INTERGRATED HUMAN PRACTICES
Hydroponics is the future of agriculture. Compared to traditional farming, hydroponics demands less maintenance, fewer resources, and most importantly, less land. It is a rapidly growing industry that is projected to be a $31.4 billion global market by 2022, with a growth rate of 6.7% annually [1]. As the population inches ever closer to carrying capacity, as the resources become ever scarcer, and as the climate becomes ever warmer, hydroponics is the most promising solution to ensure a sustainable world - one where no one is left hungry.
But despite its immense potential, hydroponics is severely limited by diseases, nutrient imbalances, and other environmental stresses. In particular, the levels of reactive oxygen species (ROS) are known for affecting crop growth by hindering nutrient uptake, damaging cellular structures, and inducing undesirable immune responses [2]. Even though the current market offers technologies that can measure oxidative stress, they are often fragile, expensive, and lacking spatial resolution. Moreover, little effort has been made to improve existing technologies.
At Cornell iGEM, we believe that we can do better.
ROS may be notorious for being correlated with cancer and aging, but perhaps paradoxically, research has also shown that a sufficient level of oxidative stress is critical to the growth and survival of any organism, whether it’s bacteria, humans, or plants [3]. Therefore, the essence of successful hydroponics is not the removal of all external stress, but rather its optimization. We seek to control oxidative stress - to respond to any minute change in the environment rapidly and efficiently, and to modulate the ideal equilibrium state for each and every crop. We accomplish this feat through a novel platform with dual functionality. First, the platform allows for real-time, biologically-relevant reporting of the environmental oxidative stress via redox-sensitive fluorescent proteins. Second, it employs an optogenetic circuit to express, with great precision, a panel of enzymes that can regulate oxidative stress through the breakdown of ROS. Our synthetic biology approach combines the advantages of native ROS-sensing pathways and existing technologies while mitigating their drawbacks; it is a system that is cost-efficient and self-sustaining, while also offering greater sensitivity, versatility, and spatial resolution.
This platform is incomplete without a mechanism that can integrate our real-time reporting signal with the regulatory enzymatic output. Through extensive collaborations with a startup incubator and with invaluable feedback from hydroponic farmers, we developed a specialized optics-based technology that can accurately interpret oxidative stress reporting and precisely regulate gene transcription on an industrial scale. This technology shifts power from nature to farmers; we give farmers the tools to monitor each and every crop, as well as the ability to control environmental parameters at leisure and at will. The farmers benefit from increased crop yields and profits. The world benefits from economic stimulation and increased food supply.
Climate change, environmental destruction, and resource allocations are imminent threats to a growing population and a deteriorating world, and hydroponics offers a promising path to address those global issues. At Cornell iGEM, we are committed to engineering innovative, practical solutions to unlock the full potential of hydroponics. Through hydroponics, we create a future of sustainability that is only possible with synthetic biology.
PROJECT OVERVIEW
OXIDATIVE STRESS
Oxidative stress is defined as a disturbance in the balance of reactive oxygen species (ROS), and antioxidant defenses [5]. It plays a critical role in many biological processes, the most significant of which (with respect to plants) are pathogen defense [6], programmed cell death [7], and cell to cell signaling [8]. More recent studies have linked ROS to nutrient uptake in a beneficial capacity [2]. In opposition to these benefits, however, too high a level of oxidative stress is lethal to most organisms as it leads to unspecific oxidation of proteins and membrane lipids, as well as DNA injury [10]. Furthermore, tissues exposed to high levels of oxidative stress show an increased production of ethylene [9] which can be detrimental to the plant.
Because of the diversity of roles played by oxidative stress in biological systems, its optimization is a logical choice for anyone interested in increasing yields in agriculture. Finally, it is not sufficient to simply rely upon plants’ evolutionary response mechanisms to oxidative stress as reproductive efficiency does not necessarily correlate directly to growth or crop production. Thus there is a niche yet to be filled in optimizing this parameter.