Difference between revisions of "Team:DTU-Denmark"

(Just a title change to show what we're doing this year)
Line 15: Line 15:
 
</div>  
 
</div>  
  
 
<div class="column full_size" >
 
 
<h3>Before you start</h3>
 
<p> Please read the following pages:</p>
 
<ul>
 
<li>  <a href="https://2018.igem.org/Competition">Competition Hub</a> </li>
 
<li> <a href="https://2018.igem.org/Competition/Deliverables/Wiki">Wiki Requirements page</a></li>
 
<li> <a href="https://2018.igem.org/Resources/Template_Documentation">Template documentation</a></li>
 
</ul>
 
</div>
 
  
  
Line 35: Line 24:
  
 
<div class="column full_size" >
 
<div class="column full_size" >
<h3> Styling your wiki </h3>
+
<h3> Project Description </h3>
<p>You may style this page as you like or you can simply leave the style as it is. You can easily keep the styling and edit the content of these default wiki pages with your project information and completely fulfill the requirement to document your project.</p>
+
<p>For millennia humans have known the value of fungi whether it be the yeast we cultivate for bread, beer and wine, or the mushrooms that serve both as a source of nutrition and natural medicinal compounds. However, the fungi we find on the forest floor are only the fruit of a much larger fungal organism, which stays unseen as a complex network of fungal mycelia that stretches far and wide underground.</p>
<p>While you may not win Best Wiki with this styling, your team is still eligible for all other awards. This default wiki meets the requirements, it improves navigability and ease of use for visitors, and you should not feel it is necessary to style beyond what has been provided.</p>  
+
<p>The use of mycelia in industrial fermentation processes is known to most biotechnologists, but in recent years it has expanded into other fields showing promising potential for being the foundation of a new generation of biomaterials.</p>
 +
<p>Briefly summarised, composite fungal biomaterials are generally rapidly generated, renewable, biodegradable, naturally fire resistant, non-polluting and can be produced from the waste of other industries, be it spent grain from a brewery or discarded furniture from Ikea. For this reason, fungal biomaterials can come to play a significant role in fulfilling the demand for new sustainable materials. Frontrunner companies such as Ecovative and Mycoworks are currently exploring the potential use of fungal mycelia to make insulation materials, foams, fibreboards, bricks and even fungal leather.</p>
 +
<p>Being a living material, fungal mycelium is a self-growing, fibrous material that self-organizes into complex three-dimensional structures. Taking advantage of these properties, fungal-based composite materials can be constructed to achieve structural integrities that potentially are applicable in construction industries both here on earth or in space. </p>
 +
<p>Our project will focus on exploring how synthetic biology can advance the field of fungal biomaterials by targeting genes relevant to the morphology and physical properties of the mycelium. For one, we aim to promote the expression of chitin (what insects shells are made of) in the fungus Pleurotus ostreatus to make its mycelium stronger. Furthermore, due to interest from our collaborators at NASA, we also aim introduce the biosynthetic pathway for melanin such that we can produce UV-resistant biomaterials, which will be important in the context of extraterrestrial construction materials.</p>
  
 
</div>
 
</div>
Line 47: Line 39:
  
  
 
<div class="column third_size" >
 
 
<h3> Uploading pictures and files </h3>
 
<p> You must upload any pictures and files to the iGEM 2018 server. Remember to keep all your pictures and files within your team's namespace or at least include your team's name in the file name. </p>
 
 
 
<p>When you upload, set the "Destination Filename" to <b> T--YourOfficialTeamName--NameOfFile.jpg</b>. (If you don't do this, someone else might upload a different file with the same "Destination Filename", and your file would be erased!)</p>
 
 
<div class="button_link">
 
<a href="https://2018.igem.org/Special:Upload">
 
UPLOAD FILES
 
</a>
 
</div>
 
 
</div>
 
 
<div class="column third_size" >
 
<h3> Wiki template information </h3>
 
<p>We have created these wiki template pages to help you get started and to help you think about how your team will be evaluated. You can find a list of all the pages tied to awards here at the <a href="https://2018.igem.org/Judging/Pages_for_Awards">Pages for awards</a> link. You must edit these pages to be evaluated for medals and awards, but ultimately the design, layout, style and all other elements of your team wiki is up to you!</p>
 
 
</div>
 
 
 
 
<div class="column third_size" >
 
<div class="highlight decoration_B_full">
 
<h3> Editing your wiki </h3>
 
<p>On this page you can document your project, introduce your team members, document your progress and share your iGEM experience with the rest of the world! </p>
 
<p>Use WikiTools - Edit in the black menu bar to edit this page</p>
 
 
<div class="button_link">
 
<a href="https://2018.igem.org/wiki/index.php?title=Team:DTU-Denmark&action=edit">
 
EDIT PAGE
 
</a>
 
</div>
 
 
 
</div>
 
</div>
 
 
 
 
 
 
<div class="clear extra_space"></div>
 
<div class="line_divider"></div>
 
<div class="clear extra_space"></div>
 
 
 
 
<div class="column two_thirds_size" >
 
<h3>Tips</h3>
 
<p>This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started: </p>
 
<ul>
 
<li>State your accomplishments! Tell people what you have achieved from the start. </li>
 
<li>Be clear about what you are doing and how you plan to do this.</li>
 
<li>You have a global audience! Consider the different backgrounds that your users come from.</li>
 
<li>Make sure information is easy to find; nothing should be more than 3 clicks away.  </li>
 
<li>Avoid using very small fonts and low contrast colors; information should be easy to read.  </li>
 
<li>Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the <a href="https://2018.igem.org/Calendar">iGEM 2018 calendar</a> </li>
 
<li>Have lots of fun! </li>
 
</ul>
 
</div>
 
 
 
<div class="column third_size">
 
<div class="highlight decoration_A_full">
 
<h3>Inspiration</h3>
 
<p> You can also view other team wikis for inspiration! Here are some examples:</p>
 
<ul>
 
<li> <a href="https://2014.igem.org/Team:SDU-Denmark/"> 2014 SDU Denmark </a> </li>
 
<li> <a href="https://2014.igem.org/Team:Aalto-Helsinki">2014 Aalto-Helsinki</a> </li>
 
<li> <a href="https://2014.igem.org/Team:LMU-Munich">2014 LMU-Munich</a> </li>
 
<li> <a href="https://2014.igem.org/Team:Michigan"> 2014 Michigan</a></li>
 
<li> <a href="https://2014.igem.org/Team:ITESM-Guadalajara">2014 ITESM-Guadalajara </a></li>
 
<li> <a href="https://2014.igem.org/Team:SCU-China"> 2014 SCU-China </a></li>
 
</ul>
 
</div>
 
</div>
 
  
  

Revision as of 11:04, 25 June 2018

Building Mycotextures

The DTU biobuilders are looking forward to enter iGEM once again! This year, we are working to develop a toolbox so properties of fungi can be manipulated and exploited to build fungal materials.

Project Description

For millennia humans have known the value of fungi whether it be the yeast we cultivate for bread, beer and wine, or the mushrooms that serve both as a source of nutrition and natural medicinal compounds. However, the fungi we find on the forest floor are only the fruit of a much larger fungal organism, which stays unseen as a complex network of fungal mycelia that stretches far and wide underground.

The use of mycelia in industrial fermentation processes is known to most biotechnologists, but in recent years it has expanded into other fields showing promising potential for being the foundation of a new generation of biomaterials.

Briefly summarised, composite fungal biomaterials are generally rapidly generated, renewable, biodegradable, naturally fire resistant, non-polluting and can be produced from the waste of other industries, be it spent grain from a brewery or discarded furniture from Ikea. For this reason, fungal biomaterials can come to play a significant role in fulfilling the demand for new sustainable materials. Frontrunner companies such as Ecovative and Mycoworks are currently exploring the potential use of fungal mycelia to make insulation materials, foams, fibreboards, bricks and even fungal leather.

Being a living material, fungal mycelium is a self-growing, fibrous material that self-organizes into complex three-dimensional structures. Taking advantage of these properties, fungal-based composite materials can be constructed to achieve structural integrities that potentially are applicable in construction industries both here on earth or in space.

Our project will focus on exploring how synthetic biology can advance the field of fungal biomaterials by targeting genes relevant to the morphology and physical properties of the mycelium. For one, we aim to promote the expression of chitin (what insects shells are made of) in the fungus Pleurotus ostreatus to make its mycelium stronger. Furthermore, due to interest from our collaborators at NASA, we also aim introduce the biosynthetic pathway for melanin such that we can produce UV-resistant biomaterials, which will be important in the context of extraterrestrial construction materials.