Difference between revisions of "Team:Uppsala/Model"

(Prototype team page)
 
Line 1: Line 1:
{{Uppsala}}
+
{{Uppsala/javascript/iGemRemoval_js}}
 +
{{Uppsala/css_removal}}
 +
{{Uppsala/main_template}}
 +
{{Uppsala/scroll-button}}
 +
{{Uppsala/javascript/scroll-button}}
 +
{{Uppsala/javascript/redirect_js}}
 +
 
 
<html>
 
<html>
 +
    <head>
 +
        <style type="text/css">
 +
 +
        </style>
 +
    </head>
 +
 +
    <div class="body">
 +
        <div class="parallax"></div>
 +
        <div class="igem-icon"><a href="https://2018.igem.org/Main_Page"><img src="https://static.igem.org/mediawiki/2018/b/b0/T--Uppsala--graylogo.png"></a></div>
 +
 +
        <div class ="scroll-down-button">
 +
            <section id="section02" class="demo">
 +
                <h1></h1>
 +
                <a href="#scrolldown"><span></span></a>
 +
            </section>
 +
        </div>
 +
        <div class= "content blur-box" style="font-size:16px;">
 +
            <div class ="content-text" id="scrolldown" >
 +
                <div style="height:5em;"></div>
 +
                <!-- FROM THIS POINT DOWNWARDS YOU START ADDING YOUR STUFF -->
 +
               
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
                <!-- AN EXAMPLE OF A SECTION WITH A PLAIN HEADER AND JUST 2 PARAGRAPHS -->
 +
                <div class="section">
 +
                    <h1>The header I want I put here</h1>
 +
                    <p>The text that I want will be here, in between these tags </p>
 +
                    <br> <!-- Here is a line break -->
 +
                    <p> Here is a second paragraph with <i>E.coli</i> written in italics. Any found genes which display promise will have to be validated by qPCR (which is a similar method) in a second run to confirm that they are only expressed due to the strongyle presence. Another approach to tackle our challenge is to screen for interaction between the surface proteins on the strongyle and short peptides. Through affinity screening of a random peptide library displayed on the surface of phages, we can select a peptide with a high affinity to the nematodes surface.  </p>
 +
                </div>
 +
 +
 +
 +
 +
  
  
  
<div class="column full_size judges-will-not-evaluate">
 
<h3>★  ALERT! </h3>
 
<p>This page is used by the judges to evaluate your team for the <a href="https://2018.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2018.igem.org/Judging/Awards"> award listed below</a>. </p>
 
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2018.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
 
</div>
 
  
  
<div class="clear"></div>
 
  
  
<div class="column full_size">
 
<h1> Modeling</h1>
 
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
 
  
</div>
 
<div class="clear"></div>
 
  
<div class="column full_size">
 
<h3> Gold Medal Criterion #3</h3>
 
<p>
 
Convince the judges that your project's design and/or implementation is based on insight you have gained from modeling. This could be either a new model you develop or the implementation of a model from a previous team. You must thoroughly document your model's contribution to your project on your team's wiki, including assumptions, relevant data, model results, and a clear explanation of your model that anyone can understand.
 
<br><br>
 
The model should impact your project design in a meaningful way. Modeling may include, but is not limited to, deterministic, exploratory, molecular dynamic, and stochastic models. Teams may also explore the physical modeling of a single component within a system or utilize mathematical modeling for predicting function of a more complex device.
 
</p>
 
  
<p>
 
Please see the <a href="https://2018.igem.org/Judging/Medals"> 2018
 
Medals Page</a> for more information.
 
</p>
 
</div>
 
  
<div class="column two_thirds_size">
 
<h3>Best Model Special Prize</h3>
 
  
<p>
 
To compete for the <a href="https://2018.igem.org/Judging/Awards">Best Model prize</a>, please describe your work on this page  and also fill out the description on the <a href="https://2018.igem.org/Judging/Judging_Form">judging form</a>. Please note you can compete for both the gold medal criterion #3 and the best model prize with this page.
 
<br><br>
 
You must also delete the message box on the top of this page to be eligible for the Best Model Prize.
 
</p>
 
  
</div>
 
  
  
<div class="column third_size">
 
<div class="highlight decoration_A_full">
 
<h3> Inspiration </h3>
 
<p>
 
Here are a few examples from previous teams:
 
</p>
 
<ul>
 
<li><a href="https://2016.igem.org/Team:Manchester/Model">2016 Manchester</a></li>
 
<li><a href="https://2016.igem.org/Team:TU_Delft/Model">2016 TU Delft</li>
 
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">2014 ETH Zurich</a></li>
 
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">2014 Waterloo</a></li>
 
</ul>
 
</div>
 
</div>
 
  
 +
                <!-- HERE ENDS THE PORTION WHERE YOU PUT IN YOUR CONTENT-->
 +
                <div style="height:5em;"></div>
 +
            </div>
 +
        </div>
 +
    </div>
 
</html>
 
</html>

Revision as of 13:13, 10 October 2018