Line 15: | Line 15: | ||
<font size="4"> | <font size="4"> | ||
Reliable and repeatable measurement is a key component to all engineering disciplines.The same holds true for synthetic biology,which has also been called engineering biology.However,the ability to repeat measurements in different labs has been difficult.The Measurement Committee, through the InterLab study,has been developing a robust measurement procedure for green fluorescent protein (GFP) over the last several years. We chose GFP as the measurement marker forth is study since it's one of the most used markers in synthetic biology and, as a result, most laboratories are equipped to measure this protein. | Reliable and repeatable measurement is a key component to all engineering disciplines.The same holds true for synthetic biology,which has also been called engineering biology.However,the ability to repeat measurements in different labs has been difficult.The Measurement Committee, through the InterLab study,has been developing a robust measurement procedure for green fluorescent protein (GFP) over the last several years. We chose GFP as the measurement marker forth is study since it's one of the most used markers in synthetic biology and, as a result, most laboratories are equipped to measure this protein. | ||
− | < | + | <br> |
− | < | + | <br> |
The aim to improve the measurement tools available to both the iGEM community and the synthetic biology community as a whole. One of the big challenges in synthetic biology measurement has been that fluorescence data usually cannot be compared because it has been reported in different units or because different groups process data in different ways. Many have tried to work around this using “relative expression” comparisons; however, being unable to directly compare measurements makes it harder to debug engineered biological constructs, harder to effectively share constructs between labs, and harder even to just interpret your experimental controls. | The aim to improve the measurement tools available to both the iGEM community and the synthetic biology community as a whole. One of the big challenges in synthetic biology measurement has been that fluorescence data usually cannot be compared because it has been reported in different units or because different groups process data in different ways. Many have tried to work around this using “relative expression” comparisons; however, being unable to directly compare measurements makes it harder to debug engineered biological constructs, harder to effectively share constructs between labs, and harder even to just interpret your experimental controls. | ||
− | < | + | <br> |
− | < | + | <br> |
The InterLab protocol aims to address these issues by providing researchers with a detailed protocol and data analysis form that yields absolute units for measurements of GFP in a plate reader. | The InterLab protocol aims to address these issues by providing researchers with a detailed protocol and data analysis form that yields absolute units for measurements of GFP in a plate reader. | ||
</font> | </font> |
Revision as of 15:07, 9 September 2018