Our team intensively and precisely worked in the lab for 15 weeks from the beginning of summer till the middle of autumn to develop a SynDrop idea. Here is a detailed documentation of our Wet Lab work, including tasks, reagents used and conditions needed during the experiments.
The SynORI framework enables scientists to build a multi-plasmid system in a standardized manner by:
Selecting the number of plasmid groups
Choosing the copy number of each group
Picking the type of copy number control (specific to one group or regulating all of them at once).
The framework also includes a possibility of adding a selection system that reduces the usage of antibiotics
(only 1 antibiotic for up to 5 different plasmids!) and an active partitioning system to make sure that low
copy number plasmid groups are not lost during the division.
Applications
Everyday lab work
A multi-plasmid system that is easy to assemble and control. With our framework the need to limit your
research to a particular plasmid copy number just because there are not enough right replicons to
choose from, is eliminated. With SynORI you can easily create a vector with a desired copy number that
suits your needs.
Biological computing
The ability to choose a wide range of copy number options and their control types will make the
synthetic biology engineering much more flexible and predictable. Introduction of plasmid copy number
regulation is equivalent to adding a global parameter to a computer system. It enables the coordination
of multiple gene group expression.
Smart assembly of large protein complexes
The co-expression of multi-subunit complexes using different replicons brings incoherency to an already
chaotic cell system. This can be avoided by using SynORI, as in this framework every plasmid group uses
the same type of control, and in addition can act in a group-specific manner.
Metabolic engineering
A big challenge for heterologous expression of multiple gene pathways is to accurately adjust the
levels of each enzyme to achieve optimal production efficiency. Precise promoter tuning in
transcriptional control and synthetic ribosome binding sites in translational control are already
widely used to maintain expression levels. In addition to current approaches, our framework allows a
simultaneous multiple gene control. Furthermore, an inducible regulation that we offer, can make the
search for perfect conditions a lot easier.