|
|
Line 25: |
Line 25: |
| <div class="col-md-12"> | | <div class="col-md-12"> |
| <div class="float-left mr-50 mb-20"> | | <div class="float-left mr-50 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/1/1f/T--Navarra_BG--project-fig1.jpg" alt="Fig. 1 Working in a biological safety cabinet." style="max-height:350px;"> | + | <img src="https://static.igem.org/mediawiki/2018/1/1f/T--Navarra_BG--project-fig1.jpg" alt="Fig. 1 Working in a biological safety cabinet." class="max_height350"> |
| <span class="pie"><strong>Fig. 1</strong> Working in a biological safety cabinet.</span> | | <span class="pie"><strong>Fig. 1</strong> Working in a biological safety cabinet.</span> |
| </div> | | </div> |
Line 36: |
Line 36: |
| <div class="col-md-12"> | | <div class="col-md-12"> |
| <div class="float-right ml-50 mb-20"> | | <div class="float-right ml-50 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/d/df/T--Navarra_BG--project-fig2.jpg" alt="Fig. 2 E.Z.N.A. Plasmid DNA Mini Kit I" style="max-height:220px;"> | + | <img src="https://static.igem.org/mediawiki/2018/d/df/T--Navarra_BG--project-fig2.jpg" alt="Fig. 2 E.Z.N.A. Plasmid DNA Mini Kit I" class="max_height220"> |
| <span class="pie"><strong>Fig. 2</strong> E.Z.N.A. Plasmid DNA Mini Kit I</span> | | <span class="pie"><strong>Fig. 2</strong> E.Z.N.A. Plasmid DNA Mini Kit I</span> |
| </div> | | </div> |
Line 48: |
Line 48: |
| <div class="col-md-12"> | | <div class="col-md-12"> |
| <div class="float-left mr-50 mb-20"> | | <div class="float-left mr-50 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/7/75/T--Navarra_BG--project-fig3.jpg" alt="Fig. 3 Nicotiana benthamiana plants" style="min-height:300px;"> | + | <img src="https://static.igem.org/mediawiki/2018/7/75/T--Navarra_BG--project-fig3.jpg" alt="Fig. 3 Nicotiana benthamiana plants" style="min-height300"> |
| <span class="pie"><strong>Fig. 3</strong> Nicotiana benthamiana plants</span> | | <span class="pie"><strong>Fig. 3</strong> Nicotiana benthamiana plants</span> |
| </div> | | </div> |
Line 71: |
Line 71: |
| | | |
| <div class="text-center mb-20 mb-20"> | | <div class="text-center mb-20 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/c/c0/T--Navarra_BG--project-fig4.jpg" alt="Fig. 4 Agarose gel electrophoresis technique. Positive colony: 4" style="max-height:350px;"> | + | <img src="https://static.igem.org/mediawiki/2018/c/c0/T--Navarra_BG--project-fig4.jpg" alt="Fig. 4 Agarose gel electrophoresis technique. Positive colony: 4" class="max_height350"> |
| <span class="pie"><strong>Fig. 4</strong> Agarose gel electrophoresis technique. Positive colony: 4</span> | | <span class="pie"><strong>Fig. 4</strong> Agarose gel electrophoresis technique. Positive colony: 4</span> |
| </div> | | </div> |
Line 97: |
Line 97: |
| | | |
| <div class="text-center mb-20 mb-20"> | | <div class="text-center mb-20 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/6/6a/T--Navarra_BG--project-fig5.jpg" alt="Fig. 5 Agarose gel electrophoresis technique. Positive colonies." style="max-height:350px;"> | + | <img src="https://static.igem.org/mediawiki/2018/6/6a/T--Navarra_BG--project-fig5.jpg" alt="Fig. 5 Agarose gel electrophoresis technique. Positive colonies." class="max_height350"> |
| <span class="pie"><strong>Fig. 5</strong> Agarose gel electrophoresis technique. Positive colonies.</span> | | <span class="pie"><strong>Fig. 5</strong> Agarose gel electrophoresis technique. Positive colonies.</span> |
| </div> | | </div> |
Line 118: |
Line 118: |
| <div class="col-md-12"> | | <div class="col-md-12"> |
| <div class="float-right ml-50 mb-20"> | | <div class="float-right ml-50 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/9/9a/T--Navarra_BG--project-fig6.jpg" alt="Fig. 6 Infiltration in the leaves of Nicotiana benthamiana." style="min-height:480px;"> | + | <img src="https://static.igem.org/mediawiki/2018/9/9a/T--Navarra_BG--project-fig6.jpg" alt="Fig. 6 Infiltration in the leaves of Nicotiana benthamiana." style="min-height480"> |
| <span class="pie"><strong>Fig. 6</strong> Infiltration in the leaves of Nicotiana benthamiana.</span> | | <span class="pie"><strong>Fig. 6</strong> Infiltration in the leaves of Nicotiana benthamiana.</span> |
| </div> | | </div> |
Line 133: |
Line 133: |
| <p>Once we had <em>Arabidopsis thaliana</em> wild type and fungus <em>Alternaria alternata</em> grown, we put some plants with the fungus and others without it and let them grow.</p> | | <p>Once we had <em>Arabidopsis thaliana</em> wild type and fungus <em>Alternaria alternata</em> grown, we put some plants with the fungus and others without it and let them grow.</p> |
| <div class="text-center mb-20 mb-20"> | | <div class="text-center mb-20 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/e/e4/T--Navarra_BG--project-fig7.jpg" alt="Fig. 7 Arabidopsis thaliana in contact with thefungus Alternaria alternata." style="max-height:350px;"> | + | <img src="https://static.igem.org/mediawiki/2018/e/e4/T--Navarra_BG--project-fig7.jpg" alt="Fig. 7 Arabidopsis thaliana in contact with thefungus Alternaria alternata." class="max_height350"> |
| <span class="pie"><strong>Fig. 7</strong> Arabidopsis thaliana in contact with thefungus Alternaria alternata.</span> | | <span class="pie"><strong>Fig. 7</strong> Arabidopsis thaliana in contact with thefungus Alternaria alternata.</span> |
| </div> | | </div> |
Line 154: |
Line 154: |
| <div class="row"> | | <div class="row"> |
| <div class="col-md-6 text-center mb-20 mb-20"> | | <div class="col-md-6 text-center mb-20 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/b/b0/T--Navarra_BG--project-fig8.jpg" alt="Fig. 8 Confocal microscope. Green color demonstrates the presence of GFP in the chloroplast." style="max-height:350px;"> | + | <img src="https://static.igem.org/mediawiki/2018/b/b0/T--Navarra_BG--project-fig8.jpg" alt="Fig. 8 Confocal microscope. Green color demonstrates the presence of GFP in the chloroplast." class="max_height350"> |
| <span class="pie"><strong>Fig. 8</strong> Confocal microscope. Green color demonstrates<br>the presence of GFP in the chloroplast.</span> | | <span class="pie"><strong>Fig. 8</strong> Confocal microscope. Green color demonstrates<br>the presence of GFP in the chloroplast.</span> |
| </div> | | </div> |
| | | |
| <div class="col-md-6 text-center mb-20 mb-20"> | | <div class="col-md-6 text-center mb-20 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/8/87/T--Navarra_BG--project-fig9.jpg" alt="Fig. 9 Confocal microscope." style="max-height:350px;"> | + | <img src="https://static.igem.org/mediawiki/2018/8/87/T--Navarra_BG--project-fig9.jpg" alt="Fig. 9 Confocal microscope." class="max_height350"> |
| <span class="pie"><strong>Fig. 9</strong> Confocal microscope.</span> | | <span class="pie"><strong>Fig. 9</strong> Confocal microscope.</span> |
| </div> | | </div> |
Line 166: |
Line 166: |
| <p>Once we knew for sure that the plants were producing GFP, the following step was to purify the protein. As we have already commented, an important part of our project is to manage to purify the target proteins (in our case, the GFP) in a simpler and cheap way with regard to the conventional methods. Developing our method, we think that we will make viable for astronauts the production of proteins of therapeutic and nutritional interest in the space.</p> | | <p>Once we knew for sure that the plants were producing GFP, the following step was to purify the protein. As we have already commented, an important part of our project is to manage to purify the target proteins (in our case, the GFP) in a simpler and cheap way with regard to the conventional methods. Developing our method, we think that we will make viable for astronauts the production of proteins of therapeutic and nutritional interest in the space.</p> |
| <div class="float-left mr-50 mb-20"> | | <div class="float-left mr-50 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/8/8c/T--Navarra_BG--project-fig10.jpg" alt="Fig. 10 Microscope image where we can observe the starch granules" style="max-height:300px;"> | + | <img src="https://static.igem.org/mediawiki/2018/8/8c/T--Navarra_BG--project-fig10.jpg" alt="Fig. 10 Microscope image where we can observe the starch granules" class="max_height300"> |
| <span class="pie"><strong>Fig. 10</strong> Microscope image where we can<br>observe the starch granules<br><a href="http://www.sciencesource.com" target="_blank">www.sciencesource.com</a></span> | | <span class="pie"><strong>Fig. 10</strong> Microscope image where we can<br>observe the starch granules<br><a href="http://www.sciencesource.com" target="_blank">www.sciencesource.com</a></span> |
| </div> | | </div> |
Line 174: |
Line 174: |
| <p>Theoretically, all of the above should work, but experimental confirmation is needed to prove it. So we purified our protein. The first thing we did was to collect some leaves of our transformed plants and crush them. Then, we beated with a house blender them and filtered the liquid (Fig. 11) obtained to separate it from the solid remains of the leaves.</p> | | <p>Theoretically, all of the above should work, but experimental confirmation is needed to prove it. So we purified our protein. The first thing we did was to collect some leaves of our transformed plants and crush them. Then, we beated with a house blender them and filtered the liquid (Fig. 11) obtained to separate it from the solid remains of the leaves.</p> |
| <div class="text-center mb-20 mb-20"> | | <div class="text-center mb-20 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/3/33/T--Navarra_BG--project-fig11.jpg" alt="Fig. 11 Filtering the liquid for purification of the protein." style="max-height:350px;"> | + | <img src="https://static.igem.org/mediawiki/2018/3/33/T--Navarra_BG--project-fig11.jpg" alt="Fig. 11 Filtering the liquid for purification of the protein." class="max_height350"> |
| <span class="pie"><strong>Fig. 11</strong> Filtering the liquid for purification of the protein.</span> | | <span class="pie"><strong>Fig. 11</strong> Filtering the liquid for purification of the protein.</span> |
| </div> | | </div> |
Line 180: |
Line 180: |
| <p>Next, we centrifuged the liquid to separate the starch + GBSS + GFP from the rest of the substances. When centrifuged, the starch precipitates and stays in the bottom part of the tube forming a pellet, while the rest of the liquid substances remain in the upper part forming the supernatant. We threw the supernatant and, voilà!: we already had our starch + GBSS + purified GFP. We take this photo of our starch under the microscope:</p> | | <p>Next, we centrifuged the liquid to separate the starch + GBSS + GFP from the rest of the substances. When centrifuged, the starch precipitates and stays in the bottom part of the tube forming a pellet, while the rest of the liquid substances remain in the upper part forming the supernatant. We threw the supernatant and, voilà!: we already had our starch + GBSS + purified GFP. We take this photo of our starch under the microscope:</p> |
| <div class="text-center mb-20 mb-20"> | | <div class="text-center mb-20 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/3/32/T--Navarra_BG--project-fig12.jpg" alt="Fig. 12 Confocal microscope. Green color demonstrates the presence of GFP in the starch." style="max-height:350px;"> | + | <img src="https://static.igem.org/mediawiki/2018/3/32/T--Navarra_BG--project-fig12.jpg" alt="Fig. 12 Confocal microscope. Green color demonstrates the presence of GFP in the starch." class="max_height350"> |
| <span class="pie"><strong>Fig. 12</strong> Confocal microscope. Green color demonstrates the presence of GFP in the starch.</span> | | <span class="pie"><strong>Fig. 12</strong> Confocal microscope. Green color demonstrates the presence of GFP in the starch.</span> |
| </div> | | </div> |
Line 188: |
Line 188: |
| <p>Regarding the other experiment (the one of volatile compounds emitted by microorganisms which affects plants) we got some results. We still have to quantify the difference in the amount of starch, but at this time, the difference in the growth of plants with fungus and plants without fungus is visible to the naked eye:</p> | | <p>Regarding the other experiment (the one of volatile compounds emitted by microorganisms which affects plants) we got some results. We still have to quantify the difference in the amount of starch, but at this time, the difference in the growth of plants with fungus and plants without fungus is visible to the naked eye:</p> |
| <div class="text-center mb-20 mb-20"> | | <div class="text-center mb-20 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/5/5b/T--Navarra_BG--project-fig13.jpg" alt="Fig. 13 Arabidopsis thaliana without (A) and in (B) contactwith the fungus Alternaria alternata." style="max-height:350px;"> | + | <img src="https://static.igem.org/mediawiki/2018/5/5b/T--Navarra_BG--project-fig13.jpg" alt="Fig. 13 Arabidopsis thaliana without (A) and in (B) contactwith the fungus Alternaria alternata." class="max_height350"> |
| <span class="pie"><strong>Fig. 13</strong> Arabidopsis thaliana without (A) and in (B)<br>contact with the fungus Alternaria alternata.</span> | | <span class="pie"><strong>Fig. 13</strong> Arabidopsis thaliana without (A) and in (B)<br>contact with the fungus Alternaria alternata.</span> |
| </div> | | </div> |
Line 208: |
Line 208: |
| <p>We modify our plants in order that they were producing our target protein, verify that they were doing it and purify this protein with our method. The last step of this experiment is to verify and to demonstrate if our method of purification had worked. That is to say, if we really had obtained the GFP (our protein).</p> | | <p>We modify our plants in order that they were producing our target protein, verify that they were doing it and purify this protein with our method. The last step of this experiment is to verify and to demonstrate if our method of purification had worked. That is to say, if we really had obtained the GFP (our protein).</p> |
| <div class="float-right ml-50 mb-20"> | | <div class="float-right ml-50 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/4/45/T--Navarra_BG--project-fig14.jpg" alt="Fig. 14 Cuvette used in the western blot technique." style="max-height:240px;"> | + | <img src="https://static.igem.org/mediawiki/2018/4/45/T--Navarra_BG--project-fig14.jpg" alt="Fig. 14 Cuvette used in the western blot technique." class="max_height240"> |
| <span class="pie"><strong>Fig. 14</strong> Cuvette used in the western blot technique.</span> | | <span class="pie"><strong>Fig. 14</strong> Cuvette used in the western blot technique.</span> |
| </div> | | </div> |
Line 214: |
Line 214: |
| <div class="clearfix"></div> | | <div class="clearfix"></div> |
| <div class="float-right ml-50 mb-20"> | | <div class="float-right ml-50 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/a/a3/T--Navarra_BG--project-fig15.jpg" alt="Fig. 15 Developed in the western blot technique." style="max-height:240px;"> | + | <img src="https://static.igem.org/mediawiki/2018/a/a3/T--Navarra_BG--project-fig15.jpg" alt="Fig. 15 Developed in the western blot technique." class="max_height240"> |
| <span class="pie"><strong>Fig. 15</strong> Developed in the western blot technique.</span> | | <span class="pie"><strong>Fig. 15</strong> Developed in the western blot technique.</span> |
| </div> | | </div> |
Line 236: |
Line 236: |
| | | |
| <div class="float-right ml-50 mb-20"> | | <div class="float-right ml-50 mb-20"> |
− | <img src="https://static.igem.org/mediawiki/2018/e/e6/T--Navarra_BG--project-fig16.jpg" alt="Fig. 16 Spectrophotometer for Multiskan microplates." style="max-height:350px;"> | + | <img src="https://static.igem.org/mediawiki/2018/e/e6/T--Navarra_BG--project-fig16.jpg" alt="Fig. 16 Spectrophotometer for Multiskan microplates." class="max_height350"> |
| <span class="pie"><strong>Fig. 16</strong> Spectrophotometer for Multiskan microplates.</span> | | <span class="pie"><strong>Fig. 16</strong> Spectrophotometer for Multiskan microplates.</span> |
| </div> | | </div> |