targetObject = targetObject[ objectIndex ];

}

}

// resolve property var nodeProperty = targetObject[ propertyName ];

if ( nodeProperty === undefined ) {

var nodeName = parsedPath.nodeName;

console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject ); return;

}

// determine versioning scheme var versioning = this.Versioning.None;

this.targetObject = targetObject;

if ( targetObject.needsUpdate !== undefined ) { // material

versioning = this.Versioning.NeedsUpdate;

} else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform

versioning = this.Versioning.MatrixWorldNeedsUpdate;

}

// determine how the property gets bound var bindingType = this.BindingType.Direct;

if ( propertyIndex !== undefined ) {

// access a sub element of the property array (only primitives are supported right now)

if ( propertyName === "morphTargetInfluences" ) {

// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.

// support resolving morphTarget names into indices. if ( ! targetObject.geometry ) {

console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this ); return;

}

if ( targetObject.geometry.isBufferGeometry ) {

if ( ! targetObject.geometry.morphAttributes ) {

console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this ); return;

}

for ( var i = 0; i < this.node.geometry.morphAttributes.position.length; i ++ ) {

if ( targetObject.geometry.morphAttributes.position[ i ].name === propertyIndex ) {

propertyIndex = i; break;

}

}


} else {

if ( ! targetObject.geometry.morphTargets ) {

console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphTargets.', this ); return;

}

for ( var i = 0; i < this.node.geometry.morphTargets.length; i ++ ) {

if ( targetObject.geometry.morphTargets[ i ].name === propertyIndex ) {

propertyIndex = i; break;

}

}

}

}

bindingType = this.BindingType.ArrayElement;

this.resolvedProperty = nodeProperty; this.propertyIndex = propertyIndex;

} else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) {

// must use copy for Object3D.Euler/Quaternion

bindingType = this.BindingType.HasFromToArray;

this.resolvedProperty = nodeProperty;

} else if ( Array.isArray( nodeProperty ) ) {

bindingType = this.BindingType.EntireArray;

this.resolvedProperty = nodeProperty;

} else {

this.propertyName = propertyName;

}

// select getter / setter this.getValue = this.GetterByBindingType[ bindingType ]; this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ];

},

unbind: function () {

this.node = null;

// back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound;

}

} );

//!\ DECLARE ALIAS AFTER assign prototype ! Object.assign( PropertyBinding.prototype, {

// initial state of these methods that calls 'bind' _getValue_unbound: PropertyBinding.prototype.getValue, _setValue_unbound: PropertyBinding.prototype.setValue,

} );

/** * * A group of objects that receives a shared animation state. * * Usage: * * - Add objects you would otherwise pass as 'root' to the * constructor or the .clipAction method of AnimationMixer. * * - Instead pass this object as 'root'. * * - You can also add and remove objects later when the mixer * is running. * * Note: * * Objects of this class appear as one object to the mixer, * so cache control of the individual objects must be done * on the group. * * Limitation: * * - The animated properties must be compatible among the * all objects in the group. * * - A single property can either be controlled through a * target group or directly, but not both. * * @author tschw */

function AnimationObjectGroup() {

this.uuid = _Math.generateUUID();

// cached objects followed by the active ones this._objects = Array.prototype.slice.call( arguments );

this.nCachedObjects_ = 0; // threshold // note: read by PropertyBinding.Composite

var indices = {}; this._indicesByUUID = indices; // for bookkeeping

for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

indices[ arguments[ i ].uuid ] = i;

}

this._paths = []; // inside: string this._parsedPaths = []; // inside: { we don't care, here } this._bindings = []; // inside: Array< PropertyBinding > this._bindingsIndicesByPath = {}; // inside: indices in these arrays

var scope = this;

this.stats = {

objects: { get total() {

return scope._objects.length;

}, get inUse() {

return this.total - scope.nCachedObjects_;

} }, get bindingsPerObject() {

return scope._bindings.length;

}

};

}

Object.assign( AnimationObjectGroup.prototype, {

isAnimationObjectGroup: true,

add: function () {

var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length, knownObject = undefined;

for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ];

if ( index === undefined ) {

// unknown object -> add it to the ACTIVE region

index = nObjects ++; indicesByUUID[ uuid ] = index; objects.push( object );

// accounting is done, now do the same for all bindings

for ( var j = 0, m = nBindings; j !== m; ++ j ) {

bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) );

}

} else if ( index < nCachedObjects ) {

knownObject = objects[ index ];

// move existing object to the ACTIVE region

var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ];

indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject;

indicesByUUID[ uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = object;

// accounting is done, now do the same for all bindings

for ( var j = 0, m = nBindings; j !== m; ++ j ) {

var bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], binding = bindingsForPath[ index ];

bindingsForPath[ index ] = lastCached;

if ( binding === undefined ) {

// since we do not bother to create new bindings // for objects that are cached, the binding may // or may not exist

binding = new PropertyBinding( object, paths[ j ], parsedPaths[ j ] );

}

bindingsForPath[ firstActiveIndex ] = binding;

}

} else if ( objects[ index ] !== knownObject ) {

console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.' );

} // else the object is already where we want it to be

} // for arguments

this.nCachedObjects_ = nCachedObjects;

},

remove: function () {

var objects = this._objects, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length;

for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ];

if ( index !== undefined && index >= nCachedObjects ) {

// move existing object into the CACHED region

var lastCachedIndex = nCachedObjects ++, firstActiveObject = objects[ lastCachedIndex ];

indicesByUUID[ firstActiveObject.uuid ] = index; objects[ index ] = firstActiveObject;

indicesByUUID[ uuid ] = lastCachedIndex; objects[ lastCachedIndex ] = object;

// accounting is done, now do the same for all bindings

for ( var j = 0, m = nBindings; j !== m; ++ j ) {

var bindingsForPath = bindings[ j ], firstActive = bindingsForPath[ lastCachedIndex ], binding = bindingsForPath[ index ];

bindingsForPath[ index ] = firstActive; bindingsForPath[ lastCachedIndex ] = binding;

}

}

} // for arguments

this.nCachedObjects_ = nCachedObjects;

},

// remove & forget uncache: function () {

var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length;

for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

var object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ];

if ( index !== undefined ) {

delete indicesByUUID[ uuid ];

if ( index < nCachedObjects ) {

// object is cached, shrink the CACHED region

var firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ], lastIndex = -- nObjects, lastObject = objects[ lastIndex ];

// last cached object takes this object's place indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject;

// last object goes to the activated slot and pop indicesByUUID[ lastObject.uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = lastObject; objects.pop();

// accounting is done, now do the same for all bindings

for ( var j = 0, m = nBindings; j !== m; ++ j ) {

var bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], last = bindingsForPath[ lastIndex ];

bindingsForPath[ index ] = lastCached; bindingsForPath[ firstActiveIndex ] = last; bindingsForPath.pop();

}

} else {

// object is active, just swap with the last and pop

var lastIndex = -- nObjects, lastObject = objects[ lastIndex ];

indicesByUUID[ lastObject.uuid ] = index; objects[ index ] = lastObject; objects.pop();

// accounting is done, now do the same for all bindings

for ( var j = 0, m = nBindings; j !== m; ++ j ) {

var bindingsForPath = bindings[ j ];

bindingsForPath[ index ] = bindingsForPath[ lastIndex ]; bindingsForPath.pop();

}

} // cached or active

} // if object is known

} // for arguments

this.nCachedObjects_ = nCachedObjects;

},

// Internal interface used by befriended PropertyBinding.Composite:

subscribe_: function ( path, parsedPath ) {

// returns an array of bindings for the given path that is changed // according to the contained objects in the group

var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ], bindings = this._bindings;

if ( index !== undefined ) return bindings[ index ];

var paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array( nObjects );

index = bindings.length;

indicesByPath[ path ] = index;

paths.push( path ); parsedPaths.push( parsedPath ); bindings.push( bindingsForPath );

for ( var i = nCachedObjects, n = objects.length; i !== n; ++ i ) {

var object = objects[ i ]; bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath );

}

return bindingsForPath;

},

unsubscribe_: function ( path ) {

// tells the group to forget about a property path and no longer // update the array previously obtained with 'subscribe_'

var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ];

if ( index !== undefined ) {

var paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[ lastBindingsIndex ], lastBindingsPath = path[ lastBindingsIndex ];

indicesByPath[ lastBindingsPath ] = index;

bindings[ index ] = lastBindings; bindings.pop();

parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ]; parsedPaths.pop();

paths[ index ] = paths[ lastBindingsIndex ]; paths.pop();

}

}

} );

/** * * Action provided by AnimationMixer for scheduling clip playback on specific * objects. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw * */

function AnimationAction( mixer, clip, localRoot ) {

this._mixer = mixer; this._clip = clip; this._localRoot = localRoot || null;

var tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array( nTracks );

var interpolantSettings = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding };

for ( var i = 0; i !== nTracks; ++ i ) {

var interpolant = tracks[ i ].createInterpolant( null ); interpolants[ i ] = interpolant; interpolant.settings = interpolantSettings;

}

this._interpolantSettings = interpolantSettings;

this._interpolants = interpolants; // bound by the mixer

// inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array( nTracks );

this._cacheIndex = null; // for the memory manager this._byClipCacheIndex = null; // for the memory manager

this._timeScaleInterpolant = null; this._weightInterpolant = null;

this.loop = LoopRepeat; this._loopCount = - 1;

// global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null;

// scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0;

this.timeScale = 1; this._effectiveTimeScale = 1;

this.weight = 1; this._effectiveWeight = 1;

this.repetitions = Infinity; // no. of repetitions when looping

this.paused = false; // true -> zero effective time scale this.enabled = true; // false -> zero effective weight

this.clampWhenFinished = false; // keep feeding the last frame?

this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate this.zeroSlopeAtEnd = true; // clips for start, loop and end

}

Object.assign( AnimationAction.prototype, {

// State & Scheduling

play: function () {

this._mixer._activateAction( this );

return this;

},

stop: function () {

this._mixer._deactivateAction( this );

return this.reset();

},

reset: function () {

this.paused = false; this.enabled = true;

this.time = 0; // restart clip this._loopCount = - 1; // forget previous loops this._startTime = null; // forget scheduling

return this.stopFading().stopWarping();

},

isRunning: function () {

return this.enabled && ! this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction( this );

},

// return true when play has been called isScheduled: function () {

return this._mixer._isActiveAction( this );

},

startAt: function ( time ) {

this._startTime = time;

return this;

},

setLoop: function ( mode, repetitions ) {

this.loop = mode; this.repetitions = repetitions;

return this;

},

// Weight

// set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight: function ( weight ) {

this.weight = weight;

// note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0;

return this.stopFading();

},

// return the weight considering fading and .enabled getEffectiveWeight: function () {

return this._effectiveWeight;

},

fadeIn: function ( duration ) {

return this._scheduleFading( duration, 0, 1 );

},

fadeOut: function ( duration ) {

return this._scheduleFading( duration, 1, 0 );

},

crossFadeFrom: function ( fadeOutAction, duration, warp ) {

fadeOutAction.fadeOut( duration ); this.fadeIn( duration );

if ( warp ) {

var fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration,

startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration;

fadeOutAction.warp( 1.0, startEndRatio, duration ); this.warp( endStartRatio, 1.0, duration );

}

return this;

},

crossFadeTo: function ( fadeInAction, duration, warp ) {

return fadeInAction.crossFadeFrom( this, duration, warp );

},

stopFading: function () {

var weightInterpolant = this._weightInterpolant;

if ( weightInterpolant !== null ) {

this._weightInterpolant = null; this._mixer._takeBackControlInterpolant( weightInterpolant );

}

return this;

},

// Time Scale Control

// set the time scale stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale: function ( timeScale ) {

this.timeScale = timeScale; this._effectiveTimeScale = this.paused ? 0 : timeScale;

return this.stopWarping();

},

// return the time scale considering warping and .paused getEffectiveTimeScale: function () {

return this._effectiveTimeScale;

},

setDuration: function ( duration ) {

this.timeScale = this._clip.duration / duration;

return this.stopWarping();

},

syncWith: function ( action ) {

this.time = action.time; this.timeScale = action.timeScale;

return this.stopWarping();

},

halt: function ( duration ) {

return this.warp( this._effectiveTimeScale, 0, duration );

},

warp: function ( startTimeScale, endTimeScale, duration ) {

var mixer = this._mixer, now = mixer.time, interpolant = this._timeScaleInterpolant,

timeScale = this.timeScale;

if ( interpolant === null ) {

interpolant = mixer._lendControlInterpolant(); this._timeScaleInterpolant = interpolant;

}

var times = interpolant.parameterPositions, values = interpolant.sampleValues;

times[ 0 ] = now; times[ 1 ] = now + duration;

values[ 0 ] = startTimeScale / timeScale; values[ 1 ] = endTimeScale / timeScale;

return this;

},

stopWarping: function () {

var timeScaleInterpolant = this._timeScaleInterpolant;

if ( timeScaleInterpolant !== null ) {

this._timeScaleInterpolant = null; this._mixer._takeBackControlInterpolant( timeScaleInterpolant );

}

return this;

},

// Object Accessors

getMixer: function () {

return this._mixer;

},

getClip: function () {

return this._clip;

},

getRoot: function () {

return this._localRoot || this._mixer._root;

},

// Interna

_update: function ( time, deltaTime, timeDirection, accuIndex ) {

// called by the mixer

if ( ! this.enabled ) {

// call ._updateWeight() to update ._effectiveWeight

this._updateWeight( time ); return;

}

var startTime = this._startTime;

if ( startTime !== null ) {

// check for scheduled start of action

var timeRunning = ( time - startTime ) * timeDirection; if ( timeRunning < 0 || timeDirection === 0 ) {

return; // yet to come / don't decide when delta = 0

}

// start

this._startTime = null; // unschedule deltaTime = timeDirection * timeRunning;

}

// apply time scale and advance time

deltaTime *= this._updateTimeScale( time ); var clipTime = this._updateTime( deltaTime );

// note: _updateTime may disable the action resulting in // an effective weight of 0

var weight = this._updateWeight( time );

if ( weight > 0 ) {

var interpolants = this._interpolants; var propertyMixers = this._propertyBindings;

for ( var j = 0, m = interpolants.length; j !== m; ++ j ) {

interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulate( accuIndex, weight );

}

}

},

_updateWeight: function ( time ) {

var weight = 0;

if ( this.enabled ) {

weight = this.weight; var interpolant = this._weightInterpolant;

if ( interpolant !== null ) {

var interpolantValue = interpolant.evaluate( time )[ 0 ];

weight *= interpolantValue;

if ( time > interpolant.parameterPositions[ 1 ] ) {

this.stopFading();

if ( interpolantValue === 0 ) {

// faded out, disable this.enabled = false;

}

}

}

}

this._effectiveWeight = weight; return weight;

},

_updateTimeScale: function ( time ) {

var timeScale = 0;

if ( ! this.paused ) {

timeScale = this.timeScale;

var interpolant = this._timeScaleInterpolant;

if ( interpolant !== null ) {

var interpolantValue = interpolant.evaluate( time )[ 0 ];

timeScale *= interpolantValue;

if ( time > interpolant.parameterPositions[ 1 ] ) {

this.stopWarping();

if ( timeScale === 0 ) {

// motion has halted, pause this.paused = true;

} else {

// warp done - apply final time scale this.timeScale = timeScale;

}

}

}

}

this._effectiveTimeScale = timeScale; return timeScale;

},

_updateTime: function ( deltaTime ) {

var time = this.time + deltaTime; var duration = this._clip.duration; var loop = this.loop; var loopCount = this._loopCount;

var pingPong = ( loop === LoopPingPong );

if ( deltaTime === 0 ) {

if ( loopCount === - 1 ) return time;

return ( pingPong && ( loopCount & 1 ) === 1 ) ? duration - time : time;

}

if ( loop === LoopOnce ) {

if ( loopCount === - 1 ) {

// just started

this._loopCount = 0; this._setEndings( true, true, false );

}

handle_stop: {

if ( time >= duration ) {

time = duration;

} else if ( time < 0 ) {

time = 0;

} else break handle_stop;

if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false;

this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime < 0 ? - 1 : 1 } );

}

} else { // repetitive Repeat or PingPong

if ( loopCount === - 1 ) {

// just started

if ( deltaTime >= 0 ) {

loopCount = 0;

this._setEndings( true, this.repetitions === 0, pingPong );

} else {

// when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1

this._setEndings( this.repetitions === 0, true, pingPong );

}

}

if ( time >= duration || time < 0 ) {

// wrap around

var loopDelta = Math.floor( time / duration ); // signed time -= duration * loopDelta;

loopCount += Math.abs( loopDelta );

var pending = this.repetitions - loopCount;

if ( pending <= 0 ) {

// have to stop (switch state, clamp time, fire event)

if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false;

time = deltaTime > 0 ? duration : 0;

this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime > 0 ? 1 : - 1 } );

} else {

// keep running

if ( pending === 1 ) {

// entering the last round

var atStart = deltaTime < 0; this._setEndings( atStart, ! atStart, pingPong );

} else {

this._setEndings( false, false, pingPong );

}

this._loopCount = loopCount;

this._mixer.dispatchEvent( { type: 'loop', action: this, loopDelta: loopDelta } );

}

}

if ( pingPong && ( loopCount & 1 ) === 1 ) {

// invert time for the "pong round"

this.time = time; return duration - time;

}

}

this.time = time; return time;

},

_setEndings: function ( atStart, atEnd, pingPong ) {

var settings = this._interpolantSettings;

if ( pingPong ) {

settings.endingStart = ZeroSlopeEnding; settings.endingEnd = ZeroSlopeEnding;

} else {

// assuming for LoopOnce atStart == atEnd == true

if ( atStart ) {

settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;

} else {

settings.endingStart = WrapAroundEnding;

}

if ( atEnd ) {

settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;

} else {

settings.endingEnd = WrapAroundEnding;

}

}

},

_scheduleFading: function ( duration, weightNow, weightThen ) {

var mixer = this._mixer, now = mixer.time, interpolant = this._weightInterpolant;

if ( interpolant === null ) {

interpolant = mixer._lendControlInterpolant(); this._weightInterpolant = interpolant;

}

var times = interpolant.parameterPositions, values = interpolant.sampleValues;

times[ 0 ] = now; values[ 0 ] = weightNow; times[ 1 ] = now + duration; values[ 1 ] = weightThen;

return this;

}

} );

/** * * Player for AnimationClips. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */

function AnimationMixer( root ) {

this._root = root; this._initMemoryManager(); this._accuIndex = 0;

this.time = 0;

this.timeScale = 1.0;

}

AnimationMixer.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

constructor: AnimationMixer,

_bindAction: function ( action, prototypeAction ) {

var root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName, bindingsByName = bindingsByRoot[ rootUuid ];

if ( bindingsByName === undefined ) {

bindingsByName = {}; bindingsByRoot[ rootUuid ] = bindingsByName;

}

for ( var i = 0; i !== nTracks; ++ i ) {

var track = tracks[ i ], trackName = track.name, binding = bindingsByName[ trackName ];

if ( binding !== undefined ) {

bindings[ i ] = binding;

} else {

binding = bindings[ i ];

if ( binding !== undefined ) {

// existing binding, make sure the cache knows

if ( binding._cacheIndex === null ) {

++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName );

}

continue;

}

var path = prototypeAction && prototypeAction. _propertyBindings[ i ].binding.parsedPath;

binding = new PropertyMixer( PropertyBinding.create( root, trackName, path ), track.ValueTypeName, track.getValueSize() );

++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName );

bindings[ i ] = binding;

}

interpolants[ i ].resultBuffer = binding.buffer;

}

},

_activateAction: function ( action ) {

if ( ! this._isActiveAction( action ) ) {

if ( action._cacheIndex === null ) {

// this action has been forgotten by the cache, but the user // appears to be still using it -> rebind

var rootUuid = ( action._localRoot || this._root ).uuid, clipUuid = action._clip.uuid, actionsForClip = this._actionsByClip[ clipUuid ];

this._bindAction( action, actionsForClip && actionsForClip.knownActions[ 0 ] );

this._addInactiveAction( action, clipUuid, rootUuid );

}

var bindings = action._propertyBindings;

// increment reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

var binding = bindings[ i ];

if ( binding.useCount ++ === 0 ) {

this._lendBinding( binding ); binding.saveOriginalState();

}

}

this._lendAction( action );

}

},

_deactivateAction: function ( action ) {

if ( this._isActiveAction( action ) ) {

var bindings = action._propertyBindings;

// decrement reference counts / sort out state for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

var binding = bindings[ i ];

if ( -- binding.useCount === 0 ) {

binding.restoreOriginalState(); this._takeBackBinding( binding );

}

}

this._takeBackAction( action );

}

},

// Memory manager

_initMemoryManager: function () {

this._actions = []; // 'nActiveActions' followed by inactive ones this._nActiveActions = 0;

this._actionsByClip = {}; // inside: // { // knownActions: Array< AnimationAction > - used as prototypes // actionByRoot: AnimationAction - lookup // }


this._bindings = []; // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0;

this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >


this._controlInterpolants = []; // same game as above this._nActiveControlInterpolants = 0;

var scope = this;

this.stats = {

actions: { get total() {

return scope._actions.length;

}, get inUse() {

return scope._nActiveActions;

} }, bindings: { get total() {

return scope._bindings.length;

}, get inUse() {

return scope._nActiveBindings;

} }, controlInterpolants: { get total() {

return scope._controlInterpolants.length;

}, get inUse() {

return scope._nActiveControlInterpolants;

} }

};

},

// Memory management for AnimationAction objects

_isActiveAction: function ( action ) {

var index = action._cacheIndex; return index !== null && index < this._nActiveActions;

},

_addInactiveAction: function ( action, clipUuid, rootUuid ) {

var actions = this._actions, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ];

if ( actionsForClip === undefined ) {

actionsForClip = {

knownActions: [ action ], actionByRoot: {}

};

action._byClipCacheIndex = 0;

actionsByClip[ clipUuid ] = actionsForClip;

} else {

var knownActions = actionsForClip.knownActions;

action._byClipCacheIndex = knownActions.length; knownActions.push( action );

}

action._cacheIndex = actions.length; actions.push( action );

actionsForClip.actionByRoot[ rootUuid ] = action;

},

_removeInactiveAction: function ( action ) {

var actions = this._actions, lastInactiveAction = actions[ actions.length - 1 ], cacheIndex = action._cacheIndex;

lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop();

action._cacheIndex = null;


var clipUuid = action._clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ], knownActionsForClip = actionsForClip.knownActions,

lastKnownAction = knownActionsForClip[ knownActionsForClip.length - 1 ],

byClipCacheIndex = action._byClipCacheIndex;

lastKnownAction._byClipCacheIndex = byClipCacheIndex; knownActionsForClip[ byClipCacheIndex ] = lastKnownAction; knownActionsForClip.pop();

action._byClipCacheIndex = null;


var actionByRoot = actionsForClip.actionByRoot, rootUuid = ( action._localRoot || this._root ).uuid;

delete actionByRoot[ rootUuid ];

if ( knownActionsForClip.length === 0 ) {

delete actionsByClip[ clipUuid ];

}

this._removeInactiveBindingsForAction( action );

},

_removeInactiveBindingsForAction: function ( action ) {

var bindings = action._propertyBindings; for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

var binding = bindings[ i ];

if ( -- binding.referenceCount === 0 ) {

this._removeInactiveBinding( binding );

}

}

},

_lendAction: function ( action ) {

// [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s

var actions = this._actions, prevIndex = action._cacheIndex,

lastActiveIndex = this._nActiveActions ++,

firstInactiveAction = actions[ lastActiveIndex ];

action._cacheIndex = lastActiveIndex; actions[ lastActiveIndex ] = action;

firstInactiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = firstInactiveAction;

},

_takeBackAction: function ( action ) {

// [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a

var actions = this._actions, prevIndex = action._cacheIndex,

firstInactiveIndex = -- this._nActiveActions,

lastActiveAction = actions[ firstInactiveIndex ];

action._cacheIndex = firstInactiveIndex; actions[ firstInactiveIndex ] = action;

lastActiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = lastActiveAction;

},

// Memory management for PropertyMixer objects

_addInactiveBinding: function ( binding, rootUuid, trackName ) {

var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ],

bindings = this._bindings;

if ( bindingByName === undefined ) {

bindingByName = {}; bindingsByRoot[ rootUuid ] = bindingByName;

}

bindingByName[ trackName ] = binding;

binding._cacheIndex = bindings.length; bindings.push( binding );

},

_removeInactiveBinding: function ( binding ) {

var bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ],

lastInactiveBinding = bindings[ bindings.length - 1 ], cacheIndex = binding._cacheIndex;

lastInactiveBinding._cacheIndex = cacheIndex; bindings[ cacheIndex ] = lastInactiveBinding; bindings.pop();

delete bindingByName[ trackName ];

remove_empty_map: {

for ( var _ in bindingByName ) break remove_empty_map; // eslint-disable-line no-unused-vars

delete bindingsByRoot[ rootUuid ];

}

},

_lendBinding: function ( binding ) {

var bindings = this._bindings, prevIndex = binding._cacheIndex,

lastActiveIndex = this._nActiveBindings ++,

firstInactiveBinding = bindings[ lastActiveIndex ];

binding._cacheIndex = lastActiveIndex; bindings[ lastActiveIndex ] = binding;

firstInactiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = firstInactiveBinding;

},

_takeBackBinding: function ( binding ) {

var bindings = this._bindings, prevIndex = binding._cacheIndex,

firstInactiveIndex = -- this._nActiveBindings,

lastActiveBinding = bindings[ firstInactiveIndex ];

binding._cacheIndex = firstInactiveIndex; bindings[ firstInactiveIndex ] = binding;

lastActiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = lastActiveBinding;

},


// Memory management of Interpolants for weight and time scale

_lendControlInterpolant: function () {

var interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants ++, interpolant = interpolants[ lastActiveIndex ];

if ( interpolant === undefined ) {

interpolant = new LinearInterpolant( new Float32Array( 2 ), new Float32Array( 2 ), 1, this._controlInterpolantsResultBuffer );

interpolant.__cacheIndex = lastActiveIndex; interpolants[ lastActiveIndex ] = interpolant;

}

return interpolant;

},

_takeBackControlInterpolant: function ( interpolant ) {

var interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex,

firstInactiveIndex = -- this._nActiveControlInterpolants,

lastActiveInterpolant = interpolants[ firstInactiveIndex ];

interpolant.__cacheIndex = firstInactiveIndex; interpolants[ firstInactiveIndex ] = interpolant;

lastActiveInterpolant.__cacheIndex = prevIndex; interpolants[ prevIndex ] = lastActiveInterpolant;

},

_controlInterpolantsResultBuffer: new Float32Array( 1 ),

// return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction: function ( clip, optionalRoot ) {

var root = optionalRoot || this._root, rootUuid = root.uuid,

clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip,

clipUuid = clipObject !== null ? clipObject.uuid : clip,

actionsForClip = this._actionsByClip[ clipUuid ], prototypeAction = null;

if ( actionsForClip !== undefined ) {

var existingAction = actionsForClip.actionByRoot[ rootUuid ];

if ( existingAction !== undefined ) {

return existingAction;

}

// we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[ 0 ];

// also, take the clip from the prototype action if ( clipObject === null ) clipObject = prototypeAction._clip;

}

// clip must be known when specified via string if ( clipObject === null ) return null;

// allocate all resources required to run it var newAction = new AnimationAction( this, clipObject, optionalRoot );

this._bindAction( newAction, prototypeAction );

// and make the action known to the memory manager this._addInactiveAction( newAction, clipUuid, rootUuid );

return newAction;

},

// get an existing action existingAction: function ( clip, optionalRoot ) {

var root = optionalRoot || this._root, rootUuid = root.uuid,

clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip,

clipUuid = clipObject ? clipObject.uuid : clip,

actionsForClip = this._actionsByClip[ clipUuid ];

if ( actionsForClip !== undefined ) {

return actionsForClip.actionByRoot[ rootUuid ] || null;

}

return null;

},

// deactivates all previously scheduled actions stopAllAction: function () {

var actions = this._actions, nActions = this._nActiveActions, bindings = this._bindings, nBindings = this._nActiveBindings;

this._nActiveActions = 0; this._nActiveBindings = 0;

for ( var i = 0; i !== nActions; ++ i ) {

actions[ i ].reset();

}

for ( var i = 0; i !== nBindings; ++ i ) {

bindings[ i ].useCount = 0;

}

return this;

},

// advance the time and update apply the animation update: function ( deltaTime ) {

deltaTime *= this.timeScale;

var actions = this._actions, nActions = this._nActiveActions,

time = this.time += deltaTime, timeDirection = Math.sign( deltaTime ),

accuIndex = this._accuIndex ^= 1;

// run active actions

for ( var i = 0; i !== nActions; ++ i ) {

var action = actions[ i ];

action._update( time, deltaTime, timeDirection, accuIndex );

}

// update scene graph

var bindings = this._bindings, nBindings = this._nActiveBindings;

for ( var i = 0; i !== nBindings; ++ i ) {

bindings[ i ].apply( accuIndex );

}

return this;

},

// return this mixer's root target object getRoot: function () {

return this._root;

},

// free all resources specific to a particular clip uncacheClip: function ( clip ) {

var actions = this._actions, clipUuid = clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ];

if ( actionsForClip !== undefined ) {

// note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away

var actionsToRemove = actionsForClip.knownActions;

for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) {

var action = actionsToRemove[ i ];

this._deactivateAction( action );

var cacheIndex = action._cacheIndex, lastInactiveAction = actions[ actions.length - 1 ];

action._cacheIndex = null; action._byClipCacheIndex = null;

lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop();

this._removeInactiveBindingsForAction( action );

}

delete actionsByClip[ clipUuid ];

}

},

// free all resources specific to a particular root target object uncacheRoot: function ( root ) {

var rootUuid = root.uuid, actionsByClip = this._actionsByClip;

for ( var clipUuid in actionsByClip ) {

var actionByRoot = actionsByClip[ clipUuid ].actionByRoot, action = actionByRoot[ rootUuid ];

if ( action !== undefined ) {

this._deactivateAction( action ); this._removeInactiveAction( action );

}

}

var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ];

if ( bindingByName !== undefined ) {

for ( var trackName in bindingByName ) {

var binding = bindingByName[ trackName ]; binding.restoreOriginalState(); this._removeInactiveBinding( binding );

}

}

},

// remove a targeted clip from the cache uncacheAction: function ( clip, optionalRoot ) {

var action = this.existingAction( clip, optionalRoot );

if ( action !== null ) {

this._deactivateAction( action ); this._removeInactiveAction( action );

}

}

} );

/** * @author mrdoob / http://mrdoob.com/ */

function Uniform( value ) {

if ( typeof value === 'string' ) {

console.warn( 'THREE.Uniform: Type parameter is no longer needed.' ); value = arguments[ 1 ];

}

this.value = value;

}

Uniform.prototype.clone = function () {

return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() );

};

/** * @author benaadams / https://twitter.com/ben_a_adams */

function InstancedBufferGeometry() {

BufferGeometry.call( this );

this.type = 'InstancedBufferGeometry'; this.maxInstancedCount = undefined;

}

InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), {

constructor: InstancedBufferGeometry,

isInstancedBufferGeometry: true,

copy: function ( source ) {

BufferGeometry.prototype.copy.call( this, source );

this.maxInstancedCount = source.maxInstancedCount;

return this;

},

clone: function () {

return new this.constructor().copy( this );

}

} );

/** * @author benaadams / https://twitter.com/ben_a_adams */

function InstancedInterleavedBuffer( array, stride, meshPerAttribute ) {

InterleavedBuffer.call( this, array, stride );

this.meshPerAttribute = meshPerAttribute || 1;

}

InstancedInterleavedBuffer.prototype = Object.assign( Object.create( InterleavedBuffer.prototype ), {

constructor: InstancedInterleavedBuffer,

isInstancedInterleavedBuffer: true,

copy: function ( source ) {

InterleavedBuffer.prototype.copy.call( this, source );

this.meshPerAttribute = source.meshPerAttribute;

return this;

}

} );

/** * @author benaadams / https://twitter.com/ben_a_adams */

function InstancedBufferAttribute( array, itemSize, normalized, meshPerAttribute ) {

if ( typeof ( normalized ) === 'number' ) {

meshPerAttribute = normalized;

normalized = false;

console.error( 'THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.' );

}

BufferAttribute.call( this, array, itemSize, normalized );

this.meshPerAttribute = meshPerAttribute || 1;

}

InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), {

constructor: InstancedBufferAttribute,

isInstancedBufferAttribute: true,

copy: function ( source ) {

BufferAttribute.prototype.copy.call( this, source );

this.meshPerAttribute = source.meshPerAttribute;

return this;

}

} );

/** * @author mrdoob / http://mrdoob.com/ * @author bhouston / http://clara.io/ * @author stephomi / http://stephaneginier.com/ */

function Raycaster( origin, direction, near, far ) {

this.ray = new Ray( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations)

this.near = near || 0; this.far = far || Infinity;

this.params = { Mesh: {}, Line: {}, LOD: {}, Points: { threshold: 1 }, Sprite: {} };

Object.defineProperties( this.params, { PointCloud: { get: function () {

console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' ); return this.Points;

} } } );

}

function ascSort( a, b ) {

return a.distance - b.distance;

}

function intersectObject( object, raycaster, intersects, recursive ) {

if ( object.visible === false ) return;

object.raycast( raycaster, intersects );

if ( recursive === true ) {

var children = object.children;

for ( var i = 0, l = children.length; i < l; i ++ ) {

intersectObject( children[ i ], raycaster, intersects, true );

}

}

}

Object.assign( Raycaster.prototype, {

linePrecision: 1,

set: function ( origin, direction ) {

// direction is assumed to be normalized (for accurate distance calculations)

this.ray.set( origin, direction );

},

setFromCamera: function ( coords, camera ) {

if ( ( camera && camera.isPerspectiveCamera ) ) {

this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();

} else if ( ( camera && camera.isOrthographicCamera ) ) {

this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );

} else {

console.error( 'THREE.Raycaster: Unsupported camera type.' );

}

},

intersectObject: function ( object, recursive, optionalTarget ) {

var intersects = optionalTarget || [];

intersectObject( object, this, intersects, recursive );

intersects.sort( ascSort );

return intersects;

},

intersectObjects: function ( objects, recursive, optionalTarget ) {

var intersects = optionalTarget || [];

if ( Array.isArray( objects ) === false ) {

console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' ); return intersects;

}

for ( var i = 0, l = objects.length; i < l; i ++ ) {

intersectObject( objects[ i ], this, intersects, recursive );

}

intersects.sort( ascSort );

return intersects;

}

} );

/** * @author alteredq / http://alteredqualia.com/ */

function Clock( autoStart ) {

this.autoStart = ( autoStart !== undefined ) ? autoStart : true;

this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0;

this.running = false;

}

Object.assign( Clock.prototype, {

start: function () {

this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732

this.oldTime = this.startTime; this.elapsedTime = 0; this.running = true;

},

stop: function () {

this.getElapsedTime(); this.running = false; this.autoStart = false;

},

getElapsedTime: function () {

this.getDelta(); return this.elapsedTime;

},

getDelta: function () {

var diff = 0;

if ( this.autoStart && ! this.running ) {

this.start(); return 0;

}

if ( this.running ) {

var newTime = ( typeof performance === 'undefined' ? Date : performance ).now();

diff = ( newTime - this.oldTime ) / 1000; this.oldTime = newTime;

this.elapsedTime += diff;

}

return diff;

}

} );

/** * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley * * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up. * The azimuthal angle (theta) is measured from the positive z-axiz. */

function Spherical( radius, phi, theta ) {

this.radius = ( radius !== undefined ) ? radius : 1.0; this.phi = ( phi !== undefined ) ? phi : 0; // polar angle this.theta = ( theta !== undefined ) ? theta : 0; // azimuthal angle

return this;

}

Object.assign( Spherical.prototype, {

set: function ( radius, phi, theta ) {

this.radius = radius; this.phi = phi; this.theta = theta;

return this;

},

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( other ) {

this.radius = other.radius; this.phi = other.phi; this.theta = other.theta;

return this;

},

// restrict phi to be betwee EPS and PI-EPS makeSafe: function () {

var EPS = 0.000001; this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );

return this;

},

setFromVector3: function ( v ) {

return this.setFromCartesianCoords( v.x, v.y, v.z );

},

setFromCartesianCoords: function ( x, y, z ) {

this.radius = Math.sqrt( x * x + y * y + z * z );

if ( this.radius === 0 ) {

this.theta = 0; this.phi = 0;

} else {

this.theta = Math.atan2( x, z ); this.phi = Math.acos( _Math.clamp( y / this.radius, - 1, 1 ) );

}

return this;

}

} );

/** * @author Mugen87 / https://github.com/Mugen87 * * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system * */

function Cylindrical( radius, theta, y ) {

this.radius = ( radius !== undefined ) ? radius : 1.0; // distance from the origin to a point in the x-z plane this.theta = ( theta !== undefined ) ? theta : 0; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis this.y = ( y !== undefined ) ? y : 0; // height above the x-z plane

return this;

}

Object.assign( Cylindrical.prototype, {

set: function ( radius, theta, y ) {

this.radius = radius; this.theta = theta; this.y = y;

return this;

},

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( other ) {

this.radius = other.radius; this.theta = other.theta; this.y = other.y;

return this;

},

setFromVector3: function ( v ) {

return this.setFromCartesianCoords( v.x, v.y, v.z );

},

setFromCartesianCoords: function ( x, y, z ) {

this.radius = Math.sqrt( x * x + z * z ); this.theta = Math.atan2( x, z ); this.y = y;

return this;

}

} );

/** * @author bhouston / http://clara.io */

function Box2( min, max ) {

this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity ); this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity );

}

Object.assign( Box2.prototype, {

set: function ( min, max ) {

this.min.copy( min ); this.max.copy( max );

return this;

},

setFromPoints: function ( points ) {

this.makeEmpty();

for ( var i = 0, il = points.length; i < il; i ++ ) {

this.expandByPoint( points[ i ] );

}

return this;

},

setFromCenterAndSize: function () {

var v1 = new Vector2();

return function setFromCenterAndSize( center, size ) {

var halfSize = v1.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize );

return this;

};

}(),

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( box ) {

this.min.copy( box.min ); this.max.copy( box.max );

return this;

},

makeEmpty: function () {

this.min.x = this.min.y = + Infinity; this.max.x = this.max.y = - Infinity;

return this;

},

isEmpty: function () {

// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes

return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );

},

getCenter: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Box2: .getCenter() target is now required' ); target = new Vector2();

}

return this.isEmpty() ? target.set( 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );

},

getSize: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Box2: .getSize() target is now required' ); target = new Vector2();

}

return this.isEmpty() ? target.set( 0, 0 ) : target.subVectors( this.max, this.min );

},

expandByPoint: function ( point ) {

this.min.min( point ); this.max.max( point );

return this;

},

expandByVector: function ( vector ) {

this.min.sub( vector ); this.max.add( vector );

return this;

},

expandByScalar: function ( scalar ) {

this.min.addScalar( - scalar ); this.max.addScalar( scalar );

return this;

},

containsPoint: function ( point ) {

return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true;

},

containsBox: function ( box ) {

return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y;

},

getParameter: function ( point, target ) {

// This can potentially have a divide by zero if the box // has a size dimension of 0.

if ( target === undefined ) {

console.warn( 'THREE.Box2: .getParameter() target is now required' ); target = new Vector2();

}

return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ) );

},

intersectsBox: function ( box ) {

// using 4 splitting planes to rule out intersections

return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true;

},

clampPoint: function ( point, target ) {

if ( target === undefined ) {

console.warn( 'THREE.Box2: .clampPoint() target is now required' ); target = new Vector2();

}

return target.copy( point ).clamp( this.min, this.max );

},

distanceToPoint: function () {

var v1 = new Vector2();

return function distanceToPoint( point ) {

var clampedPoint = v1.copy( point ).clamp( this.min, this.max ); return clampedPoint.sub( point ).length();

};

}(),

intersect: function ( box ) {

this.min.max( box.min ); this.max.min( box.max );

return this;

},

union: function ( box ) {

this.min.min( box.min ); this.max.max( box.max );

return this;

},

translate: function ( offset ) {

this.min.add( offset ); this.max.add( offset );

return this;

},

equals: function ( box ) {

return box.min.equals( this.min ) && box.max.equals( this.max );

}

} );

/** * @author bhouston / http://clara.io */

function Line3( start, end ) {

this.start = ( start !== undefined ) ? start : new Vector3(); this.end = ( end !== undefined ) ? end : new Vector3();

}

Object.assign( Line3.prototype, {

set: function ( start, end ) {

this.start.copy( start ); this.end.copy( end );

return this;

},

clone: function () {

return new this.constructor().copy( this );

},

copy: function ( line ) {

this.start.copy( line.start ); this.end.copy( line.end );

return this;

},

getCenter: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Line3: .getCenter() target is now required' ); target = new Vector3();

}

return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 );

},

delta: function ( target ) {

if ( target === undefined ) {

console.warn( 'THREE.Line3: .delta() target is now required' ); target = new Vector3();

}

return target.subVectors( this.end, this.start );

},

distanceSq: function () {

return this.start.distanceToSquared( this.end );

},

distance: function () {

return this.start.distanceTo( this.end );

},

at: function ( t, target ) {

if ( target === undefined ) {

console.warn( 'THREE.Line3: .at() target is now required' ); target = new Vector3();

}

return this.delta( target ).multiplyScalar( t ).add( this.start );

},

closestPointToPointParameter: function () {

var startP = new Vector3(); var startEnd = new Vector3();

return function closestPointToPointParameter( point, clampToLine ) {

startP.subVectors( point, this.start ); startEnd.subVectors( this.end, this.start );

var startEnd2 = startEnd.dot( startEnd ); var startEnd_startP = startEnd.dot( startP );

var t = startEnd_startP / startEnd2;

if ( clampToLine ) {

t = _Math.clamp( t, 0, 1 );

}

return t;

};

}(),

closestPointToPoint: function ( point, clampToLine, target ) {

var t = this.closestPointToPointParameter( point, clampToLine );

if ( target === undefined ) {

console.warn( 'THREE.Line3: .closestPointToPoint() target is now required' ); target = new Vector3();

}

return this.delta( target ).multiplyScalar( t ).add( this.start );

},

applyMatrix4: function ( matrix ) {

this.start.applyMatrix4( matrix ); this.end.applyMatrix4( matrix );

return this;

},

equals: function ( line ) {

return line.start.equals( this.start ) && line.end.equals( this.end );

}

} );

/** * @author alteredq / http://alteredqualia.com/ */

function ImmediateRenderObject( material ) {

Object3D.call( this );

this.material = material; this.render = function ( /* renderCallback */ ) {};

}

ImmediateRenderObject.prototype = Object.create( Object3D.prototype ); ImmediateRenderObject.prototype.constructor = ImmediateRenderObject;

ImmediateRenderObject.prototype.isImmediateRenderObject = true;

/** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */

function VertexNormalsHelper( object, size, hex, linewidth ) {

this.object = object;

this.size = ( size !== undefined ) ? size : 1;

var color = ( hex !== undefined ) ? hex : 0xff0000;

var width = ( linewidth !== undefined ) ? linewidth : 1;

//

var nNormals = 0;

var objGeometry = this.object.geometry;

if ( objGeometry && objGeometry.isGeometry ) {

nNormals = objGeometry.faces.length * 3;

} else if ( objGeometry && objGeometry.isBufferGeometry ) {

nNormals = objGeometry.attributes.normal.count;

}

//

var geometry = new BufferGeometry();

var positions = new Float32BufferAttribute( nNormals * 2 * 3, 3 );

geometry.addAttribute( 'position', positions );

LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) );

//

this.matrixAutoUpdate = false;

this.update();

}

VertexNormalsHelper.prototype = Object.create( LineSegments.prototype ); VertexNormalsHelper.prototype.constructor = VertexNormalsHelper;

VertexNormalsHelper.prototype.update = ( function () {

var v1 = new Vector3(); var v2 = new Vector3(); var normalMatrix = new Matrix3();

return function update() {

var keys = [ 'a', 'b', 'c' ];

this.object.updateMatrixWorld( true );

normalMatrix.getNormalMatrix( this.object.matrixWorld );

var matrixWorld = this.object.matrixWorld;

var position = this.geometry.attributes.position;

//

var objGeometry = this.object.geometry;

if ( objGeometry && objGeometry.isGeometry ) {

var vertices = objGeometry.vertices;

var faces = objGeometry.faces;

var idx = 0;

for ( var i = 0, l = faces.length; i < l; i ++ ) {

var face = faces[ i ];

for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {

var vertex = vertices[ face[ keys[ j ] ] ];

var normal = face.vertexNormals[ j ];

v1.copy( vertex ).applyMatrix4( matrixWorld );

v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );

position.setXYZ( idx, v1.x, v1.y, v1.z );

idx = idx + 1;

position.setXYZ( idx, v2.x, v2.y, v2.z );

idx = idx + 1;

}

}

} else if ( objGeometry && objGeometry.isBufferGeometry ) {

var objPos = objGeometry.attributes.position;

var objNorm = objGeometry.attributes.normal;

var idx = 0;

// for simplicity, ignore index and drawcalls, and render every normal

for ( var j = 0, jl = objPos.count; j < jl; j ++ ) {

v1.set( objPos.getX( j ), objPos.getY( j ), objPos.getZ( j ) ).applyMatrix4( matrixWorld );

v2.set( objNorm.getX( j ), objNorm.getY( j ), objNorm.getZ( j ) );

v2.applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );

position.setXYZ( idx, v1.x, v1.y, v1.z );

idx = idx + 1;

position.setXYZ( idx, v2.x, v2.y, v2.z );

idx = idx + 1;

}

}

position.needsUpdate = true;

};

}() );

/** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */

function SpotLightHelper( light, color ) {

Object3D.call( this );

this.light = light; this.light.updateMatrixWorld();

this.matrix = light.matrixWorld; this.matrixAutoUpdate = false;

this.color = color;

var geometry = new BufferGeometry();

var positions = [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, - 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, - 1, 1 ];

for ( var i = 0, j = 1, l = 32; i < l; i ++, j ++ ) {

var p1 = ( i / l ) * Math.PI * 2; var p2 = ( j / l ) * Math.PI * 2;

positions.push( Math.cos( p1 ), Math.sin( p1 ), 1, Math.cos( p2 ), Math.sin( p2 ), 1 );

}

geometry.addAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

var material = new LineBasicMaterial( { fog: false } );

this.cone = new LineSegments( geometry, material ); this.add( this.cone );

this.update();

}

SpotLightHelper.prototype = Object.create( Object3D.prototype ); SpotLightHelper.prototype.constructor = SpotLightHelper;

SpotLightHelper.prototype.dispose = function () {

this.cone.geometry.dispose(); this.cone.material.dispose();

};

SpotLightHelper.prototype.update = function () {

var vector = new Vector3(); var vector2 = new Vector3();

return function update() {

this.light.updateMatrixWorld();

var coneLength = this.light.distance ? this.light.distance : 1000; var coneWidth = coneLength * Math.tan( this.light.angle );

this.cone.scale.set( coneWidth, coneWidth, coneLength );

vector.setFromMatrixPosition( this.light.matrixWorld ); vector2.setFromMatrixPosition( this.light.target.matrixWorld );

this.cone.lookAt( vector2.sub( vector ) );

if ( this.color !== undefined ) {

this.cone.material.color.set( this.color );

} else {

this.cone.material.color.copy( this.light.color );

}

};

}();

/** * @author Sean Griffin / http://twitter.com/sgrif * @author Michael Guerrero / http://realitymeltdown.com * @author mrdoob / http://mrdoob.com/ * @author ikerr / http://verold.com * @author Mugen87 / https://github.com/Mugen87 */

function getBoneList( object ) {

var boneList = [];

if ( object && object.isBone ) {

boneList.push( object );

}

for ( var i = 0; i < object.children.length; i ++ ) {

boneList.push.apply( boneList, getBoneList( object.children[ i ] ) );

}

return boneList;

}

function SkeletonHelper( object ) {

var bones = getBoneList( object );

var geometry = new BufferGeometry();

var vertices = []; var colors = [];

var color1 = new Color( 0, 0, 1 ); var color2 = new Color( 0, 1, 0 );

for ( var i = 0; i < bones.length; i ++ ) {

var bone = bones[ i ];

if ( bone.parent && bone.parent.isBone ) {

vertices.push( 0, 0, 0 ); vertices.push( 0, 0, 0 ); colors.push( color1.r, color1.g, color1.b ); colors.push( color2.r, color2.g, color2.b );

}

}

geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

var material = new LineBasicMaterial( { vertexColors: VertexColors, depthTest: false, depthWrite: false, transparent: true } );

LineSegments.call( this, geometry, material );

this.root = object; this.bones = bones;

this.matrix = object.matrixWorld; this.matrixAutoUpdate = false;

}

SkeletonHelper.prototype = Object.create( LineSegments.prototype ); SkeletonHelper.prototype.constructor = SkeletonHelper;

SkeletonHelper.prototype.updateMatrixWorld = function () {

var vector = new Vector3();

var boneMatrix = new Matrix4(); var matrixWorldInv = new Matrix4();

return function updateMatrixWorld( force ) {

var bones = this.bones;

var geometry = this.geometry; var position = geometry.getAttribute( 'position' );

matrixWorldInv.getInverse( this.root.matrixWorld );

for ( var i = 0, j = 0; i < bones.length; i ++ ) {

var bone = bones[ i ];

if ( bone.parent && bone.parent.isBone ) {

boneMatrix.multiplyMatrices( matrixWorldInv, bone.matrixWorld ); vector.setFromMatrixPosition( boneMatrix ); position.setXYZ( j, vector.x, vector.y, vector.z );

boneMatrix.multiplyMatrices( matrixWorldInv, bone.parent.matrixWorld ); vector.setFromMatrixPosition( boneMatrix ); position.setXYZ( j + 1, vector.x, vector.y, vector.z );

j += 2;

}

}

geometry.getAttribute( 'position' ).needsUpdate = true;

Object3D.prototype.updateMatrixWorld.call( this, force );

};

}();

/** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */

function PointLightHelper( light, sphereSize, color ) {

this.light = light; this.light.updateMatrixWorld();

this.color = color;

var geometry = new SphereBufferGeometry( sphereSize, 4, 2 ); var material = new MeshBasicMaterial( { wireframe: true, fog: false } );

Mesh.call( this, geometry, material );

this.matrix = this.light.matrixWorld; this.matrixAutoUpdate = false;

this.update();


/* var distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 ); var distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );

this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );

var d = light.distance;

if ( d === 0.0 ) {

this.lightDistance.visible = false;

} else {

this.lightDistance.scale.set( d, d, d );

}

this.add( this.lightDistance ); */

}

PointLightHelper.prototype = Object.create( Mesh.prototype ); PointLightHelper.prototype.constructor = PointLightHelper;

PointLightHelper.prototype.dispose = function () {

this.geometry.dispose(); this.material.dispose();

};

PointLightHelper.prototype.update = function () {

if ( this.color !== undefined ) {

this.material.color.set( this.color );

} else {

this.material.color.copy( this.light.color );

}

/* var d = this.light.distance;

if ( d === 0.0 ) {

this.lightDistance.visible = false;

} else {

this.lightDistance.visible = true; this.lightDistance.scale.set( d, d, d );

} */

};

/** * @author abelnation / http://github.com/abelnation * @author Mugen87 / http://github.com/Mugen87 * @author WestLangley / http://github.com/WestLangley */

function RectAreaLightHelper( light, color ) {

Object3D.call( this );

this.light = light; this.light.updateMatrixWorld();

this.matrix = light.matrixWorld; this.matrixAutoUpdate = false;

this.color = color;

var material = new LineBasicMaterial( { fog: false } );

var geometry = new BufferGeometry();

geometry.addAttribute( 'position', new BufferAttribute( new Float32Array( 5 * 3 ), 3 ) );

this.line = new Line( geometry, material ); this.add( this.line );


this.update();

}

RectAreaLightHelper.prototype = Object.create( Object3D.prototype ); RectAreaLightHelper.prototype.constructor = RectAreaLightHelper;

RectAreaLightHelper.prototype.dispose = function () {

this.children[ 0 ].geometry.dispose(); this.children[ 0 ].material.dispose();

};

RectAreaLightHelper.prototype.update = function () {

// calculate new dimensions of the helper

var hx = this.light.width * 0.5; var hy = this.light.height * 0.5;

var position = this.line.geometry.attributes.position; var array = position.array;

// update vertices

array[ 0 ] = hx; array[ 1 ] = - hy; array[ 2 ] = 0; array[ 3 ] = hx; array[ 4 ] = hy; array[ 5 ] = 0; array[ 6 ] = - hx; array[ 7 ] = hy; array[ 8 ] = 0; array[ 9 ] = - hx; array[ 10 ] = - hy; array[ 11 ] = 0; array[ 12 ] = hx; array[ 13 ] = - hy; array[ 14 ] = 0;

position.needsUpdate = true;

if ( this.color !== undefined ) {

this.line.material.color.set( this.color );

} else {

this.line.material.color.copy( this.light.color );

}

};

/** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */

function HemisphereLightHelper( light, size, color ) {

Object3D.call( this );

this.light = light; this.light.updateMatrixWorld();

this.matrix = light.matrixWorld; this.matrixAutoUpdate = false;

this.color = color;

var geometry = new OctahedronBufferGeometry( size ); geometry.rotateY( Math.PI * 0.5 );

this.material = new MeshBasicMaterial( { wireframe: true, fog: false } ); if ( this.color === undefined ) this.material.vertexColors = VertexColors;

var position = geometry.getAttribute( 'position' ); var colors = new Float32Array( position.count * 3 );

geometry.addAttribute( 'color', new BufferAttribute( colors, 3 ) );

this.add( new Mesh( geometry, this.material ) );

this.update();

}

HemisphereLightHelper.prototype = Object.create( Object3D.prototype ); HemisphereLightHelper.prototype.constructor = HemisphereLightHelper;

HemisphereLightHelper.prototype.dispose = function () {

this.children[ 0 ].geometry.dispose(); this.children[ 0 ].material.dispose();

};

HemisphereLightHelper.prototype.update = function () {

var vector = new Vector3();

var color1 = new Color(); var color2 = new Color();

return function update() {

var mesh = this.children[ 0 ];

if ( this.color !== undefined ) {

this.material.color.set( this.color );

} else {

var colors = mesh.geometry.getAttribute( 'color' );

color1.copy( this.light.color ); color2.copy( this.light.groundColor );

for ( var i = 0, l = colors.count; i < l; i ++ ) {

var color = ( i < ( l / 2 ) ) ? color1 : color2;

colors.setXYZ( i, color.r, color.g, color.b );

}

colors.needsUpdate = true;

}

mesh.lookAt( vector.setFromMatrixPosition( this.light.matrixWorld ).negate() );

};

}();

/** * @author mrdoob / http://mrdoob.com/ */

function GridHelper( size, divisions, color1, color2 ) {

size = size || 10; divisions = divisions || 10; color1 = new Color( color1 !== undefined ? color1 : 0x444444 ); color2 = new Color( color2 !== undefined ? color2 : 0x888888 );

var center = divisions / 2; var step = size / divisions; var halfSize = size / 2;

var vertices = [], colors = [];

for ( var i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) {

vertices.push( - halfSize, 0, k, halfSize, 0, k ); vertices.push( k, 0, - halfSize, k, 0, halfSize );

var color = i === center ? color1 : color2;

color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3;

}

var geometry = new BufferGeometry(); geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

var material = new LineBasicMaterial( { vertexColors: VertexColors } );

LineSegments.call( this, geometry, material );

}

GridHelper.prototype = Object.create( LineSegments.prototype ); GridHelper.prototype.constructor = GridHelper;

/** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / http://github.com/Mugen87 * @author Hectate / http://www.github.com/Hectate */

function PolarGridHelper( radius, radials, circles, divisions, color1, color2 ) {

radius = radius || 10; radials = radials || 16; circles = circles || 8; divisions = divisions || 64; color1 = new Color( color1 !== undefined ? color1 : 0x444444 ); color2 = new Color( color2 !== undefined ? color2 : 0x888888 );

var vertices = []; var colors = [];

var x, z; var v, i, j, r, color;

// create the radials

for ( i = 0; i <= radials; i ++ ) {

v = ( i / radials ) * ( Math.PI * 2 );

x = Math.sin( v ) * radius; z = Math.cos( v ) * radius;

vertices.push( 0, 0, 0 ); vertices.push( x, 0, z );

color = ( i & 1 ) ? color1 : color2;

colors.push( color.r, color.g, color.b ); colors.push( color.r, color.g, color.b );

}

// create the circles

for ( i = 0; i <= circles; i ++ ) {

color = ( i & 1 ) ? color1 : color2;

r = radius - ( radius / circles * i );

for ( j = 0; j < divisions; j ++ ) {

// first vertex

v = ( j / divisions ) * ( Math.PI * 2 );

x = Math.sin( v ) * r; z = Math.cos( v ) * r;

vertices.push( x, 0, z ); colors.push( color.r, color.g, color.b );

// second vertex

v = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 );

x = Math.sin( v ) * r; z = Math.cos( v ) * r;

vertices.push( x, 0, z ); colors.push( color.r, color.g, color.b );

}

}

var geometry = new BufferGeometry(); geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

var material = new LineBasicMaterial( { vertexColors: VertexColors } );

LineSegments.call( this, geometry, material );

}

PolarGridHelper.prototype = Object.create( LineSegments.prototype ); PolarGridHelper.prototype.constructor = PolarGridHelper;

/** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */

function FaceNormalsHelper( object, size, hex, linewidth ) {

// FaceNormalsHelper only supports THREE.Geometry

this.object = object;

this.size = ( size !== undefined ) ? size : 1;

var color = ( hex !== undefined ) ? hex : 0xffff00;

var width = ( linewidth !== undefined ) ? linewidth : 1;

//

var nNormals = 0;

var objGeometry = this.object.geometry;

if ( objGeometry && objGeometry.isGeometry ) {

nNormals = objGeometry.faces.length;

} else {

console.warn( 'THREE.FaceNormalsHelper: only THREE.Geometry is supported. Use THREE.VertexNormalsHelper, instead.' );

}

//

var geometry = new BufferGeometry();

var positions = new Float32BufferAttribute( nNormals * 2 * 3, 3 );

geometry.addAttribute( 'position', positions );

LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) );

//

this.matrixAutoUpdate = false; this.update();

}

FaceNormalsHelper.prototype = Object.create( LineSegments.prototype ); FaceNormalsHelper.prototype.constructor = FaceNormalsHelper;

FaceNormalsHelper.prototype.update = ( function () {

var v1 = new Vector3(); var v2 = new Vector3(); var normalMatrix = new Matrix3();

return function update() {

this.object.updateMatrixWorld( true );

normalMatrix.getNormalMatrix( this.object.matrixWorld );

var matrixWorld = this.object.matrixWorld;

var position = this.geometry.attributes.position;

//

var objGeometry = this.object.geometry;

var vertices = objGeometry.vertices;

var faces = objGeometry.faces;

var idx = 0;

for ( var i = 0, l = faces.length; i < l; i ++ ) {

var face = faces[ i ];

var normal = face.normal;

v1.copy( vertices[ face.a ] ) .add( vertices[ face.b ] ) .add( vertices[ face.c ] ) .divideScalar( 3 ) .applyMatrix4( matrixWorld );

v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );

position.setXYZ( idx, v1.x, v1.y, v1.z );

idx = idx + 1;

position.setXYZ( idx, v2.x, v2.y, v2.z );

idx = idx + 1;

}

position.needsUpdate = true;

};

}() );

/** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */

function DirectionalLightHelper( light, size, color ) {

Object3D.call( this );

this.light = light; this.light.updateMatrixWorld();

this.matrix = light.matrixWorld; this.matrixAutoUpdate = false;

this.color = color;

if ( size === undefined ) size = 1;

var geometry = new BufferGeometry(); geometry.addAttribute( 'position', new Float32BufferAttribute( [ - size, size, 0, size, size, 0, size, - size, 0, - size, - size, 0, - size, size, 0 ], 3 ) );

var material = new LineBasicMaterial( { fog: false } );

this.lightPlane = new Line( geometry, material ); this.add( this.lightPlane );

geometry = new BufferGeometry(); geometry.addAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) );

this.targetLine = new Line( geometry, material ); this.add( this.targetLine );

this.update();

}

DirectionalLightHelper.prototype = Object.create( Object3D.prototype ); DirectionalLightHelper.prototype.constructor = DirectionalLightHelper;

DirectionalLightHelper.prototype.dispose = function () {

this.lightPlane.geometry.dispose(); this.lightPlane.material.dispose(); this.targetLine.geometry.dispose(); this.targetLine.material.dispose();

};

DirectionalLightHelper.prototype.update = function () {

var v1 = new Vector3(); var v2 = new Vector3(); var v3 = new Vector3();

return function update() {

v1.setFromMatrixPosition( this.light.matrixWorld ); v2.setFromMatrixPosition( this.light.target.matrixWorld ); v3.subVectors( v2, v1 );

this.lightPlane.lookAt( v3 );

if ( this.color !== undefined ) {

this.lightPlane.material.color.set( this.color ); this.targetLine.material.color.set( this.color );

} else {

this.lightPlane.material.color.copy( this.light.color ); this.targetLine.material.color.copy( this.light.color );

}

this.targetLine.lookAt( v3 ); this.targetLine.scale.z = v3.length();

};

}();

/** * @author alteredq / http://alteredqualia.com/ * @author Mugen87 / https://github.com/Mugen87 * * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */

function CameraHelper( camera ) {

var geometry = new BufferGeometry(); var material = new LineBasicMaterial( { color: 0xffffff, vertexColors: FaceColors } );

var vertices = []; var colors = [];

var pointMap = {};

// colors

var colorFrustum = new Color( 0xffaa00 ); var colorCone = new Color( 0xff0000 ); var colorUp = new Color( 0x00aaff ); var colorTarget = new Color( 0xffffff ); var colorCross = new Color( 0x333333 );

// near

addLine( 'n1', 'n2', colorFrustum ); addLine( 'n2', 'n4', colorFrustum ); addLine( 'n4', 'n3', colorFrustum ); addLine( 'n3', 'n1', colorFrustum );

// far

addLine( 'f1', 'f2', colorFrustum ); addLine( 'f2', 'f4', colorFrustum ); addLine( 'f4', 'f3', colorFrustum ); addLine( 'f3', 'f1', colorFrustum );

// sides

addLine( 'n1', 'f1', colorFrustum ); addLine( 'n2', 'f2', colorFrustum ); addLine( 'n3', 'f3', colorFrustum ); addLine( 'n4', 'f4', colorFrustum );

// cone

addLine( 'p', 'n1', colorCone ); addLine( 'p', 'n2', colorCone ); addLine( 'p', 'n3', colorCone ); addLine( 'p', 'n4', colorCone );

// up

addLine( 'u1', 'u2', colorUp ); addLine( 'u2', 'u3', colorUp ); addLine( 'u3', 'u1', colorUp );

// target

addLine( 'c', 't', colorTarget ); addLine( 'p', 'c', colorCross );

// cross

addLine( 'cn1', 'cn2', colorCross ); addLine( 'cn3', 'cn4', colorCross );

addLine( 'cf1', 'cf2', colorCross ); addLine( 'cf3', 'cf4', colorCross );

function addLine( a, b, color ) {

addPoint( a, color ); addPoint( b, color );

}

function addPoint( id, color ) {

vertices.push( 0, 0, 0 ); colors.push( color.r, color.g, color.b );

if ( pointMap[ id ] === undefined ) {

pointMap[ id ] = [];

}

pointMap[ id ].push( ( vertices.length / 3 ) - 1 );

}

geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

LineSegments.call( this, geometry, material );

this.camera = camera; if ( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix();

this.matrix = camera.matrixWorld; this.matrixAutoUpdate = false;

this.pointMap = pointMap;

this.update();

}

CameraHelper.prototype = Object.create( LineSegments.prototype ); CameraHelper.prototype.constructor = CameraHelper;

CameraHelper.prototype.update = function () {

var geometry, pointMap;

var vector = new Vector3(); var camera = new Camera();

function setPoint( point, x, y, z ) {

vector.set( x, y, z ).unproject( camera );

var points = pointMap[ point ];

if ( points !== undefined ) {

var position = geometry.getAttribute( 'position' );

for ( var i = 0, l = points.length; i < l; i ++ ) {

position.setXYZ( points[ i ], vector.x, vector.y, vector.z );

}

}

}

return function update() {

geometry = this.geometry; pointMap = this.pointMap;

var w = 1, h = 1;

// we need just camera projection matrix // world matrix must be identity

camera.projectionMatrix.copy( this.camera.projectionMatrix );

// center / target

setPoint( 'c', 0, 0, - 1 ); setPoint( 't', 0, 0, 1 );

// near

setPoint( 'n1', - w, - h, - 1 ); setPoint( 'n2', w, - h, - 1 ); setPoint( 'n3', - w, h, - 1 ); setPoint( 'n4', w, h, - 1 );

// far

setPoint( 'f1', - w, - h, 1 ); setPoint( 'f2', w, - h, 1 ); setPoint( 'f3', - w, h, 1 ); setPoint( 'f4', w, h, 1 );

// up

setPoint( 'u1', w * 0.7, h * 1.1, - 1 ); setPoint( 'u2', - w * 0.7, h * 1.1, - 1 ); setPoint( 'u3', 0, h * 2, - 1 );

// cross

setPoint( 'cf1', - w, 0, 1 ); setPoint( 'cf2', w, 0, 1 ); setPoint( 'cf3', 0, - h, 1 ); setPoint( 'cf4', 0, h, 1 );

setPoint( 'cn1', - w, 0, - 1 ); setPoint( 'cn2', w, 0, - 1 ); setPoint( 'cn3', 0, - h, - 1 ); setPoint( 'cn4', 0, h, - 1 );

geometry.getAttribute( 'position' ).needsUpdate = true;

};

}();

/** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / http://github.com/Mugen87 */

function BoxHelper( object, color ) {

this.object = object;

if ( color === undefined ) color = 0xffff00;

var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); var positions = new Float32Array( 8 * 3 );

var geometry = new BufferGeometry(); geometry.setIndex( new BufferAttribute( indices, 1 ) ); geometry.addAttribute( 'position', new BufferAttribute( positions, 3 ) );

LineSegments.call( this, geometry, new LineBasicMaterial( { color: color } ) );

this.matrixAutoUpdate = false;

this.update();

}

BoxHelper.prototype = Object.create( LineSegments.prototype ); BoxHelper.prototype.constructor = BoxHelper;

BoxHelper.prototype.update = ( function () {

var box = new Box3();

return function update( object ) {

if ( object !== undefined ) {

console.warn( 'THREE.BoxHelper: .update() has no longer arguments.' );

}

if ( this.object !== undefined ) {

box.setFromObject( this.object );

}

if ( box.isEmpty() ) return;

var min = box.min; var max = box.max;

/* 5____4 1/___0/| | 6__|_7 2/___3/

0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */

var position = this.geometry.attributes.position; var array = position.array;

array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z; array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z; array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z; array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z; array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z; array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z; array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z; array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z;

position.needsUpdate = true;

this.geometry.computeBoundingSphere();

};

} )();

BoxHelper.prototype.setFromObject = function ( object ) {

this.object = object; this.update();

return this;

};

/** * @author WestLangley / http://github.com/WestLangley */

function Box3Helper( box, hex ) {

this.type = 'Box3Helper';

this.box = box;

var color = ( hex !== undefined ) ? hex : 0xffff00;

var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );

var positions = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, - 1, - 1, - 1, 1, - 1, - 1 ];

var geometry = new BufferGeometry();

geometry.setIndex( new BufferAttribute( indices, 1 ) );

geometry.addAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

LineSegments.call( this, geometry, new LineBasicMaterial( { color: color } ) );

this.geometry.computeBoundingSphere();

}

Box3Helper.prototype = Object.create( LineSegments.prototype ); Box3Helper.prototype.constructor = Box3Helper;

Box3Helper.prototype.updateMatrixWorld = function ( force ) {

var box = this.box;

if ( box.isEmpty() ) return;

box.getCenter( this.position );

box.getSize( this.scale );

this.scale.multiplyScalar( 0.5 );

Object3D.prototype.updateMatrixWorld.call( this, force );

};

/** * @author WestLangley / http://github.com/WestLangley */

function PlaneHelper( plane, size, hex ) {

this.type = 'PlaneHelper';

this.plane = plane;

this.size = ( size === undefined ) ? 1 : size;

var color = ( hex !== undefined ) ? hex : 0xffff00;

var positions = [ 1, - 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0 ];

var geometry = new BufferGeometry(); geometry.addAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); geometry.computeBoundingSphere();

Line.call( this, geometry, new LineBasicMaterial( { color: color } ) );

//

var positions2 = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, - 1, 1, 1, - 1, 1 ];

var geometry2 = new BufferGeometry(); geometry2.addAttribute( 'position', new Float32BufferAttribute( positions2, 3 ) ); geometry2.computeBoundingSphere();

this.add( new Mesh( geometry2, new MeshBasicMaterial( { color: color, opacity: 0.2, transparent: true, depthWrite: false } ) ) );

}

PlaneHelper.prototype = Object.create( Line.prototype ); PlaneHelper.prototype.constructor = PlaneHelper;

PlaneHelper.prototype.updateMatrixWorld = function ( force ) {

var scale = - this.plane.constant;

if ( Math.abs( scale ) < 1e-8 ) scale = 1e-8; // sign does not matter

this.scale.set( 0.5 * this.size, 0.5 * this.size, scale );

this.children[ 0 ].material.side = ( scale < 0 ) ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here

this.lookAt( this.plane.normal );

Object3D.prototype.updateMatrixWorld.call( this, force );

};

/** * @author WestLangley / http://github.com/WestLangley * @author zz85 / http://github.com/zz85 * @author bhouston / http://clara.io * * Creates an arrow for visualizing directions * * Parameters: * dir - Vector3 * origin - Vector3 * length - Number * color - color in hex value * headLength - Number * headWidth - Number */

var lineGeometry, coneGeometry;

function ArrowHelper( dir, origin, length, color, headLength, headWidth ) {

// dir is assumed to be normalized

Object3D.call( this );

if ( color === undefined ) color = 0xffff00; if ( length === undefined ) length = 1; if ( headLength === undefined ) headLength = 0.2 * length; if ( headWidth === undefined ) headWidth = 0.2 * headLength;

if ( lineGeometry === undefined ) {

lineGeometry = new BufferGeometry(); lineGeometry.addAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) );

coneGeometry = new CylinderBufferGeometry( 0, 0.5, 1, 5, 1 ); coneGeometry.translate( 0, - 0.5, 0 );

}

this.position.copy( origin );

this.line = new Line( lineGeometry, new LineBasicMaterial( { color: color } ) ); this.line.matrixAutoUpdate = false; this.add( this.line );

this.cone = new Mesh( coneGeometry, new MeshBasicMaterial( { color: color } ) ); this.cone.matrixAutoUpdate = false; this.add( this.cone );

this.setDirection( dir ); this.setLength( length, headLength, headWidth );

}

ArrowHelper.prototype = Object.create( Object3D.prototype ); ArrowHelper.prototype.constructor = ArrowHelper;

ArrowHelper.prototype.setDirection = ( function () {

var axis = new Vector3(); var radians;

return function setDirection( dir ) {

// dir is assumed to be normalized

if ( dir.y > 0.99999 ) {

this.quaternion.set( 0, 0, 0, 1 );

} else if ( dir.y < - 0.99999 ) {

this.quaternion.set( 1, 0, 0, 0 );

} else {

axis.set( dir.z, 0, - dir.x ).normalize();

radians = Math.acos( dir.y );

this.quaternion.setFromAxisAngle( axis, radians );

}

};

}() );

ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) {

if ( headLength === undefined ) headLength = 0.2 * length; if ( headWidth === undefined ) headWidth = 0.2 * headLength;

this.line.scale.set( 1, Math.max( 0, length - headLength ), 1 ); this.line.updateMatrix();

this.cone.scale.set( headWidth, headLength, headWidth ); this.cone.position.y = length; this.cone.updateMatrix();

};

ArrowHelper.prototype.setColor = function ( color ) {

this.line.material.color.copy( color ); this.cone.material.color.copy( color );

};

/** * @author sroucheray / http://sroucheray.org/ * @author mrdoob / http://mrdoob.com/ */

function AxesHelper( size ) {

size = size || 1;

var vertices = [ 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size ];

var colors = [ 1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1 ];

var geometry = new BufferGeometry(); geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

var material = new LineBasicMaterial( { vertexColors: VertexColors } );

LineSegments.call( this, geometry, material );

}

AxesHelper.prototype = Object.create( LineSegments.prototype ); AxesHelper.prototype.constructor = AxesHelper;

/** * @author mrdoob / http://mrdoob.com/ */

function Face4( a, b, c, d, normal, color, materialIndex ) {

console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' ); return new Face3( a, b, c, normal, color, materialIndex );

}

var LineStrip = 0;

var LinePieces = 1;

function MeshFaceMaterial( materials ) {

console.warn( 'THREE.MeshFaceMaterial has been removed. Use an Array instead.' ); return materials;

}

function MultiMaterial( materials ) {

if ( materials === undefined ) materials = [];

console.warn( 'THREE.MultiMaterial has been removed. Use an Array instead.' ); materials.isMultiMaterial = true; materials.materials = materials; materials.clone = function () {

return materials.slice();

}; return materials;

}

function PointCloud( geometry, material ) {

console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' ); return new Points( geometry, material );

}

function Particle( material ) {

console.warn( 'THREE.Particle has been renamed to THREE.Sprite.' ); return new Sprite( material );

}

function ParticleSystem( geometry, material ) {

console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' ); return new Points( geometry, material );

}

function PointCloudMaterial( parameters ) {

console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters );

}

function ParticleBasicMaterial( parameters ) {

console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters );

}

function ParticleSystemMaterial( parameters ) {

console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' ); return new PointsMaterial( parameters );

}

function Vertex( x, y, z ) {

console.warn( 'THREE.Vertex has been removed. Use THREE.Vector3 instead.' ); return new Vector3( x, y, z );

}

//

function DynamicBufferAttribute( array, itemSize ) {

console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setDynamic( true ) instead.' ); return new BufferAttribute( array, itemSize ).setDynamic( true );

}

function Int8Attribute( array, itemSize ) {

console.warn( 'THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.' ); return new Int8BufferAttribute( array, itemSize );

}

function Uint8Attribute( array, itemSize ) {

console.warn( 'THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.' ); return new Uint8BufferAttribute( array, itemSize );

}

function Uint8ClampedAttribute( array, itemSize ) {

console.warn( 'THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.' ); return new Uint8ClampedBufferAttribute( array, itemSize );

}

function Int16Attribute( array, itemSize ) {

console.warn( 'THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.' ); return new Int16BufferAttribute( array, itemSize );

}

function Uint16Attribute( array, itemSize ) {

console.warn( 'THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.' ); return new Uint16BufferAttribute( array, itemSize );

}

function Int32Attribute( array, itemSize ) {

console.warn( 'THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.' ); return new Int32BufferAttribute( array, itemSize );

}

function Uint32Attribute( array, itemSize ) {

console.warn( 'THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.' ); return new Uint32BufferAttribute( array, itemSize );

}

function Float32Attribute( array, itemSize ) {

console.warn( 'THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.' ); return new Float32BufferAttribute( array, itemSize );

}

function Float64Attribute( array, itemSize ) {

console.warn( 'THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.' ); return new Float64BufferAttribute( array, itemSize );

}

//

Curve.create = function ( construct, getPoint ) {

console.log( 'THREE.Curve.create() has been deprecated' );

construct.prototype = Object.create( Curve.prototype ); construct.prototype.constructor = construct; construct.prototype.getPoint = getPoint;

return construct;

};

//

Object.assign( CurvePath.prototype, {

createPointsGeometry: function ( divisions ) {

console.warn( 'THREE.CurvePath: .createPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

// generate geometry from path points (for Line or Points objects)

var pts = this.getPoints( divisions ); return this.createGeometry( pts );

},

createSpacedPointsGeometry: function ( divisions ) {

console.warn( 'THREE.CurvePath: .createSpacedPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

// generate geometry from equidistant sampling along the path

var pts = this.getSpacedPoints( divisions ); return this.createGeometry( pts );

},

createGeometry: function ( points ) {

console.warn( 'THREE.CurvePath: .createGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

var geometry = new Geometry();

for ( var i = 0, l = points.length; i < l; i ++ ) {

var point = points[ i ]; geometry.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );

}

return geometry;

}

} );

//

Object.assign( Path.prototype, {

fromPoints: function ( points ) {

console.warn( 'THREE.Path: .fromPoints() has been renamed to .setFromPoints().' ); this.setFromPoints( points );

}

} );

//

function ClosedSplineCurve3( points ) {

console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' );

CatmullRomCurve3.call( this, points ); this.type = 'catmullrom'; this.closed = true;

}

ClosedSplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype );

//

function SplineCurve3( points ) {

console.warn( 'THREE.SplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' );

CatmullRomCurve3.call( this, points ); this.type = 'catmullrom';

}

SplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype );

//

function Spline( points ) {

console.warn( 'THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.' );

CatmullRomCurve3.call( this, points ); this.type = 'catmullrom';

}

Spline.prototype = Object.create( CatmullRomCurve3.prototype );

Object.assign( Spline.prototype, {

initFromArray: function ( /* a */ ) {

console.error( 'THREE.Spline: .initFromArray() has been removed.' );

}, getControlPointsArray: function ( /* optionalTarget */ ) {

console.error( 'THREE.Spline: .getControlPointsArray() has been removed.' );

}, reparametrizeByArcLength: function ( /* samplingCoef */ ) {

console.error( 'THREE.Spline: .reparametrizeByArcLength() has been removed.' );

}

} );

//

function AxisHelper( size ) {

console.warn( 'THREE.AxisHelper has been renamed to THREE.AxesHelper.' ); return new AxesHelper( size );

}

function BoundingBoxHelper( object, color ) {

console.warn( 'THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.' ); return new BoxHelper( object, color );

}

function EdgesHelper( object, hex ) {

console.warn( 'THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.' ); return new LineSegments( new EdgesGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) );

}

GridHelper.prototype.setColors = function () {

console.error( 'THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.' );

};

SkeletonHelper.prototype.update = function () {

console.error( 'THREE.SkeletonHelper: update() no longer needs to be called.' );

};

function WireframeHelper( object, hex ) {

console.warn( 'THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.' ); return new LineSegments( new WireframeGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) );

}

//

Object.assign( Loader.prototype, {

extractUrlBase: function ( url ) {

console.warn( 'THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.' ); return LoaderUtils.extractUrlBase( url );

}

} );

function XHRLoader( manager ) {

console.warn( 'THREE.XHRLoader has been renamed to THREE.FileLoader.' ); return new FileLoader( manager );

}

function BinaryTextureLoader( manager ) {

console.warn( 'THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.' ); return new DataTextureLoader( manager );

}

Object.assign( JSONLoader.prototype, {

setTexturePath: function ( value ) {

console.warn( 'THREE.JSONLoader: .setTexturePath() has been renamed to .setResourcePath().' ); return this.setResourcePath( value );

}

} );

//

Object.assign( Box2.prototype, {

center: function ( optionalTarget ) {

console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget );

}, empty: function () {

console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' ); return this.isEmpty();

}, isIntersectionBox: function ( box ) {

console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box );

}, size: function ( optionalTarget ) {

console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' ); return this.getSize( optionalTarget );

} } );

Object.assign( Box3.prototype, {

center: function ( optionalTarget ) {

console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget );

}, empty: function () {

console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' ); return this.isEmpty();

}, isIntersectionBox: function ( box ) {

console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box );

}, isIntersectionSphere: function ( sphere ) {

console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere );

}, size: function ( optionalTarget ) {

console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' ); return this.getSize( optionalTarget );

} } );

Line3.prototype.center = function ( optionalTarget ) {

console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' ); return this.getCenter( optionalTarget );

};

Object.assign( _Math, {

random16: function () {

console.warn( 'THREE.Math: .random16() has been deprecated. Use Math.random() instead.' ); return Math.random();

},

nearestPowerOfTwo: function ( value ) {

console.warn( 'THREE.Math: .nearestPowerOfTwo() has been renamed to .floorPowerOfTwo().' ); return _Math.floorPowerOfTwo( value );

},

nextPowerOfTwo: function ( value ) {

console.warn( 'THREE.Math: .nextPowerOfTwo() has been renamed to .ceilPowerOfTwo().' ); return _Math.ceilPowerOfTwo( value );

}

} );

Object.assign( Matrix3.prototype, {

flattenToArrayOffset: function ( array, offset ) {

console.warn( "THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." ); return this.toArray( array, offset );

}, multiplyVector3: function ( vector ) {

console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' ); return vector.applyMatrix3( this );

}, multiplyVector3Array: function ( /* a */ ) {

console.error( 'THREE.Matrix3: .multiplyVector3Array() has been removed.' );

}, applyToBuffer: function ( buffer /*, offset, length */ ) {

console.warn( 'THREE.Matrix3: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' ); return this.applyToBufferAttribute( buffer );

}, applyToVector3Array: function ( /* array, offset, length */ ) {

console.error( 'THREE.Matrix3: .applyToVector3Array() has been removed.' );

}

} );

Object.assign( Matrix4.prototype, {

extractPosition: function ( m ) {

console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' ); return this.copyPosition( m );

}, flattenToArrayOffset: function ( array, offset ) {

console.warn( "THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." ); return this.toArray( array, offset );

}, getPosition: function () {

var v1;

return function getPosition() {

if ( v1 === undefined ) v1 = new Vector3(); console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' ); return v1.setFromMatrixColumn( this, 3 );

};

}(), setRotationFromQuaternion: function ( q ) {

console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' ); return this.makeRotationFromQuaternion( q );

}, multiplyToArray: function () {

console.warn( 'THREE.Matrix4: .multiplyToArray() has been removed.' );

}, multiplyVector3: function ( vector ) {

console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this );

}, multiplyVector4: function ( vector ) {

console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this );

}, multiplyVector3Array: function ( /* a */ ) {

console.error( 'THREE.Matrix4: .multiplyVector3Array() has been removed.' );

}, rotateAxis: function ( v ) {

console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' ); v.transformDirection( this );

}, crossVector: function ( vector ) {

console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); return vector.applyMatrix4( this );

}, translate: function () {

console.error( 'THREE.Matrix4: .translate() has been removed.' );

}, rotateX: function () {

console.error( 'THREE.Matrix4: .rotateX() has been removed.' );

}, rotateY: function () {

console.error( 'THREE.Matrix4: .rotateY() has been removed.' );

}, rotateZ: function () {

console.error( 'THREE.Matrix4: .rotateZ() has been removed.' );

}, rotateByAxis: function () {

console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' );

}, applyToBuffer: function ( buffer /*, offset, length */ ) {

console.warn( 'THREE.Matrix4: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' ); return this.applyToBufferAttribute( buffer );

}, applyToVector3Array: function ( /* array, offset, length */ ) {

console.error( 'THREE.Matrix4: .applyToVector3Array() has been removed.' );

}, makeFrustum: function ( left, right, bottom, top, near, far ) {

console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' ); return this.makePerspective( left, right, top, bottom, near, far );

}

} );

Plane.prototype.isIntersectionLine = function ( line ) {

console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' ); return this.intersectsLine( line );

};

Quaternion.prototype.multiplyVector3 = function ( vector ) {

console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' ); return vector.applyQuaternion( this );

};

Object.assign( Ray.prototype, {

isIntersectionBox: function ( box ) {

console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' ); return this.intersectsBox( box );

}, isIntersectionPlane: function ( plane ) {

console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' ); return this.intersectsPlane( plane );

}, isIntersectionSphere: function ( sphere ) {

console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); return this.intersectsSphere( sphere );

}

} );

Object.assign( Triangle.prototype, {

area: function () {

console.warn( 'THREE.Triangle: .area() has been renamed to .getArea().' ); return this.getArea();

}, barycoordFromPoint: function ( point, target ) {

console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' ); return this.getBarycoord( point, target );

}, midpoint: function ( target ) {

console.warn( 'THREE.Triangle: .midpoint() has been renamed to .getMidpoint().' ); return this.getMidpoint( target );

}, normal: function ( target ) {

console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' ); return this.getNormal( target );

}, plane: function ( target ) {

console.warn( 'THREE.Triangle: .plane() has been renamed to .getPlane().' ); return this.getPlane( target );

}

} );

Object.assign( Triangle, {

barycoordFromPoint: function ( point, a, b, c, target ) {

console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' ); return Triangle.getBarycoord( point, a, b, c, target );

}, normal: function ( a, b, c, target ) {

console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' ); return Triangle.getNormal( a, b, c, target );

}

} );

Object.assign( Shape.prototype, {

extractAllPoints: function ( divisions ) {

console.warn( 'THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.' ); return this.extractPoints( divisions );

}, extrude: function ( options ) {

console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' ); return new ExtrudeGeometry( this, options );

}, makeGeometry: function ( options ) {

console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' ); return new ShapeGeometry( this, options );

}

} );

Object.assign( Vector2.prototype, {

fromAttribute: function ( attribute, index, offset ) {

console.warn( 'THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset );

}, distanceToManhattan: function ( v ) {

console.warn( 'THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' ); return this.manhattanDistanceTo( v );

}, lengthManhattan: function () {

console.warn( 'THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().' ); return this.manhattanLength();

}

} );

Object.assign( Vector3.prototype, {

setEulerFromRotationMatrix: function () {

console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' );

}, setEulerFromQuaternion: function () {

console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' );

}, getPositionFromMatrix: function ( m ) {

console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' ); return this.setFromMatrixPosition( m );

}, getScaleFromMatrix: function ( m ) {

console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' ); return this.setFromMatrixScale( m );

}, getColumnFromMatrix: function ( index, matrix ) {

console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' ); return this.setFromMatrixColumn( matrix, index );

}, applyProjection: function ( m ) {

console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' ); return this.applyMatrix4( m );

}, fromAttribute: function ( attribute, index, offset ) {

console.warn( 'THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset );

}, distanceToManhattan: function ( v ) {

console.warn( 'THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' ); return this.manhattanDistanceTo( v );

}, lengthManhattan: function () {

console.warn( 'THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().' ); return this.manhattanLength();

}

} );

Object.assign( Vector4.prototype, {

fromAttribute: function ( attribute, index, offset ) {

console.warn( 'THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().' ); return this.fromBufferAttribute( attribute, index, offset );

}, lengthManhattan: function () {

console.warn( 'THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().' ); return this.manhattanLength();

}

} );

//

Object.assign( Geometry.prototype, {

computeTangents: function () {

console.error( 'THREE.Geometry: .computeTangents() has been removed.' );

}, computeLineDistances: function () {

console.error( 'THREE.Geometry: .computeLineDistances() has been removed. Use THREE.Line.computeLineDistances() instead.' );

}

} );

Object.assign( Object3D.prototype, {

getChildByName: function ( name ) {

console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' ); return this.getObjectByName( name );

}, renderDepth: function () {

console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' );

}, translate: function ( distance, axis ) {

console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' ); return this.translateOnAxis( axis, distance );

}, getWorldRotation: function () {

console.error( 'THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.' );

}

} );

Object.defineProperties( Object3D.prototype, {

eulerOrder: { get: function () {

console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); return this.rotation.order;

}, set: function ( value ) {

console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); this.rotation.order = value;

} }, useQuaternion: { get: function () {

console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );

}, set: function () {

console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );

} }

} );

Object.defineProperties( LOD.prototype, {

objects: { get: function () {

console.warn( 'THREE.LOD: .objects has been renamed to .levels.' ); return this.levels;

} }

} );

Object.defineProperty( Skeleton.prototype, 'useVertexTexture', {

get: function () {

console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );

}, set: function () {

console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );

}

} );

Object.defineProperty( Curve.prototype, '__arcLengthDivisions', {

get: function () {

console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' ); return this.arcLengthDivisions;

}, set: function ( value ) {

console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' ); this.arcLengthDivisions = value;

}

} );

//

PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) {

console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " + "Use .setFocalLength and .filmGauge for a photographic setup." );

if ( filmGauge !== undefined ) this.filmGauge = filmGauge; this.setFocalLength( focalLength );

};

//

Object.defineProperties( Light.prototype, { onlyShadow: { set: function () {

console.warn( 'THREE.Light: .onlyShadow has been removed.' );

} }, shadowCameraFov: { set: function ( value ) {

console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' ); this.shadow.camera.fov = value;

} }, shadowCameraLeft: { set: function ( value ) {

console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' ); this.shadow.camera.left = value;

} }, shadowCameraRight: { set: function ( value ) {

console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' ); this.shadow.camera.right = value;

} }, shadowCameraTop: { set: function ( value ) {

console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' ); this.shadow.camera.top = value;

} }, shadowCameraBottom: { set: function ( value ) {

console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' ); this.shadow.camera.bottom = value;

} }, shadowCameraNear: { set: function ( value ) {

console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' ); this.shadow.camera.near = value;

} }, shadowCameraFar: { set: function ( value ) {

console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' ); this.shadow.camera.far = value;

} }, shadowCameraVisible: { set: function () {

console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' );

} }, shadowBias: { set: function ( value ) {

console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' ); this.shadow.bias = value;

} }, shadowDarkness: { set: function () {

console.warn( 'THREE.Light: .shadowDarkness has been removed.' );

} }, shadowMapWidth: { set: function ( value ) {

console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' ); this.shadow.mapSize.width = value;

} }, shadowMapHeight: { set: function ( value ) {

console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' ); this.shadow.mapSize.height = value;

} } } );

//

Object.defineProperties( BufferAttribute.prototype, {

length: { get: function () {

console.warn( 'THREE.BufferAttribute: .length has been deprecated. Use .count instead.' ); return this.array.length;

} }, copyIndicesArray: function ( /* indices */ ) {

console.error( 'THREE.BufferAttribute: .copyIndicesArray() has been removed.' );

}

} );

Object.assign( BufferGeometry.prototype, {

addIndex: function ( index ) {

console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' ); this.setIndex( index );

}, addDrawCall: function ( start, count, indexOffset ) {

if ( indexOffset !== undefined ) {

console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' );

} console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' ); this.addGroup( start, count );

}, clearDrawCalls: function () {

console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' ); this.clearGroups();

}, computeTangents: function () {

console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' );

}, computeOffsets: function () {

console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' );

}

} );

Object.defineProperties( BufferGeometry.prototype, {

drawcalls: { get: function () {

console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' ); return this.groups;

} }, offsets: { get: function () {

console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' ); return this.groups;

} }

} );

//

Object.assign( ExtrudeBufferGeometry.prototype, {

getArrays: function () {

console.error( 'THREE.ExtrudeBufferGeometry: .getArrays() has been removed.' );

},

addShapeList: function () {

console.error( 'THREE.ExtrudeBufferGeometry: .addShapeList() has been removed.' );

},

addShape: function () {

console.error( 'THREE.ExtrudeBufferGeometry: .addShape() has been removed.' );

}

} );

//

Object.defineProperties( Uniform.prototype, {

dynamic: { set: function () {

console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' );

} }, onUpdate: { value: function () {

console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' ); return this;

} }

} );

//

Object.defineProperties( Material.prototype, {

wrapAround: { get: function () {

console.warn( 'THREE.Material: .wrapAround has been removed.' );

}, set: function () {

console.warn( 'THREE.Material: .wrapAround has been removed.' );

} }, wrapRGB: { get: function () {

console.warn( 'THREE.Material: .wrapRGB has been removed.' ); return new Color();

} },

shading: { get: function () {

console.error( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );

}, set: function ( value ) {

console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); this.flatShading = ( value === FlatShading );

} }

} );

Object.defineProperties( MeshPhongMaterial.prototype, {

metal: { get: function () {

console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' ); return false;

}, set: function () {

console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' );

} }

} );

Object.defineProperties( ShaderMaterial.prototype, {

derivatives: { get: function () {

console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); return this.extensions.derivatives;

}, set: function ( value ) {

console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); this.extensions.derivatives = value;

} }

} );

//

Object.assign( WebGLRenderer.prototype, {

clearTarget: function ( renderTarget, color, depth, stencil ) {

console.warn( 'THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.' ); this.setRenderTarget( renderTarget ); this.clear( color, depth, stencil );

},

animate: function ( callback ) {

console.warn( 'THREE.WebGLRenderer: .animate() is now .setAnimationLoop().' ); this.setAnimationLoop( callback );

},

getCurrentRenderTarget: function () {

console.warn( 'THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().' ); return this.getRenderTarget();

},

getMaxAnisotropy: function () {

console.warn( 'THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().' ); return this.capabilities.getMaxAnisotropy();

},

getPrecision: function () {

console.warn( 'THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.' ); return this.capabilities.precision;

},

resetGLState: function () {

console.warn( 'THREE.WebGLRenderer: .resetGLState() is now .state.reset().' ); return this.state.reset();

},

supportsFloatTextures: function () {

console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' ); return this.extensions.get( 'OES_texture_float' );

}, supportsHalfFloatTextures: function () {

console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' ); return this.extensions.get( 'OES_texture_half_float' );

}, supportsStandardDerivatives: function () {

console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' ); return this.extensions.get( 'OES_standard_derivatives' );

}, supportsCompressedTextureS3TC: function () {

console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_s3tc' );

}, supportsCompressedTexturePVRTC: function () {

console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' ); return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' );

}, supportsBlendMinMax: function () {

console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' ); return this.extensions.get( 'EXT_blend_minmax' );

}, supportsVertexTextures: function () {

console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' ); return this.capabilities.vertexTextures;

}, supportsInstancedArrays: function () {

console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' ); return this.extensions.get( 'ANGLE_instanced_arrays' );

}, enableScissorTest: function ( boolean ) {

console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' ); this.setScissorTest( boolean );

}, initMaterial: function () {

console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' );

}, addPrePlugin: function () {

console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' );

}, addPostPlugin: function () {

console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' );

}, updateShadowMap: function () {

console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' );

}, setFaceCulling: function () {

console.warn( 'THREE.WebGLRenderer: .setFaceCulling() has been removed.' );

}

} );

Object.defineProperties( WebGLRenderer.prototype, {

shadowMapEnabled: { get: function () {

return this.shadowMap.enabled;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' ); this.shadowMap.enabled = value;

} }, shadowMapType: { get: function () {

return this.shadowMap.type;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' ); this.shadowMap.type = value;

} }, shadowMapCullFace: { get: function () {

console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' ); return undefined;

}, set: function ( /* value */ ) {

console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' );

} } } );

Object.defineProperties( WebGLShadowMap.prototype, {

cullFace: { get: function () {

console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' ); return undefined;

}, set: function ( /* cullFace */ ) {

console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' );

} }, renderReverseSided: { get: function () {

console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' ); return undefined;

}, set: function () {

console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' );

} }, renderSingleSided: { get: function () {

console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' ); return undefined;

}, set: function () {

console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' );

} }

} );

//

Object.defineProperties( WebGLRenderTarget.prototype, {

wrapS: { get: function () {

console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); return this.texture.wrapS;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); this.texture.wrapS = value;

} }, wrapT: { get: function () {

console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); return this.texture.wrapT;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); this.texture.wrapT = value;

} }, magFilter: { get: function () {

console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); return this.texture.magFilter;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); this.texture.magFilter = value;

} }, minFilter: { get: function () {

console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); return this.texture.minFilter;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); this.texture.minFilter = value;

} }, anisotropy: { get: function () {

console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); return this.texture.anisotropy;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); this.texture.anisotropy = value;

} }, offset: { get: function () {

console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); return this.texture.offset;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); this.texture.offset = value;

} }, repeat: { get: function () {

console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); return this.texture.repeat;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); this.texture.repeat = value;

} }, format: { get: function () {

console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); return this.texture.format;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); this.texture.format = value;

} }, type: { get: function () {

console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); return this.texture.type;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); this.texture.type = value;

} }, generateMipmaps: { get: function () {

console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); return this.texture.generateMipmaps;

}, set: function ( value ) {

console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); this.texture.generateMipmaps = value;

} }

} );

//

Object.defineProperties( WebVRManager.prototype, {

standing: { set: function ( /* value */ ) {

console.warn( 'THREE.WebVRManager: .standing has been removed.' );

} }, userHeight: { set: function ( /* value */ ) {

console.warn( 'THREE.WebVRManager: .userHeight has been removed.' );

} }

} );

//

Audio.prototype.load = function ( file ) {

console.warn( 'THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.' ); var scope = this; var audioLoader = new AudioLoader(); audioLoader.load( file, function ( buffer ) {

scope.setBuffer( buffer );

} ); return this;

};

AudioAnalyser.prototype.getData = function () {

console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' ); return this.getFrequencyData();

};

//

CubeCamera.prototype.updateCubeMap = function ( renderer, scene ) {

console.warn( 'THREE.CubeCamera: .updateCubeMap() is now .update().' ); return this.update( renderer, scene );

};

//

var GeometryUtils = {

merge: function ( geometry1, geometry2, materialIndexOffset ) {

console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' ); var matrix;

if ( geometry2.isMesh ) {

geometry2.matrixAutoUpdate && geometry2.updateMatrix();

matrix = geometry2.matrix; geometry2 = geometry2.geometry;

}

geometry1.merge( geometry2, matrix, materialIndexOffset );

},

center: function ( geometry ) {

console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' ); return geometry.center();

}

};

ImageUtils.crossOrigin = undefined;

ImageUtils.loadTexture = function ( url, mapping, onLoad, onError ) {

console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' );

var loader = new TextureLoader(); loader.setCrossOrigin( this.crossOrigin );

var texture = loader.load( url, onLoad, undefined, onError );

if ( mapping ) texture.mapping = mapping;

return texture;

};

ImageUtils.loadTextureCube = function ( urls, mapping, onLoad, onError ) {

console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' );

var loader = new CubeTextureLoader(); loader.setCrossOrigin( this.crossOrigin );

var texture = loader.load( urls, onLoad, undefined, onError );

if ( mapping ) texture.mapping = mapping;

return texture;

};

ImageUtils.loadCompressedTexture = function () {

console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' );

};

ImageUtils.loadCompressedTextureCube = function () {

console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' );

};

//

function Projector() {

console.error( 'THREE.Projector has been moved to /examples/js/renderers/Projector.js.' );

this.projectVector = function ( vector, camera ) {

console.warn( 'THREE.Projector: .projectVector() is now vector.project().' ); vector.project( camera );

};

this.unprojectVector = function ( vector, camera ) {

console.warn( 'THREE.Projector: .unprojectVector() is now vector.unproject().' ); vector.unproject( camera );

};

this.pickingRay = function () {

console.error( 'THREE.Projector: .pickingRay() is now raycaster.setFromCamera().' );

};

}

//

function CanvasRenderer() {

console.error( 'THREE.CanvasRenderer has been moved to /examples/js/renderers/CanvasRenderer.js' );

this.domElement = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); this.clear = function () {}; this.render = function () {}; this.setClearColor = function () {}; this.setSize = function () {};

}

//

var SceneUtils = {

createMultiMaterialObject: function ( /* geometry, materials */ ) {

console.error( 'THREE.SceneUtils has been moved to /examples/js/utils/SceneUtils.js' );

},

detach: function ( /* child, parent, scene */ ) {

console.error( 'THREE.SceneUtils has been moved to /examples/js/utils/SceneUtils.js' );

},

attach: function ( /* child, scene, parent */ ) {

console.error( 'THREE.SceneUtils has been moved to /examples/js/utils/SceneUtils.js' );

}

};

//

function LensFlare() {

console.error( 'THREE.LensFlare has been moved to /examples/js/objects/Lensflare.js' );

}

exports.WebGLRenderTargetCube = WebGLRenderTargetCube; exports.WebGLRenderTarget = WebGLRenderTarget; exports.WebGLRenderer = WebGLRenderer; exports.ShaderLib = ShaderLib; exports.UniformsLib = UniformsLib; exports.UniformsUtils = UniformsUtils; exports.ShaderChunk = ShaderChunk; exports.FogExp2 = FogExp2; exports.Fog = Fog; exports.Scene = Scene; exports.Sprite = Sprite; exports.LOD = LOD; exports.SkinnedMesh = SkinnedMesh; exports.Skeleton = Skeleton; exports.Bone = Bone; exports.Mesh = Mesh; exports.LineSegments = LineSegments; exports.LineLoop = LineLoop; exports.Line = Line; exports.Points = Points; exports.Group = Group; exports.VideoTexture = VideoTexture; exports.DataTexture = DataTexture; exports.DataTexture3D = DataTexture3D; exports.CompressedTexture = CompressedTexture; exports.CubeTexture = CubeTexture; exports.CanvasTexture = CanvasTexture; exports.DepthTexture = DepthTexture; exports.Texture = Texture; exports.CompressedTextureLoader = CompressedTextureLoader; exports.DataTextureLoader = DataTextureLoader; exports.CubeTextureLoader = CubeTextureLoader; exports.TextureLoader = TextureLoader; exports.ObjectLoader = ObjectLoader; exports.MaterialLoader = MaterialLoader; exports.BufferGeometryLoader = BufferGeometryLoader; exports.DefaultLoadingManager = DefaultLoadingManager; exports.LoadingManager = LoadingManager; exports.JSONLoader = JSONLoader; exports.ImageLoader = ImageLoader; exports.ImageBitmapLoader = ImageBitmapLoader; exports.FontLoader = FontLoader; exports.FileLoader = FileLoader; exports.Loader = Loader; exports.LoaderUtils = LoaderUtils; exports.Cache = Cache; exports.AudioLoader = AudioLoader; exports.SpotLightShadow = SpotLightShadow; exports.SpotLight = SpotLight; exports.PointLight = PointLight; exports.RectAreaLight = RectAreaLight; exports.HemisphereLight = HemisphereLight; exports.DirectionalLightShadow = DirectionalLightShadow; exports.DirectionalLight = DirectionalLight; exports.AmbientLight = AmbientLight; exports.LightShadow = LightShadow; exports.Light = Light; exports.StereoCamera = StereoCamera; exports.PerspectiveCamera = PerspectiveCamera; exports.OrthographicCamera = OrthographicCamera; exports.CubeCamera = CubeCamera; exports.ArrayCamera = ArrayCamera; exports.Camera = Camera; exports.AudioListener = AudioListener; exports.PositionalAudio = PositionalAudio; exports.AudioContext = AudioContext; exports.AudioAnalyser = AudioAnalyser; exports.Audio = Audio; exports.VectorKeyframeTrack = VectorKeyframeTrack; exports.StringKeyframeTrack = StringKeyframeTrack; exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack; exports.NumberKeyframeTrack = NumberKeyframeTrack; exports.ColorKeyframeTrack = ColorKeyframeTrack; exports.BooleanKeyframeTrack = BooleanKeyframeTrack; exports.PropertyMixer = PropertyMixer; exports.PropertyBinding = PropertyBinding; exports.KeyframeTrack = KeyframeTrack; exports.AnimationUtils = AnimationUtils; exports.AnimationObjectGroup = AnimationObjectGroup; exports.AnimationMixer = AnimationMixer; exports.AnimationClip = AnimationClip; exports.Uniform = Uniform; exports.InstancedBufferGeometry = InstancedBufferGeometry; exports.BufferGeometry = BufferGeometry; exports.Geometry = Geometry; exports.InterleavedBufferAttribute = InterleavedBufferAttribute; exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer; exports.InterleavedBuffer = InterleavedBuffer; exports.InstancedBufferAttribute = InstancedBufferAttribute; exports.Face3 = Face3; exports.Object3D = Object3D; exports.Raycaster = Raycaster; exports.Layers = Layers; exports.EventDispatcher = EventDispatcher; exports.Clock = Clock; exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant; exports.LinearInterpolant = LinearInterpolant; exports.DiscreteInterpolant = DiscreteInterpolant; exports.CubicInterpolant = CubicInterpolant; exports.Interpolant = Interpolant; exports.Triangle = Triangle; exports.Math = _Math; exports.Spherical = Spherical; exports.Cylindrical = Cylindrical; exports.Plane = Plane; exports.Frustum = Frustum; exports.Sphere = Sphere; exports.Ray = Ray; exports.Matrix4 = Matrix4; exports.Matrix3 = Matrix3; exports.Box3 = Box3; exports.Box2 = Box2; exports.Line3 = Line3; exports.Euler = Euler; exports.Vector4 = Vector4; exports.Vector3 = Vector3; exports.Vector2 = Vector2; exports.Quaternion = Quaternion; exports.Color = Color; exports.ImmediateRenderObject = ImmediateRenderObject; exports.VertexNormalsHelper = VertexNormalsHelper; exports.SpotLightHelper = SpotLightHelper; exports.SkeletonHelper = SkeletonHelper; exports.PointLightHelper = PointLightHelper; exports.RectAreaLightHelper = RectAreaLightHelper; exports.HemisphereLightHelper = HemisphereLightHelper; exports.GridHelper = GridHelper; exports.PolarGridHelper = PolarGridHelper; exports.FaceNormalsHelper = FaceNormalsHelper; exports.DirectionalLightHelper = DirectionalLightHelper; exports.CameraHelper = CameraHelper; exports.BoxHelper = BoxHelper; exports.Box3Helper = Box3Helper; exports.PlaneHelper = PlaneHelper; exports.ArrowHelper = ArrowHelper; exports.AxesHelper = AxesHelper; exports.Shape = Shape; exports.Path = Path; exports.ShapePath = ShapePath; exports.Font = Font; exports.CurvePath = CurvePath; exports.Curve = Curve; exports.ImageUtils = ImageUtils; exports.ShapeUtils = ShapeUtils; exports.WebGLUtils = WebGLUtils; exports.WireframeGeometry = WireframeGeometry; exports.ParametricGeometry = ParametricGeometry; exports.ParametricBufferGeometry = ParametricBufferGeometry; exports.TetrahedronGeometry = TetrahedronGeometry; exports.TetrahedronBufferGeometry = TetrahedronBufferGeometry; exports.OctahedronGeometry = OctahedronGeometry; exports.OctahedronBufferGeometry = OctahedronBufferGeometry; exports.IcosahedronGeometry = IcosahedronGeometry; exports.IcosahedronBufferGeometry = IcosahedronBufferGeometry; exports.DodecahedronGeometry = DodecahedronGeometry; exports.DodecahedronBufferGeometry = DodecahedronBufferGeometry; exports.PolyhedronGeometry = PolyhedronGeometry; exports.PolyhedronBufferGeometry = PolyhedronBufferGeometry; exports.TubeGeometry = TubeGeometry; exports.TubeBufferGeometry = TubeBufferGeometry; exports.TorusKnotGeometry = TorusKnotGeometry; exports.TorusKnotBufferGeometry = TorusKnotBufferGeometry; exports.TorusGeometry = TorusGeometry; exports.TorusBufferGeometry = TorusBufferGeometry; exports.TextGeometry = TextGeometry; exports.TextBufferGeometry = TextBufferGeometry; exports.SphereGeometry = SphereGeometry; exports.SphereBufferGeometry = SphereBufferGeometry; exports.RingGeometry = RingGeometry; exports.RingBufferGeometry = RingBufferGeometry; exports.PlaneGeometry = PlaneGeometry; exports.PlaneBufferGeometry = PlaneBufferGeometry; exports.LatheGeometry = LatheGeometry; exports.LatheBufferGeometry = LatheBufferGeometry; exports.ShapeGeometry = ShapeGeometry; exports.ShapeBufferGeometry = ShapeBufferGeometry; exports.ExtrudeGeometry = ExtrudeGeometry; exports.ExtrudeBufferGeometry = ExtrudeBufferGeometry; exports.EdgesGeometry = EdgesGeometry; exports.ConeGeometry = ConeGeometry; exports.ConeBufferGeometry = ConeBufferGeometry; exports.CylinderGeometry = CylinderGeometry; exports.CylinderBufferGeometry = CylinderBufferGeometry; exports.CircleGeometry = CircleGeometry; exports.CircleBufferGeometry = CircleBufferGeometry; exports.BoxGeometry = BoxGeometry; exports.BoxBufferGeometry = BoxBufferGeometry; exports.ShadowMaterial = ShadowMaterial; exports.SpriteMaterial = SpriteMaterial; exports.RawShaderMaterial = RawShaderMaterial; exports.ShaderMaterial = ShaderMaterial; exports.PointsMaterial = PointsMaterial; exports.MeshPhysicalMaterial = MeshPhysicalMaterial; exports.MeshStandardMaterial = MeshStandardMaterial; exports.MeshPhongMaterial = MeshPhongMaterial; exports.MeshToonMaterial = MeshToonMaterial; exports.MeshNormalMaterial = MeshNormalMaterial; exports.MeshLambertMaterial = MeshLambertMaterial; exports.MeshDepthMaterial = MeshDepthMaterial; exports.MeshDistanceMaterial = MeshDistanceMaterial; exports.MeshBasicMaterial = MeshBasicMaterial; exports.MeshMatcapMaterial = MeshMatcapMaterial; exports.LineDashedMaterial = LineDashedMaterial; exports.LineBasicMaterial = LineBasicMaterial; exports.Material = Material; exports.Float64BufferAttribute = Float64BufferAttribute; exports.Float32BufferAttribute = Float32BufferAttribute; exports.Uint32BufferAttribute = Uint32BufferAttribute; exports.Int32BufferAttribute = Int32BufferAttribute; exports.Uint16BufferAttribute = Uint16BufferAttribute; exports.Int16BufferAttribute = Int16BufferAttribute; exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute; exports.Uint8BufferAttribute = Uint8BufferAttribute; exports.Int8BufferAttribute = Int8BufferAttribute; exports.BufferAttribute = BufferAttribute; exports.ArcCurve = ArcCurve; exports.CatmullRomCurve3 = CatmullRomCurve3; exports.CubicBezierCurve = CubicBezierCurve; exports.CubicBezierCurve3 = CubicBezierCurve3; exports.EllipseCurve = EllipseCurve; exports.LineCurve = LineCurve; exports.LineCurve3 = LineCurve3; exports.QuadraticBezierCurve = QuadraticBezierCurve; exports.QuadraticBezierCurve3 = QuadraticBezierCurve3; exports.SplineCurve = SplineCurve; exports.REVISION = REVISION; exports.MOUSE = MOUSE; exports.CullFaceNone = CullFaceNone; exports.CullFaceBack = CullFaceBack; exports.CullFaceFront = CullFaceFront; exports.CullFaceFrontBack = CullFaceFrontBack; exports.FrontFaceDirectionCW = FrontFaceDirectionCW; exports.FrontFaceDirectionCCW = FrontFaceDirectionCCW; exports.BasicShadowMap = BasicShadowMap; exports.PCFShadowMap = PCFShadowMap; exports.PCFSoftShadowMap = PCFSoftShadowMap; exports.FrontSide = FrontSide; exports.BackSide = BackSide; exports.DoubleSide = DoubleSide; exports.FlatShading = FlatShading; exports.SmoothShading = SmoothShading; exports.NoColors = NoColors; exports.FaceColors = FaceColors; exports.VertexColors = VertexColors; exports.NoBlending = NoBlending; exports.NormalBlending = NormalBlending; exports.AdditiveBlending = AdditiveBlending; exports.SubtractiveBlending = SubtractiveBlending; exports.MultiplyBlending = MultiplyBlending; exports.CustomBlending = CustomBlending; exports.AddEquation = AddEquation; exports.SubtractEquation = SubtractEquation; exports.ReverseSubtractEquation = ReverseSubtractEquation; exports.MinEquation = MinEquation; exports.MaxEquation = MaxEquation; exports.ZeroFactor = ZeroFactor; exports.OneFactor = OneFactor; exports.SrcColorFactor = SrcColorFactor; exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor; exports.SrcAlphaFactor = SrcAlphaFactor; exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor; exports.DstAlphaFactor = DstAlphaFactor; exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor; exports.DstColorFactor = DstColorFactor; exports.OneMinusDstColorFactor = OneMinusDstColorFactor; exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor; exports.NeverDepth = NeverDepth; exports.AlwaysDepth = AlwaysDepth; exports.LessDepth = LessDepth; exports.LessEqualDepth = LessEqualDepth; exports.EqualDepth = EqualDepth; exports.GreaterEqualDepth = GreaterEqualDepth; exports.GreaterDepth = GreaterDepth; exports.NotEqualDepth = NotEqualDepth; exports.MultiplyOperation = MultiplyOperation; exports.MixOperation = MixOperation; exports.AddOperation = AddOperation; exports.NoToneMapping = NoToneMapping; exports.LinearToneMapping = LinearToneMapping; exports.ReinhardToneMapping = ReinhardToneMapping; exports.Uncharted2ToneMapping = Uncharted2ToneMapping; exports.CineonToneMapping = CineonToneMapping; exports.UVMapping = UVMapping; exports.CubeReflectionMapping = CubeReflectionMapping; exports.CubeRefractionMapping = CubeRefractionMapping; exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping; exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping; exports.SphericalReflectionMapping = SphericalReflectionMapping; exports.CubeUVReflectionMapping = CubeUVReflectionMapping; exports.CubeUVRefractionMapping = CubeUVRefractionMapping; exports.RepeatWrapping = RepeatWrapping; exports.ClampToEdgeWrapping = ClampToEdgeWrapping; exports.MirroredRepeatWrapping = MirroredRepeatWrapping; exports.NearestFilter = NearestFilter; exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter; exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter; exports.LinearFilter = LinearFilter; exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter; exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter; exports.UnsignedByteType = UnsignedByteType; exports.ByteType = ByteType; exports.ShortType = ShortType; exports.UnsignedShortType = UnsignedShortType; exports.IntType = IntType; exports.UnsignedIntType = UnsignedIntType; exports.FloatType = FloatType; exports.HalfFloatType = HalfFloatType; exports.UnsignedShort4444Type = UnsignedShort4444Type; exports.UnsignedShort5551Type = UnsignedShort5551Type; exports.UnsignedShort565Type = UnsignedShort565Type; exports.UnsignedInt248Type = UnsignedInt248Type; exports.AlphaFormat = AlphaFormat; exports.RGBFormat = RGBFormat; exports.RGBAFormat = RGBAFormat; exports.LuminanceFormat = LuminanceFormat; exports.LuminanceAlphaFormat = LuminanceAlphaFormat; exports.RGBEFormat = RGBEFormat; exports.DepthFormat = DepthFormat; exports.DepthStencilFormat = DepthStencilFormat; exports.RedFormat = RedFormat; exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format; exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format; exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format; exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format; exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format; exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format; exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format; exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format; exports.RGB_ETC1_Format = RGB_ETC1_Format; exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format; exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format; exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format; exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format; exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format; exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format; exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format; exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format; exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format; exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format; exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format; exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format; exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format; exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format; exports.LoopOnce = LoopOnce; exports.LoopRepeat = LoopRepeat; exports.LoopPingPong = LoopPingPong; exports.InterpolateDiscrete = InterpolateDiscrete; exports.InterpolateLinear = InterpolateLinear; exports.InterpolateSmooth = InterpolateSmooth; exports.ZeroCurvatureEnding = ZeroCurvatureEnding; exports.ZeroSlopeEnding = ZeroSlopeEnding; exports.WrapAroundEnding = WrapAroundEnding; exports.TrianglesDrawMode = TrianglesDrawMode; exports.TriangleStripDrawMode = TriangleStripDrawMode; exports.TriangleFanDrawMode = TriangleFanDrawMode; exports.LinearEncoding = LinearEncoding; exports.sRGBEncoding = sRGBEncoding; exports.GammaEncoding = GammaEncoding; exports.RGBEEncoding = RGBEEncoding; exports.LogLuvEncoding = LogLuvEncoding; exports.RGBM7Encoding = RGBM7Encoding; exports.RGBM16Encoding = RGBM16Encoding; exports.RGBDEncoding = RGBDEncoding; exports.BasicDepthPacking = BasicDepthPacking; exports.RGBADepthPacking = RGBADepthPacking; exports.TangentSpaceNormalMap = TangentSpaceNormalMap; exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap; exports.CubeGeometry = BoxGeometry; exports.Face4 = Face4; exports.LineStrip = LineStrip; exports.LinePieces = LinePieces; exports.MeshFaceMaterial = MeshFaceMaterial; exports.MultiMaterial = MultiMaterial; exports.PointCloud = PointCloud; exports.Particle = Particle; exports.ParticleSystem = ParticleSystem; exports.PointCloudMaterial = PointCloudMaterial; exports.ParticleBasicMaterial = ParticleBasicMaterial; exports.ParticleSystemMaterial = ParticleSystemMaterial; exports.Vertex = Vertex; exports.DynamicBufferAttribute = DynamicBufferAttribute; exports.Int8Attribute = Int8Attribute; exports.Uint8Attribute = Uint8Attribute; exports.Uint8ClampedAttribute = Uint8ClampedAttribute; exports.Int16Attribute = Int16Attribute; exports.Uint16Attribute = Uint16Attribute; exports.Int32Attribute = Int32Attribute; exports.Uint32Attribute = Uint32Attribute; exports.Float32Attribute = Float32Attribute; exports.Float64Attribute = Float64Attribute; exports.ClosedSplineCurve3 = ClosedSplineCurve3; exports.SplineCurve3 = SplineCurve3; exports.Spline = Spline; exports.AxisHelper = AxisHelper; exports.BoundingBoxHelper = BoundingBoxHelper; exports.EdgesHelper = EdgesHelper; exports.WireframeHelper = WireframeHelper; exports.XHRLoader = XHRLoader; exports.BinaryTextureLoader = BinaryTextureLoader; exports.GeometryUtils = GeometryUtils; exports.Projector = Projector; exports.CanvasRenderer = CanvasRenderer; exports.SceneUtils = SceneUtils; exports.LensFlare = LensFlare;

Object.defineProperty(exports, '__esModule', { value: true });

})));