Difference between revisions of "Team:Uppsala/Reporter System/UnaG"

Line 176: Line 176:
 
</div>
 
</div>
 
                      
 
                      
            <  <div class="igem-icon"><a href="https://2018.igem.org/Team:Uppsala"><img src="https://static.igem.org/mediawiki/2018/7/7a/T--Uppsala--WormBusterLogo_White.png"></a></div>
+
            <div class="igem-icon"><a href="https://2018.igem.org/Team:Uppsala"><img src="https://static.igem.org/mediawiki/2018/7/7a/T--Uppsala--WormBusterLogo_White.png"></a></div>
 
         <div class ="scroll-pointer">
 
         <div class ="scroll-pointer">
 
              
 
              
Line 221: Line 221:
 
                  
 
                  
 
<div>
 
<div>
                 
+
    <h1>UnaG Design</h1>
                    <div>
+
                        <div>
+
                            <h1>UnaG Design</h1>
+
 
                              
 
                              
 
                             <img src="https://static.igem.org/mediawiki/2018/e/e8/T--Uppsala--UnaGSequence.PNG" class="center" >
 
                             <img src="https://static.igem.org/mediawiki/2018/e/e8/T--Uppsala--UnaGSequence.PNG" class="center" >
Line 231: Line 228:
  
 
                                 <!-- start slipsum code -->
 
                                 <!-- start slipsum code -->
                                 <p><font size="3"><b>Figure 1:</b> Our annotated modified UnaG sequence with an N-terminal his tag.  The terminator, RBS, and promoter sequences were all obtained from the iGEM website.  The UnaG gene was taken from the iGEM website and <b>only the start codon was moved</b> so that the gene would properly express with a histidine tag.  The start codon was previously immediately <b>after</b> the histidine tag.  Note that two plasmids were designed, one using the original UnaG part from the iGEM 2016 Uppsala team and one modified one as shown above.  The only modification between the two plasmids is the repositioned start codon. Our <a href="http://parts.igem.org/Part:BBa_K2669000"><b>composite part</b></a> and <a href="http://parts.igem.org/Part:BBa_K2669001"><b>basic part</b></a> can both be found on the iGEM registry site. </font>  </p>   
+
                                 <p><font size="3"><b>Figure 1.</b> Our annotated modified UnaG sequence with an N-terminal his tag.  The terminator, RBS, and promoter sequences were all obtained from the iGEM website.  The UnaG gene was taken from the iGEM website and <b>only the start codon was moved</b> so that the gene would properly express with a histidine tag.  The start codon was previously immediately <b>after</b> the histidine tag.  Note that two plasmids were designed, one using the original UnaG part from the iGEM 2016 Uppsala team and one modified one as shown above.  The only modification between the two plasmids is the repositioned start codon. Our <a href="http://parts.igem.org/Part:BBa_K2669000"><b>composite part</b></a> and <a href="http://parts.igem.org/Part:BBa_K2669001"><b>basic part</b></a> can both be found on the iGEM registry site. </font>  </p>   
 
<br>
 
<br>
 
<p> Note that we expressed both our modified composite part and the part from 2016 in a pUCIDT (Amp) backbone, which is a low copy plasmid backbone with ampicillin resistance. </p>  
 
<p> Note that we expressed both our modified composite part and the part from 2016 in a pUCIDT (Amp) backbone, which is a low copy plasmid backbone with ampicillin resistance. </p>  
Line 240: Line 237:
 
                          
 
                          
 
            
 
            
                    </div>
+
                  
                 </div>
+
 
                 <!-- Next part -->
 
                 <!-- Next part -->
 +
 +
 +
<div class="card-holder">
 +
                 
 +
                    <div class="content-card pic-next-to-text">
 +
                        <div class="side-text">
 +
                          <p><b>Figure 2.</b> Bilirubin test before/after affinity chromatography.  Going from left to right the samples are: Lysed sample of the “bad” part before AC, Lysed sample of the “good” part before AC, "Bad" part after AC, "Good" part after AC.</p>
 +
 +
 +
                        </div>
 +
                </div>
 +
            </div>
 +
 +
 +
 +
 
                 <div class="card-holder">
 
                 <div class="card-holder">
                   
+
               
                    <div>
+
                    <h1>UnaG Results</h1>
                        <div>
+
                       
                            <h1>UnaG Results</h1>
+
                    <p> Cell lysis and affinity chromotography were used to extract UnaG from our cells.  Bilirubin tests (addition of a small amount of bilirubin to samples) allowed us to see if the UnaG was present in our samples, since as mentioned earlier UnaG fluoresces in the presence of bilirubin.  </p>
                            <p> Cell lysis and affinity chromotography were used to extract UnaG from our cells.  Bilirubin tests (addition of a small amount of bilirubin to samples) allowed us to see if the UnaG was present in our samples, since as mentioned earlier UnaG fluoresces in the presence of bilirubin.  </p>
+
                              
                             <p style="text-align:center;"><img class=“content-card-img" src="https://static.igem.org/mediawiki/2018/2/20/T--Uppsala--UnaG_Comparison.png" alt="UnaG Comparison" width="75% height="75%"></p>
+
                    <img class=“content-card-img" src="https://static.igem.org/mediawiki/2018/2/20/T--Uppsala--UnaG_Comparison.png" alt="UnaG Comparison" width="75% height="75%"><br>
                             <br>
+
                              
                            <p><b>Figure 2:</b> Bilirubin test before/after affinity chromatography.  Going from left to right the samples are: Lysed sample of the “bad” part before AC, Lysed sample of the “good” part before AC, "Bad" part after AC, "Good" part after AC.</p><br>
+
                    <p><b>Figure 2.</b> Bilirubin test before/after affinity chromatography.  Going from left to right the samples are: Lysed sample of the “bad” part before AC, Lysed sample of the “good” part before AC, "Bad" part after AC, "Good" part after AC.</p><br>
  
                            <p>UnaG can be observed in all tubes except the third one, which should not have a histidine tag since we used the 2016 part that was on the iGEM registry and therefore it should not bind in the IMAC column. This supports our claim that our new part functions and provides a histidine tag to the protein, and the old part did not.</p>
+
                    <p>UnaG can be observed in all tubes except the third one, which should not have a histidine tag since we used the 2016 part that was on the iGEM registry and therefore it should not bind in the IMAC column. This supports our claim that our new part functions and provides a histidine tag to the protein, and the old part did not.</p><br>
                            <br>
+
                            <p style="text-align:center;"><img class=“content-card-img" src="https://static.igem.org/mediawiki/2018/f/fc/T--Uppsala--UnaG_Blank_Comparison.png" class="center" height="70%" width="70%"></p>  
+
  
                             <p><b>Figure 3:</b> Comparison of blank tube to successful extraction/previous iGEM part. The tubes reading from left to right are as followed: Blank tube with AC elution buffer/bilirubin, Tube with bilirubin + AC-eluted original iGEM UnaG part, Our extracted modified UnaG with a moved start codon, as can be seen in <b>Figure 1</b>.</p><br>
+
                    <img src="https://static.igem.org/mediawiki/2018/f/fc/T--Uppsala--UnaG_Blank_Comparison.png" class="content-card-img">
 +
 
 +
                             <p><b>Figure 3.</b> Comparison of blank tube to successful extraction/previous iGEM part. The tubes reading from left to right are as followed: Blank tube with AC elution buffer/bilirubin, Tube with bilirubin + AC-eluted original iGEM UnaG part, Our extracted modified UnaG with a moved start codon, as can be seen in Figure 1.</p><br>
 
                            
 
                            
 
                             <p>A good degree of fluorescence can be seen in the last tube compared to the other two, which clearly contain none of our protein of interest. </p>
 
                             <p>A good degree of fluorescence can be seen in the last tube compared to the other two, which clearly contain none of our protein of interest. </p>
 
                             <br>
 
                             <br>
  
                             <p style="text-align:center;"><img class=“content-card-img" src="https://static.igem.org/mediawiki/2018/2/25/T--Uppsala--UnaGGelPictureUpdated.png" class="center" height="70%" width="70%" ></p>
+
                             <img class="content-card-img" src="https://static.igem.org/mediawiki/2018/2/25/T--Uppsala--UnaGGelPictureUpdated.png" class="center" height="70%" width="70%" >
                             <p><b>Figure 4:</b> SDS-PAGE gel after affinity chromatography. The first lane corresponds to the good part after AC and the second line corresponds to the bad part after AC.</p>
+
                             <p><b>Figure 4.</b> SDS-PAGE gel after affinity chromatography. The first lane corresponds to the good part after AC and the second line corresponds to the bad part after AC.</p>
 
                             <p>UnaG is approximately 15.6 kDa, showing that it is indeed in the extracted sample.  Other proteins are shown, and this is likely because we used no imidazole in the initial running buffer, leading to unspecific binding.  We did this to ensure that we obtained as much UnaG as possible in our sample so that we could conduct fluorescence tests visible by the naked eye. </p>
 
                             <p>UnaG is approximately 15.6 kDa, showing that it is indeed in the extracted sample.  Other proteins are shown, and this is likely because we used no imidazole in the initial running buffer, leading to unspecific binding.  We did this to ensure that we obtained as much UnaG as possible in our sample so that we could conduct fluorescence tests visible by the naked eye. </p>
 +
            </div>
  
<img src="https://static.igem.org/mediawiki/2018/d/db/T--Uppsala--UnaG_Cell_platereader.png" class="center">
 
  
<p><b>Figure 5:</b> Fluorescence measurement of unlysed cells. From left to right: Bacterial strain BL21 transformed with a plasmid containing <a href="http://parts.igem.org/Part:BBa_K2669000">Part:BBa_K2669000</a> from 2018, Bl21 transfected with <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2003011">Part:BBa_K2003011</a> from 2016 and normal BL21 cells, all at the same OD600 value. </p>
+
<div class="card-holder">
<br>
+
                   
<img src="https://static.igem.org/mediawiki/2018/8/88/T--Uppsala--Before_After_HisTrap.png" class="center">
+
                    <div class="content-card content-card-2">
 +
                        <div class="inner-card left-card">
 +
                            <!--change src to that of the image you want-->
 +
                            <img class="content-card-img" src="https://static.igem.org/mediawiki/2018/d/db/T--Uppsala--UnaG_Cell_platereader.png">
 +
                            <!-- end of paragraph -->
 +
                         
 +
                            <div class="inner-card-text">
 +
                                <!-- start of paragraph-->
 +
                                <p>Fluorescence measurement of unlysed cells. From left to right: Bacterial strain BL21 transformed with a plasmid containing <a href="http://parts.igem.org/Part:BBa_K2669000">Part:BBa_K2669000</a> from 2018, Bl21 transfected with <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2003011">Part:BBa_K2003011</a> from 2016 and normal BL21 cells, all at the same OD600 value. </p>
 +
                            </div>
  
<p><b>Figure 6:</b> The supernantant of lysed cells before and after the "His Gravitrap" affinity chromotography. Because of our lysis method UnaG was suspended in the supernatant of the cell cultures. The left samples are supernantant containing the UnaG-protein from 2016 and the right samples are the supernantant containing our UnaG-protein (2018). </p>
+
                        </div>
 +
                        <div class="inner-card right-card">
 +
                            <img class="content-card-img" src="https://static.igem.org/mediawiki/2018/8/88/T--Uppsala--Before_After_HisTrap.png">
  
<br>
+
                            <div class="inner-card-text">
 +
                                <!-- start of paragraph -->
 +
                                <p>The supernantant of lysed cells before and after the "His Gravitrap" affinity chromotography.  Because of our lysis method UnaG was suspended in the supernatant of the cell cultures.  The left samples are supernantant containing the UnaG-protein from 2016 and the right samples are the supernantant containing our UnaG-protein (2018).</p>
 +
                                <!-- End of paragraphs -->
 +
                            </div>
  
  
                             <h1>Results Conclusion</h1>
+
                           
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
 
 +
 
 +
 
 +
<div>
 +
 
 +
                             <h1>Result and Conclusion</h1>
 
                             <p>With the above experiments, we have shown that we successfully modified the 2016 UnaG part to maintain proper functionality while adding in a constiative promoter + RBS + double terminator.  </p>  
 
                             <p>With the above experiments, we have shown that we successfully modified the 2016 UnaG part to maintain proper functionality while adding in a constiative promoter + RBS + double terminator.  </p>  
 
              
 
              
 
                             <br>
 
                             <br>
                             <p>We have also shown that we have improved the “Inducible Green Fluorescent Protein UnaG+6xHis-tag+Flexible linker” protein part from the iGEM website by making it properly express a histidine tag that allows it to be extracted in affinity chromatography.  This is shown in <b>figures 3</b> and <b>4</b>.  In addition, we have also shown that we have an increased yield for UnaG than the previous iGEM part as can be seen in <b>figure 5</b>. <b>Figure 6</b> shows that even using the plate reader there is little to no UnaG present in the 2016 sample after IMAC, which suggests a histidine tag was not expressing.  The combination of fluorescence after IMAC purification and the correct sized band on the gel proves our biobrick part functions as intended.  In addition, we developed a simple protocol to extract membrane proteins, which are traditionally notoriously difficult to extract.   
+
                             <p>We have also shown that we have improved the “Inducible Green Fluorescent Protein UnaG+6xHis-tag+Flexible linker” protein part from the iGEM website by making it properly express a histidine tag that allows it to be extracted in affinity chromatography.  This is shown in figures 3 and 4.  In addition, we have also shown that we have an increased yield for UnaG than the previous iGEM part as can be seen in figure 5. Figure 6 shows that even using the plate reader there is little to no UnaG present in the 2016 sample after IMAC, which suggests a histidine tag was not expressing.  The combination of fluorescence after IMAC purification and the correct sized band on the gel proves our biobrick part functions as intended.  In addition, we developed a simple protocol to extract membrane proteins, which are traditionally notoriously difficult to extract.   
 
                             <br>
 
                             <br>
 
                                 <br>
 
                                 <br>
Line 289: Line 325:
 
                             It may have been beneficial to express UnaG in a low copy plasmid, which might have lessened the risk that these heterologous proteins would conglomerate.  We also chose to express UnaG in a constitutive manner, since we previously had no trouble expressing RFP or GFP (proteins with similar structures and environments) constitutively.  This saved us time and also provided one less “moving part” that could go wrong in our experiment, such as an induction system not working properly.   
 
                             It may have been beneficial to express UnaG in a low copy plasmid, which might have lessened the risk that these heterologous proteins would conglomerate.  We also chose to express UnaG in a constitutive manner, since we previously had no trouble expressing RFP or GFP (proteins with similar structures and environments) constitutively.  This saved us time and also provided one less “moving part” that could go wrong in our experiment, such as an induction system not working properly.   
 
                             </p>
 
                             </p>
 +
                </div>
 
                              
 
                              
                           
+
                    <div>     
 
                             <h1>Una G Protocols</h1>
 
                             <h1>Una G Protocols</h1>
 
                             <h2>Transforming the Plasmid:</h2>
 
                             <h2>Transforming the Plasmid:</h2>
Line 312: Line 349:
 
                             <p>Affinity chromatography was then performed on both “good” and “bad” parts' solutions using prepacked “His-Gravitrap” Columns from GE Healthcare.  The protocol for use was performed according to GE healthcare’s specifications, with modified binding/washing/elution buffers.  After affinity chromatography, the resulting elutants were tested for fluorescence with a bilirubin test.  </p>
 
                             <p>Affinity chromatography was then performed on both “good” and “bad” parts' solutions using prepacked “His-Gravitrap” Columns from GE Healthcare.  The protocol for use was performed according to GE healthcare’s specifications, with modified binding/washing/elution buffers.  After affinity chromatography, the resulting elutants were tested for fluorescence with a bilirubin test.  </p>
 
                              
 
                              
 +
                </div>
 
                      
 
                      
 
+
<div>
 
  <h1> References </h1>           
 
  <h1> References </h1>           
 
<br>
 
<br>
Line 327: Line 365:
  
 
                         </div>
 
                         </div>
 +
         
  
 
              
 
              

Revision as of 19:22, 17 October 2018