Difference between revisions of "Team:Uppsala"

Line 182: Line 182:
 
                             <div class="side-text">
 
                             <div class="side-text">
 
                                 <!-- Here you put your paragraphs -->  
 
                                 <!-- Here you put your paragraphs -->  
                                 <p>Small Strongyles or Cyathostominae are among the most common equine parasites, with more than 52 species in their family [2]. The infectious stage of small strongyles is when they’ve developed into larvae while still lurking in the grass. While horses graze, they consume the worms and the small strongyles continue to develop in the horses’ intestines, forming cysts in the intestinal wall [1]. When further evolved, these small strongyles can burst out from their cysts during late winter or early spring, moving up towards the intestinal lumen where they become adult worms [1, 8]. <br><br><b>Figure 1: </b>Small strongyles.</p>
+
                                 <p>Small Strongyles or Cyathostominae are among the most common equine parasites, with more than 52 species in their family [2]. The infectious stage of small strongyles is when they’ve developed into larvae while still lurking in the grass. While horses graze, they consume the worms and the small strongyles continue to develop in the horses’ intestines, forming cysts in the intestinal wall [1]. When further evolved, these small strongyles can burst out from their cysts during late winter or early spring, moving up towards the intestinal lumen where they become adult worms [1, 8]. </p>
 
                                 <br>
 
                                 <br>
  
Line 190: Line 190:
 
                               <!-- Here goes the big image to the right -->  
 
                               <!-- Here goes the big image to the right -->  
 
                               <img src="https://static.igem.org/mediawiki/2018/4/49/T--Uppsala--smallandlarge.jpg">   
 
                               <img src="https://static.igem.org/mediawiki/2018/4/49/T--Uppsala--smallandlarge.jpg">   
 
+
<b>Figure 1: </b>Small strongyles.</p>
 
                             </div>
 
                             </div>
  
Line 251: Line 251:
 
                             <div class="side-text">
 
                             <div class="side-text">
 
                                 <!-- Here you put your paragraphs -->  
 
                                 <!-- Here you put your paragraphs -->  
                                 <p>The first step was to obtain live nematodes by the recovery of the eggs from the feces. After this process the large strongyles were divided from the small strongyles using a 3D printed microfluidic chip or a microscope and stored for successive use.<br><br><b> Figure 2: </b>The first stage of worm culturing.</p>
+
                                 <p>The first step was to obtain live nematodes by the recovery of the eggs from the feces. After this process the large strongyles were divided from the small strongyles using a 3D printed microfluidic chip or a microscope and stored for successive use.</p>
 
                                 <br>
 
                                 <br>
  
Line 259: Line 259:
 
                               <!-- Here goes the big image to the right -->  
 
                               <!-- Here goes the big image to the right -->  
 
                               <img src="https://static.igem.org/mediawiki/2018/4/40/T--Uppsala--Poop_Eggs.svg">
 
                               <img src="https://static.igem.org/mediawiki/2018/4/40/T--Uppsala--Poop_Eggs.svg">
 +
<b> Figure 2: </b>The first stage of worm culturing.</p>
 
                             </div>
 
                             </div>
  
Line 288: Line 289:
 
                                     <p>For the first one, we have been developing a custom transcriptomic analysis protocol. This was necessary because transcriptomics is a new application for Oxford Nanopore technology. The transcriptomics procedure relies on the co-culturing of nematodes with <i>E.coli</i> and subsequent sequencing of the bacterial mRNA. This will ideally reveal which genes are upregulated when the worm is next to the nematode. The promoters of these genes can then be used to develop a biosensor by linking them to a reporter!  
 
                                     <p>For the first one, we have been developing a custom transcriptomic analysis protocol. This was necessary because transcriptomics is a new application for Oxford Nanopore technology. The transcriptomics procedure relies on the co-culturing of nematodes with <i>E.coli</i> and subsequent sequencing of the bacterial mRNA. This will ideally reveal which genes are upregulated when the worm is next to the nematode. The promoters of these genes can then be used to develop a biosensor by linking them to a reporter!  
  
                                     As our result show, transcriptomics with the nanopore MinION works if a better technique to reduce the amount of RNA in the sample is discovered thus we have discovered a new application to Oxford Nanopore Technology.<br><br><b>Figure 3: </b>Flowchart representing the trancsriptomics outline.</p>
+
                                     As our result show, transcriptomics with the nanopore MinION works if a better technique to reduce the amount of RNA in the sample is discovered thus we have discovered a new application to Oxford Nanopore Technology.</p>
 
                                     <br>
 
                                     <br>
  
Line 297: Line 298:
 
                                     <!-- Here goes the big image to the right -->  
 
                                     <!-- Here goes the big image to the right -->  
 
                                     <img src="https://static.igem.org/mediawiki/2018/5/5d/T--Uppsala--transcriptomics_flowchart.svg">   
 
                                     <img src="https://static.igem.org/mediawiki/2018/5/5d/T--Uppsala--transcriptomics_flowchart.svg">   
 
+
<b>Figure 3: </b>Flowchart representing the trancsriptomics outline.</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 314: Line 315:
 
                                     <!-- Here you put your paragraphs -->  
 
                                     <!-- Here you put your paragraphs -->  
 
                                     <p>The second approach used a technique called “Phage Display”, which utilizes a random peptide library expressed on the surface of phages. By repeated rounds of affinity screening, only phages with high affinity to the molecule of interest will be selected. Sequencing the genetic information of these phages has allowed us to construct multiple peptide suggestions that may bind to our nematodes’ surface proteins.  This would allow the biosensor to aggregate at the detection sites and create a stronger signal. <br><br>
 
                                     <p>The second approach used a technique called “Phage Display”, which utilizes a random peptide library expressed on the surface of phages. By repeated rounds of affinity screening, only phages with high affinity to the molecule of interest will be selected. Sequencing the genetic information of these phages has allowed us to construct multiple peptide suggestions that may bind to our nematodes’ surface proteins.  This would allow the biosensor to aggregate at the detection sites and create a stronger signal. <br><br>
                                     In our project, phage display has been used in a whole new way. Performing phage display on a whole organism is an unconventional and unpublished procedure. By creating a working protocol for the purpose of finding a specific binder for strongyles we have applied this Nobel-prize winning method in a new way.<br><br><b>Figure 4: </b>Flowchart representing the phage display outline.</p>
+
                                     In our project, phage display has been used in a whole new way. Performing phage display on a whole organism is an unconventional and unpublished procedure. By creating a working protocol for the purpose of finding a specific binder for strongyles we have applied this Nobel-prize winning method in a new way.</p>
 
                                     <br>
 
                                     <br>
  
Line 322: Line 323:
 
                                   <!-- Here goes the big image to the right -->  
 
                                   <!-- Here goes the big image to the right -->  
 
                                   <img src="https://static.igem.org/mediawiki/2018/2/2a/T--Uppsala--Phage_Display_flowchart_New.svg">   
 
                                   <img src="https://static.igem.org/mediawiki/2018/2/2a/T--Uppsala--Phage_Display_flowchart_New.svg">   
 
+
<b>Figure 4: </b>Flowchart representing the phage display outline.</p>
 
                                 </div>
 
                                 </div>
  
Line 343: Line 344:
 
                                     <p>After receiving the results from either the transcriptomics or the phage display, they need to be combined with a reported to get a functioning diagnostic tool (Worm Buster).  We have adapted and troubleshot the expression of a fluorescent chromoprotein, UnaG, to be able to detect our worms in both the intestines and in feces. This would enable a relatively simple and quantitative way for ranchers to detect the worms of interest, using a cheap UV lamp, a dark room, and a camera!<br><br>
 
                                     <p>After receiving the results from either the transcriptomics or the phage display, they need to be combined with a reported to get a functioning diagnostic tool (Worm Buster).  We have adapted and troubleshot the expression of a fluorescent chromoprotein, UnaG, to be able to detect our worms in both the intestines and in feces. This would enable a relatively simple and quantitative way for ranchers to detect the worms of interest, using a cheap UV lamp, a dark room, and a camera!<br><br>
  
                                     In order to make this a viable reporter system, we wanted to make sure the original biobrick part was functional.  We show how we tweaked this part in order to study if it works properly so that it could be potentially used in future studies.<br><br><b>Figure 5: </b>We would be able to detect the wormd in feces with this method.</p>
+
                                     In order to make this a viable reporter system, we wanted to make sure the original biobrick part was functional.  We show how we tweaked this part in order to study if it works properly so that it could be potentially used in future studies.</p>
 
                                     <br>
 
                                     <br>
  
Line 351: Line 352:
 
                                     <!-- Here goes the big image to the right -->  
 
                                     <!-- Here goes the big image to the right -->  
 
                                     <img src="https://static.igem.org/mediawiki/2018/f/f5/T--Uppsala--AntennaPoop.svg">   
 
                                     <img src="https://static.igem.org/mediawiki/2018/f/f5/T--Uppsala--AntennaPoop.svg">   
 
+
<b>Figure 5: </b>We would be able to detect the wormd in feces with this method.</p>
 
                                 </div>
 
                                 </div>
  
Line 384: Line 385:
 
                                 <p>The small strongyles’ larger cousin, Strongylus Vulgaris, is the most pathogenic parasite in horses, posing a significant threat[1]. They, like small strongyles, live in the grass and and infect the horse after being ingested [3]. During the different larval stages inside the horse, the parasite enters the intestinal blood vessels as a part of their life cycle [4,10]. Because of this, they generally can’t be targeted by deworming drugs or detection methods and can cause major problems for domestic animals [7]. <br><br>
 
                                 <p>The small strongyles’ larger cousin, Strongylus Vulgaris, is the most pathogenic parasite in horses, posing a significant threat[1]. They, like small strongyles, live in the grass and and infect the horse after being ingested [3]. During the different larval stages inside the horse, the parasite enters the intestinal blood vessels as a part of their life cycle [4,10]. Because of this, they generally can’t be targeted by deworming drugs or detection methods and can cause major problems for domestic animals [7]. <br><br>
  
                                 Due to this, an efficient diagnostic tool that can be applied to grass samples are necessary to prevent ingestion of large strongyles. This is why we looked into the possibility of a second worm buster targeting large strongyles could be possible in the future.<br><br><b>Figure 6: </b>Large strongyles.</p>
+
                                 Due to this, an efficient diagnostic tool that can be applied to grass samples are necessary to prevent ingestion of large strongyles. This is why we looked into the possibility of a second worm buster targeting large strongyles could be possible in the future.</p>
 
                                 <br>
 
                                 <br>
  
Line 392: Line 393:
 
                               <!-- Here goes the big image to the right -->  
 
                               <!-- Here goes the big image to the right -->  
 
                               <img src="https://static.igem.org/mediawiki/2018/d/d6/T--Uppsala--Large.jpg">   
 
                               <img src="https://static.igem.org/mediawiki/2018/d/d6/T--Uppsala--Large.jpg">   
 
+
<b>Figure 6: </b>Large strongyles.</p>
 
                             </div>
 
                             </div>
  
Line 427: Line 428:
 
                                 <p>As you can see these little worms can cause a lot of harm. While we hope that our practical work will help solve the physical problem, all of the problems that come with these worms cannot be solved in a laboratory. <br><br>
 
                                 <p>As you can see these little worms can cause a lot of harm. While we hope that our practical work will help solve the physical problem, all of the problems that come with these worms cannot be solved in a laboratory. <br><br>
  
                                 The strongyles harm the horses but the collateral damage is extensive - sentimental value, resistance against anthelmintics, the effect the drugs has on environment and the noteworthy economics are all involved [6]. These are all aspects that make the issue bigger than it appears at first glance. <br><br><b>Figure 7: </b>Some members in the team with our mascot Gromit.</p>
+
                                 The strongyles harm the horses but the collateral damage is extensive - sentimental value, resistance against anthelmintics, the effect the drugs has on environment and the noteworthy economics are all involved [6]. These are all aspects that make the issue bigger than it appears at first glance. </p>
 
                                 <br>
 
                                 <br>
  
Line 435: Line 436:
 
                               <!-- Here goes the big image to the right -->  
 
                               <!-- Here goes the big image to the right -->  
 
                               <img src="https://static.igem.org/mediawiki/2018/2/2f/T--Uppsala--HP-Main_Page.png">   
 
                               <img src="https://static.igem.org/mediawiki/2018/2/2f/T--Uppsala--HP-Main_Page.png">   
 
+
                            <b>Figure 7: </b>Some members in the team with our mascot Gromit.</p>
 
                             </div>
 
                             </div>
  

Revision as of 13:32, 17 October 2018





Uppsala iGEM 2018