Difference between revisions of "Team:Uppsala/Transcriptomics/rRNA Depletion"

Line 33: Line 33:
  
  
  <div class="svg-wrapper">
+
  <div class="svg-wrapper" id="Project_Description">
  
 
      
 
      
Line 196: Line 196:
 
             <div id="toctitle"></div>
 
             <div id="toctitle"></div>
 
             <ul>
 
             <ul>
                 <li class="toclevel tocsection"><a href="#Project_Description" class="scroll"> <span id="whereYouAre"> Project Description  </span> </a>
+
                 <li class="toclevel tocsection"><a href="#Project_Description" class="scroll"> <span id="whereYouAre"> Transcriptomics</span> </a>
 
                         <ul>
 
                         <ul>
                             <li class="toclevel nav-item active"><a href="#top" class="nav-link scroll"> Overview </a></li>
+
                             <li class="toclevel nav-item active"><a href="#Dep" class="nav-link scroll"> rRNA Depletion</a></li>
                             <li class="toclevel nav-item"><a href="#Problem" class="nav-link scroll">  Problem </a></li>
+
                             <li class="toclevel nav-item"><a href="#Exp" class="nav-link scroll">  Expermiment</a></li>
                             <li class="toclevel nav-item"><a href="#Solution" class="nav-link scroll">  Solution </a></li>
+
                            <li class="toclevel nav-item"><a href="#Res" class="nav-link scroll"> Results</a></li>
 +
                             <li class="toclevel nav-item"><a href="#Conc" class="nav-link scroll">  Conclusion</a></li>
 
                             <li class="toclevel nav-item"><a href="#References" class="nav-link scroll"> References </a></li>
 
                             <li class="toclevel nav-item"><a href="#References" class="nav-link scroll"> References </a></li>
 
                         </ul>
 
                         </ul>
Line 237: Line 238:
 
<p>rRNA stands for ribosomal RNA and constitutes a large part of the cells ribosomes. In fact, about 90% of the total RNA content of the cell is rRNA, with the rest being microRNA, tRNA and mRNA. While the rRNA has been very useful for RNA quality control in the previous step of the pipeline, it actually holds no genetic information of value for us and can be removed to make the RNA sample clearer and lighter in preparation for the coming steps.</p>
 
<p>rRNA stands for ribosomal RNA and constitutes a large part of the cells ribosomes. In fact, about 90% of the total RNA content of the cell is rRNA, with the rest being microRNA, tRNA and mRNA. While the rRNA has been very useful for RNA quality control in the previous step of the pipeline, it actually holds no genetic information of value for us and can be removed to make the RNA sample clearer and lighter in preparation for the coming steps.</p>
  
<h2>Experiment</h2>
+
<h2 id="Exp">Experiment</h2>
  
 
<p/>We performed our rRNA depletions using Thermo Fishers MICROBexpress Bacterial mRNA Enrichment Kit. This kit utilizes magnetic beads which are primed to capture and bind the rRNA to them. These beads are added to the sample. Using a magnet, the beads can then be pulled to the side of the sample tube and the eluate can be pipetted, giving us an RNA sample free of rRNA[1]! A total of 10000ng of total RNA is used for each sample in the rRNA depletion step.<br><br>
 
<p/>We performed our rRNA depletions using Thermo Fishers MICROBexpress Bacterial mRNA Enrichment Kit. This kit utilizes magnetic beads which are primed to capture and bind the rRNA to them. These beads are added to the sample. Using a magnet, the beads can then be pulled to the side of the sample tube and the eluate can be pipetted, giving us an RNA sample free of rRNA[1]! A total of 10000ng of total RNA is used for each sample in the rRNA depletion step.<br><br>
Line 245: Line 246:
 
In this step, the RNA is measured using Thermo Fishers Qubit [3]. As with all work involving RNA, good sterile technique is required. </p>  
 
In this step, the RNA is measured using Thermo Fishers Qubit [3]. As with all work involving RNA, good sterile technique is required. </p>  
  
<h2>Result</h2>
+
<h2 id="Res">Result</h2>
  
 
<p>The purified RNA samples are checked for their concentrations after the precipitation to determine successful rRNA depletion. We use Qubit for this, as it is more precise and we have found that NanoDrop is inaccurate at the smaller concentrations introduced in this step.</p><br><br>
 
<p>The purified RNA samples are checked for their concentrations after the precipitation to determine successful rRNA depletion. We use Qubit for this, as it is more precise and we have found that NanoDrop is inaccurate at the smaller concentrations introduced in this step.</p><br><br>
Line 315: Line 316:
 
<br><br>
 
<br><br>
  
<h2>Conclusion</h2>
+
<h2 id="Conc">Conclusion</h2>
 
<p>These results can generally be seen as acceptable and can be moved on to the next step of the process.<br><br>In many cases, a successful rRNA depletion results in a loss of up to 90% of the total nucleic acid contents of the cell [4]. A significantly smaller loss may raise suspicions of inadequate rRNA removal. This may be due to several reasons - such as poor dispersion of the magnetic beads throughout the sample, causing less of the beads to bind the the rRNA molecules. It can also be due to poor separation of the magnetic beads from the eluate (eg. not enough time on the magnet), or by overloading the sample by introducing too much input RNA [1]. We selected two out of the four samples to go forward with and verified the rRNA removal with gel electrophoresis. The results from the gel indicated rRNA removal in both samples, although not perfect results and not equal between the samples. From our experience, a total rRNA removal is very difficult to obtain using our method, and we deemed the two samples as good to go for the next step.</p>  
 
<p>These results can generally be seen as acceptable and can be moved on to the next step of the process.<br><br>In many cases, a successful rRNA depletion results in a loss of up to 90% of the total nucleic acid contents of the cell [4]. A significantly smaller loss may raise suspicions of inadequate rRNA removal. This may be due to several reasons - such as poor dispersion of the magnetic beads throughout the sample, causing less of the beads to bind the the rRNA molecules. It can also be due to poor separation of the magnetic beads from the eluate (eg. not enough time on the magnet), or by overloading the sample by introducing too much input RNA [1]. We selected two out of the four samples to go forward with and verified the rRNA removal with gel electrophoresis. The results from the gel indicated rRNA removal in both samples, although not perfect results and not equal between the samples. From our experience, a total rRNA removal is very difficult to obtain using our method, and we deemed the two samples as good to go for the next step.</p>  
  
Line 331: Line 332:
  
 
<div class="card-holder">
 
<div class="card-holder">
<h2>References</h2>
+
<h2 id="References">References</h2>
 
<p><b>[1]</b> Thermo Fisher, 2018. MICROBExpress™ Kit Protocol (PN 1905 Rev C) <a href="https://assets.thermofisher.com/TFS-Assets/LSG/manuals/cms_057051.pdf">https://assets.thermofisher.com/TFS-Assets/LSG/manuals/cms_057051.pdf</a> Date of visit 2018-10-15</p><br>
 
<p><b>[1]</b> Thermo Fisher, 2018. MICROBExpress™ Kit Protocol (PN 1905 Rev C) <a href="https://assets.thermofisher.com/TFS-Assets/LSG/manuals/cms_057051.pdf">https://assets.thermofisher.com/TFS-Assets/LSG/manuals/cms_057051.pdf</a> Date of visit 2018-10-15</p><br>
 
<p><b>[2]</b> Walker, SE, Lorsch J. 2013. Chapter Nineteen - RNA Purification - Precipitation Methods. Methods in Enzymology, 530. p.337-343.</p><br>
 
<p><b>[2]</b> Walker, SE, Lorsch J. 2013. Chapter Nineteen - RNA Purification - Precipitation Methods. Methods in Enzymology, 530. p.337-343.</p><br>

Revision as of 22:43, 17 October 2018