Difference between revisions of "Team:Uppsala"

Line 162: Line 162:
 
                  
 
                  
  
<p>Nematode parasites cost the agricultural industry lots of money and grief each year due to the many consequences they cause. The economic burden of these parasites is forecasted to increase, since these worms are rapidly gaining resistance to most drugs used to combat them. There are currently no easy methods for the diagnosis of these small strongyles. Our vision has been to apply synthetic biology to the untouched field of veterinary diagnostics to solve this problem. While working towards the goal of creating a reprogramed smart bacteria (nicknamed the worm buster) to detect and report the presence of the small strongyles, we discovered new useful applications of existing techniques along the way. This has made our vision about the worm buster more realistic, which in the future will provide the tools necessary to help farmers make a decisions whether to treat their animals or not.<br><br>
+
<p>Nematode parasites cost the agricultural industry lots of money and grief each year due to the many consequences they cause. The economic burden of these parasites is forecasted to increase, since these worms are rapidly gaining resistance to most drugs used to combat them. There are currently no easy methods for the diagnosis of these small strongyles. Our vision has been to apply synthetic biology to the untouched field of veterinary diagnostics to solve this problem, thus decreasing the growth of resistance among small strongyles. While working towards the goal of creating a reprogramed smart bacteria (nicknamed the worm buster) to detect and report the presence of the small strongyles, we discovered new useful applications of existing techniques along the way. This has made our vision about the worm buster more realistic, which in the future will provide the tools necessary to help farmers make a decisions whether to treat their animals or not.<br><br>
  
 
Our work has laid the foundation for our idea to someday potentially come to fruition. Our novel applications of cutting edge techniques such as phage display and transcriptomics using third generation sequencing provide groundwork for further expansions in the field of veterinary diagnostics.  </p>
 
Our work has laid the foundation for our idea to someday potentially come to fruition. Our novel applications of cutting edge techniques such as phage display and transcriptomics using third generation sequencing provide groundwork for further expansions in the field of veterinary diagnostics.  </p>

Revision as of 13:45, 16 October 2018




Uppsala iGEM 2018