Get the power of blast
Where:
$$X=[x_1,\ x_2,\ x_3,\ ...,\ x_n]^T$$
$$W=[w_1,\ w_2,\ w_3,\ ...,\ w_n]^T$$
$$\varepsilon=[\varepsilon_1,\ \varepsilon_2,\ \varepsilon_3,\ ...,\ \varepsilon_n]^T$$
The aim is to search for the best W that minimize the mean of e.
\[{e^{-\Delta{r}{G^{'\circ}}/RT}}\]
$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$
\[{\sum\limits_{{r^'}} {{{\rm{e}}^{ - {\Delta _{{r^'}}}{G^{' \circ /RT}}}}} }\]