Elinramstrom (Talk | contribs) |
Elinramstrom (Talk | contribs) |
||
Line 323: | Line 323: | ||
− | <p> | + | <p>Sequencing is the final step of the journey and generally makes up a lot of different and varying methods with the common purpose of determining the primary atomic-level structure of what you’re interested in, resulting in sequences of bases making it all up. Most often this includes proteins, polymers or as in our case the keys to life: genetic material; enabling us to read it like a book of sorts.<br><br> |
+ | |||
+ | Oxford Nanopore’s MinION third generation sequencing device makes use of nano-sized holes called nanopores with an applied voltage across them. In essence: when you’re material of choice passes through one of this pores, each base fluctuates this current by a given amount which acts as a fingerprint to identify the given base. | ||
+ | </p> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/3/38/T--Uppsala--MinION.jpeg" class="center" height="70%" width="70%"> | ||
+ | <p align="center"><b>Figure 1:</b> The MinION device.</p><br><br> | ||
Revision as of 11:49, 15 October 2018
:root{ --primary: #8b1a32; --secondary:#969696; --tertiary: #f15025; --whiteish: #fcf7ff; --light-blue:#cde6f5; --alt-secondary: #554640; } html{ width: 100%; height: 100%; } *{ margin: 0; padding: 0; box-sizing: border-box; } .parallax { /* The image used */ background-image: url("https://static.igem.org/mediawiki/2018/9/99/T--Uppsala--Transcriptomics-HEADER_2.jpeg"); /* Set a specific height */ min-height: 99vh; /* Create the parallax scrolling effect */ background-attachment: fixed; background-position: center; background-repeat: no-repeat; background-size: cover; /*background: linear-gradient(to bottom, transparent 90%);*/ } .blur-box { background-color: var(--whiteish); box-shadow: 0 0 10px 10px var(--whiteish); } .sub-header{ /* Set a specific height */ height:20vw; min-height: 150px; /* Create the parallax scrolling effect */ /*background-attachment: fixed;*/ background-position: center; background-repeat: no-repeat; background-size: cover; } .sub-header h1{ font-size: 60; text-align: center; position:absolute; left:0; right:0; margin-top:6.5% ; margin-left:auto; margin-right: auto; color:white; bottom: px; } /* TODO: CHANGE */ #blue{ background-image: url(redbanner.jpg); } h1, h2{ color: #661325; } h1{ margin-top:2em; margin-bottom: 0.5em; } #first-title{ top:100px; margin-top: 0; } .content{ position:relative; background-color: var(--whiteish); } .content-text{ margin-top:2em; min-width: 400px; width:70%; position: relative; margin: auto; /*background-color: #8c7cff;*/ } .scroll-pointer{ top:85%; position:absolute; /*margin-left:auto; margin-right:auto;*/ width: 100%; padding: 0; } .scroll-pointer img{ color: var(--primary) ; } .center-icon{ width:100px; position: relative; display: block; margin-right: auto; margin-left: auto; opacity: 0.8; } .center { display: block; margin-left: auto; margin-right: auto; width: 50%; }
Sequencing
Sequencing is the final step of the journey and generally makes up a lot of different and varying methods with the common purpose of determining the primary atomic-level structure of what you’re interested in, resulting in sequences of bases making it all up. Most often this includes proteins, polymers or as in our case the keys to life: genetic material; enabling us to read it like a book of sorts.
Oxford Nanopore’s MinION third generation sequencing device makes use of nano-sized holes called nanopores with an applied voltage across them. In essence: when you’re material of choice passes through one of this pores, each base fluctuates this current by a given amount which acts as a fingerprint to identify the given base.
Figure 1: The MinION device.