Get the power of blast
Where:
$$X=[x_1,\ x_2,\ x_3,\ ...,\ x_n]^T$$ $$W=[w_1,\ w_2,\ w_3,\ ...,\ w_n]^T$$ $$\varepsilon=[\varepsilon_1,\ \varepsilon_2,\ \varepsilon_3,\ ...,\ \varepsilon_n]^T$$The aim is to search for the best W that minimize the mean of e.
\[{e^{-\Delta{r}{G^{'\circ}}/RT}}\] $$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$ \[f{\rm{(r) = }}\frac{{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}{{{\rm{ 1 + }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}} + {\rm{ }}\sum {{r^'} \in {R_N}\backslash {{\left\{ r \right\}}^{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}} }}\] \[f{(r)=}\frac{{e}}^{-{\Delta_r}{G^{'\circ/RT}}}{{{{1+}}{{{e}}^{-{\Delta _r}{G^{'\circ/RT}}}}+\sum{{r^'}\in{R_N}\backslash{{\left\{r\right\}}^{{{}}{{{e}}^{-{\Delta _r{G^{'\circ/RT}}}}} $$J(\theta)=-\frac{1}{m}\displaystyle\sum_{i=1}^m y^{(i)}\log(\hat p^{(i)})+(1-y^{(i)})\log(1-\hat p^{(i)})\\ =-\frac{1}{m}\displaystyle\sum_{i=1}^m y^{(i)}\log(\sigma(-X_b^{(i)}\theta))+(1-y^{(i)})\log(1-\sigma(-X_b^{(i)}\theta))\\ \[f(r) = \frac{e^{-\Delta{r}{G^{'\circ}}/RT}}{{{1+}{e^{-\Delta{r}{G^{'\circ}}/RT}}+\sum r^'\in {R_N}\backslash{{\left\{r \right\}}^{{e^{-\Delta{r}{G^{'\circ}}/RT}}}} }}\] \[Max\left\{ {Ave(A),Ave(B),Ave(C),Ave(D)...} \right\} \] \[\begin{array}{l}{{\rm{R}}_j}(i) = T(i,{{\rm{R}}_{\rm{j}}}{\rm{,}}{{\rm{P}}_{\rm{j}}}{\rm{) }}\begin{array}{*{20}{c}}{}&{}\end{array}{\rm{ i = 1,2, }}...{\rm{ , A(}}{{\rm{R}}_{\rm{j}}}{\rm{) }}\begin{array}{*{20}{c}}{}&{}\end{array}{\rm{ j = 1,2, }}...{\rm{ , n}}\\{\rm{ }}{{\rm{P}}_j}(i) = T(i,{{\rm{P}}_j}{\rm{,}}{{\rm{R}}_{\rm{j}}}{\rm{) }}\begin{array}{*{20}{c}}{}&{}\end{array}{\rm{ i = 1,2, }}...{\rm{ , A(}}{{\rm{P}}_{\rm{j}}}{\rm{) }}\begin{array}{*{20}{c}}{}&{}\end{array}{\rm{ j = 1,2, }}...{\rm{ , n}}\end{array}\]