Get the power of blast
Where:
$$X=[x_1,\ x_2,\ x_3,\ ...,\ x_n]^T$$
$$W=[w_1,\ w_2,\ w_3,\ ...,\ w_n]^T$$
$$\varepsilon=[\varepsilon_1,\ \varepsilon_2,\ \varepsilon_3,\ ...,\ \varepsilon_n]^T$$
The aim is to search for the best W that minimize the mean of e.
\[{e^{{\rm{ - }}\Delta {\rm{r}}{G^{' \circ }}/RT}}\]
$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$
\[f{\rm{(r) = }}\frac{{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}{{{\rm{ 1 + }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}} + {\rm{ }}\sum {{r^'} \in {R_N}\backslash {{\left\{ r \right\}}^{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}} }}\]
\begin{small}\[f{\rm{(r) = }}\frac{{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}{{{\rm{ 1 + }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}} + {\rm{ }}\sum {{r^'} \in {R_N}\backslash {{\left\{ r \right\}}^{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}} }}\\end{small}