Light Operon
Introduction
Equations
- \(\frac{dy_{DD}}{dt}=k_1+ 2\cdot k_2 \cdot y_{DL,LD} - 2 \cdot (N\cdot k_3) \cdot y_{DD} - \beta_1 \cdot y_{DD}\)
- \(\frac{dy_{DL,LD}}{dt}=2 \cdot (N \cdot k_3) \cdot y_{DD} + 2 \cdot k_2 \cdot y_{LL} - 2 \cdot k_2 \cdot y_{DL,LD} - 2 \cdot (N \cdot k_3) \cdot y_{DL,LD} - \beta_2 \cdot y_{DL,LD}\)
- \(\frac{dy_{LL}}{dt} = 2 \cdot (N \cdot k_3) \cdot y_{DL,LD} - 2\cdot k_2 \cdot y_{LL} - \beta_3 \cdot y_{LL}\)
Parameter | Value | Name |
---|---|---|
\(N\) | Variable of \(\frac{\mu \cdot mol}{m^2 \cdot h}\) | Concentration of light |
\(k_1\) | \(2.6921 \frac{\mu \cdot mol}{hr}\) | Production rate of \(y_{DD}\) |
\(k_2\) | \(0.0008 \frac{1}{hr}\) | Relaxtion rate of \(y_{DL,LD}\) and \(y_{LL}\) |
\(k_3\) | \(0.4219 \frac{m^2}{\mu \cdot \mol}\) | Conversion cross-section of light intensity activated production rate of \(y_{DL,LD}\) and \(y_{LL}\). |
\(\beta_1\) | \(0.3049 \frac{1}{hr}\) | Degradation rate of \(y_{DD}\) |
\(\beta_2\) | \(0.8406 \frac{1}{hr}\) | Degradation rate of \(y_{DL,LD}\) |
\(\beta_3\) | \(0.1477 \frac{1}{hr}\) | Degradation rate of \(y_{DD}\) |
Results
The different states of Yf1 are being hit with different intensities of light, producing alternating results unique to the state. Click on any of the images to view full size.
- Starting concentration of 95 Yf1 molecules (Gillespie)
- Starting concentration of 948 Yf1 molecules (Gillespie)
- Starting concentration of 95 and 948 Yf1 molecules (deterministic)