INTRODUCTION
MODEL CONSTRUCTION
A first approach : the exponential phase
The letter above the arrow is the rate at which the transformation happens. Here, all theses rates are assumed to be positive.
The letter above the arrow is the rate at which the transformation happens. Here, all theses rates are assumed to be positive.
Therefore : \begin{{ '{' }}eqnarray} \frac{{ '{' }}dn_1}{{ '{' }}dt} & = & r_1 n_1 & (1.1)\\ \frac{{ '{' }}dn_2}{{ '{' }}dt} & = & r_2 n_2 & (1.2)\\ \frac{{ '{' }}dm}{{ '{' }}dt} & = & - A m n_1 + p & (1.3). \end{{ '{' }}eqnarray}
The environment carrying capacity
The letter above the arrow is the rate at which the transformation happens. Here, all theses rates are assumed to be positive.
Model assumptions and limitations
Mathematical Analysis
The steady state
Asymptotically, the population reaches steady state value $n_1 + n_2 = K$.
Then the ratio between the "stem" cells and the degradation cells only depends on the switching parameters $a$ and
$b$ (strain and pathway specific).
$$ f = \frac{{ '{' }}n_1}{{ '{' }}n_2} = \frac{{ '{' }}b}{{ '{' }}a}. $$
Figure 1 illustrates how $n_1$ and $n_2$ eventually reach a steady state when long times are considered.
In the end,
$$ n_1 = \frac{{ '{' }}fK}{{ '{' }}f + 1} $$
Moreover, this steady state is stable. It means that small pertubations around the equilibrium will not change the
state of our system.
When the system reaches steady state, (eqn.C) becomes : $$ 0 = \frac{{ '{' }}dm}{{ '{' }}dt} = - A m n_1 + p = -A m \frac{{ '{' }}fK}{{ '{' }}f + 1} + p$$ and $$ m = \frac{{ '{' }}f + 1}{{ '{' }}fK} p A $$ Then, Methotrexate concentration converges to $$\frac{{ '{' }}f + 1}{{ '{' }}fK} p A$$
Proof
1) At the steady state $n_1 + n_2$ = K. So we can simplify (eqn.A) and (eqn.B) : \begin{{ '{' }}eqnarray} 0 & = & b n_2 - a n_1 \\ 0 & = & a n_1 - b n_2\\ \end{{ '{' }}eqnarray}
Therefore
$$ b n_2 = a n_1 $$
and $$ \frac{{ '{' }}n_1}{{ '{' }}n_2} = \frac{{ '{' }}b}{{ '{' }}a} $$
2) At the steady state we have
$$n_1 + n_2 = K \text{{ '{' }} and } f = \frac{{ '{' }}n_1}{{ '{' }}n_2} = \frac{{ '{' }}b}{{ '{' }}a}$$
Therefore
$$\frac{{ '{' }}n_1}{{ '{' }}n_1}+ \frac{{ '{' }}n_2}{{ '{' }}n_1} = \frac{{ '{' }}K}{{ '{' }}n_1} $$
So
$$1 + \frac{{ '{' }}1}{{ '{' }}f} = \frac{{ '{' }}K}{{ '{' }}n_1} $$
So
$$ n_1 = \frac{{ '{' }}fK}{{ '{' }}f + 1}. $$
3) Moreover this steady state is stable. In order to show that, let's take $\varepsilon > 0$ where $\varepsilon$
is a little perturbation. Then :
\begin{{ '{' }}eqnarray}
\frac{{ '{' }}dn_1}{{ '{' }}dt} & = & r_1n_1 (1 - \frac{{ '{' }}n_1 + n_2 + \varepsilon}{{ '{' }}K}) - an_1
+ bn_2 \\
& = & -r_1n_1 \varepsilon + r_1n_1 (1 - \frac{{ '{' }}n_1 + n_2}{{ '{' }}K}) - an_1 + bn_2.
\end{{ '{' }}eqnarray}
Near the equilibrium :
$$ n_1 + n_2 \approx K \text{{ '{' }} and } f = \frac{{ '{' }}n_1}{{ '{' }}n_2} \approx \frac{{ '{' }}b}{{ '{'
}}a}.$$
Therefore :
$$ \frac{{ '{' }}dn_1}{{ '{' }}dt} \approx -r_1n_1 \varepsilon < 0 $$
We see that the value is negative, so we conclude that the steady state is stable.
Towards a system to degrade more drugs
From a proof of concept to the general problem
Until now, our system was designed to only degradate methotrexate. But for us, methotrexate is just a proof of
concept, a way to show we can degrade any drug with our system.
This is where our model becomes important because it can be adapted for any situation. This is the main motivation :
be able to iterate with a predictive model driven approach faster than would be possible with only wetlab
experiments.
Here again let's denote $n_1(t)$ the population of degradation cells, $n_2(t)$ the population of "stem" cells and
$d(t)$ the quantity of targeted drug.
The main difference with our precedent model is that hazardous drugs may kill some of our cells. To represente that
we indroduce two growth term. The first one $\mu^g$ when there are no drugs, and the second one $\mu^s$ when there
are drugs in the environnement.
Specifically $\mu^s < \mu^g$.
The transformation can be represented by biological reactions :
\begin{{ '{' }}array}{{ '{' }}clll}
n_1 & \xrightarrow{{ '{' }}\mu^g_1} & n_1 & \text{{ '{' }}(degradation cells growth without drugs)} \\
n_2 & \xrightarrow{{ '{' }}\mu^g_2} & n_2 & \text{{ '{' }}("stem" cells growth without drugs.)} \\
n_1 & \xrightarrow{{ '{' }}\mu^s_1} & n_1 & \text{{ '{' }}(degradation cells growth with drugs)} \\
n_2 & \xrightarrow{{ '{' }}\mu^s_2} & n_2 & \text{{ '{' }}("stem" cells growth with drugs.)} \\
n_1 + m & \xrightarrow{{ '{' }}-A} & n_1 & \text{{ '{' }}(degradation of drugs)} \\
\star & \xrightarrow{{ '{' }}p} & m & \text{{ '{' }}(methotrexate input)} \\
\star & \xrightarrow{{ '{' }}\text{{ '{' }}environment}} & n_1 & \text{{ '{' }}(carrying capacity of the
environment)} \\
\star & \xrightarrow{{ '{' }}\text{{ '{' }}environment}} & n_2 & \text{{ '{' }}(carrying capacity of the
environment)} \\
n_1 & \xrightarrow{{ '{' }}a} & n_2 & \text{{ '{' }}(switching from $n_1$ to $n_2$ at the steady state)}
\\
n_2 & \xrightarrow{{ '{' }}b} & n_1 & \text{{ '{' }}(switching from $n_2$ to $n_1$ at the steady
state)}. \\
\end{{ '{' }}array}
We use the Law of Mass Action to translate theses reactions into mathematical equations : \begin{{ '{' }}eqnarray} \frac{{ '{' }}dn_1}{{ '{' }}dt} & = & \mu_1 n_1 ( 1 - \frac{{ '{' }}n_1 + n_2}{{ '{' }}K}) + b n_2 - a n_1 & (eqn.D)\\ \frac{{ '{' }}dn_2}{{ '{' }}dt} & = & \mu_2 n_2 ( 1 - \frac{{ '{' }}n_1 + n_2}{{ '{' }}K}) + a n_1 - b n_2 & (eqn.E)\\ \frac{{ '{' }}dm}{{ '{' }}dt} & = & - A m n_1 + p. & (eqn.F) \end{{ '{' }}eqnarray}
Response to an environmental shift
Patra and Klumpp
There is a biphasis dynamic which translate into different phenotypes in the cell population. Authors said that :
"At time t~15 hours, the parameters were changed to those for stress condition. After the shift to stress
conditions (by the addition of an antibiotic), the total population displays the biphasic decay behavior. In the
fast-decaying phase, the decay of the total population is dominated by the death of normal cells, while in the
second, slower-decaying phase, the total population consists predominantly of persister cells and the decay rate
is governed by the death rate of the persisters.
The transition between the two different phases occurs when both subpopulation becomes equal in size"
(
Dynamics in periodically switching environment
In condition, drugs quantity depends of many factor : human errors, schedule of health services, etc.
But even if that quantity isn't a constant, a looser but more realistic assumption would be that drug input is
periodic.
Here, we will calculate the optimal parameters $a_{{ '{' }}opt}$ and $b_{{ '{' }}opt}$ in order to degrade
methotrexate.
During one period, let's denote $t_s$ the duration of drugs presence in the environment and $t_g$ the duration without drugs. The average growth rates of our cells populations are : \begin{{ '{' }}eqnarray} <\mu_1> & = & \frac{{ '{' }}<\mu_1^g> t_g + <\mu_1^s> t_s}{{ '{' }}t_g + t_s} \\ <\mu_2> & = & \frac{{ '{' }}<\mu_2^g> t_g + <\mu_2^s> t_s}{{ '{' }}t_g + t_s} \\ \end{{ '{' }}eqnarray} where $<x>$ is the average growth rate of x.
Let's denote $\mu = \mu_1 + \mu_2$ the global growth rate. Then $$ <\mu> = \frac{{ '{' }}<\mu_1^g> t_g + <\mu_1^s> t_s}{{ '{' }}t_g + t_s} + \frac{{ '{' }}<\mu_2^g> t_g + <\mu_2^s> t_s}{{ '{' }}t_g + t_s} $$ Then, we use results in Patra and Klumpp [3] to compute that : $$ <\mu> = \frac{{ '{' }}(\mu_2^g - b) t_g + (\mu_1^s - a) t_s}{{ '{' }}t_g + t_s} + \frac{{ '{' }}ln(\frac{{ '{' }}ab}{{ '{' }}\Delta_s \Delta_g})}{{ '{' }}t_g + t_s} $$ We consider that $a$ and $b$ are optimal when they maximize $<\mu>$. That means that : $$ \frac{{ '{' }}1}{{ '{' }}a_{{ '{' }}opt}} = t_s - \frac{{ '{' }}1}{{ '{' }}\Delta_s} + \frac{{ '{' }}1}{{ '{' }}\Delta_g}$$ $$ \frac{{ '{' }}1}{{ '{' }}b_{{ '{' }}opt}} = t_g - \frac{{ '{' }}1}{{ '{' }}\Delta_g} + \frac{{ '{' }}1}{{ '{' }}\Delta_s} $$ Thus, we have found $a_{{ '{' }}opt}$ and $b_{{ '{' }}opt}$ in order to degrade drugs. If we had to build such a biological system, we would aim for these values when assessing possible promoters.