Difference between revisions of "Team:SIAT-SCIE"

 
(25 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{SIAT-SCIE}}
 
{{SIAT-SCIE}}
 
<html>
 
<html>
 +
<head>
 +
    <meta charset="UTF-8">
 +
    <style>
 +
          .chassis{
 +
            margin:20px 200px 40px 200px;
 +
            text-indent: 20px;
 +
            line-height:25px;
 +
            font-family:sans-serif;
 +
            font-size: 20px;
  
 +
        }
 +
        .chassis p{
 +
            font-size: 30px;
 +
        }
 +
        .BoldLarge{
 +
            font-weight: bold;
 +
            font-size: 40px;
 +
        }
 +
        section {
 +
            padding-top: 100px;
 +
        }
 +
        summary::-webkit-details-marker {
 +
                color:darkorange;
 +
                font-size: 125%;
 +
                margin-right: 20px;
 +
                margin-left: 20px;
 +
               
 +
        }
 +
            summary:focus {
 +
              outline-style: none;
 +
                    }
 +
        article details h2{
 +
            margin:10px 300px 10px 300px
 +
        }
 +
article > details > summary {
 +
font-size: 30px;
 +
margin-top: 16px;
 +
    margin-left: 300px;
 +
    margin-right: 300px;
 +
    background-color:dimgray; 
 +
    color:white;
 +
    padding:10px 20px 13px 20px;
 +
}
 +
        article details p {
 +
            background-color:beige;
 +
            font-size: 20px;
 +
            letter-spacing: -0.5px;
 +
            text-indent: 20px;
 +
            font-size: 20px;
 +
            padding: 15px 15px 15px 15px;
 +
            margin:0px 200px 0px 200px
 +
               
 +
        }
 +
details details {
 +
margin-left: 36px;
 +
}
 +
details details summary {
 +
font-size: 16px;
 +
}
  
<div class="column full_size" >
+
    </style>
<h1> Welcome to SIAT-SCIE </h1>
+
</head>
<p>Let's enjoy your Journey! </p>
+
<body>
 
+
    <p style="text-align: center;margin-top: 100px"><img src="https://static.igem.org/mediawiki/2018/a/a9/T--SIAT-SCIE--SIAT_Home_Logo.png" width="1000px" height="400px"></p>
 
+
    <div class="chassis">
<img src="http://placehold.it/1080x320/c4baba/e4dede">
+
        <h1>Welcome</h1>
+
        <p style="font-size: 20px">Recent developments in genetic engineering research has yielded promising technology, the CRISPR-Cas9 gene editing system for one. While it is important to push the frontiers of biological research forward, ancillary development of technology should also be kept up to date as they complement practical application towards the human society. Therefore, our team has aimed to establish a reliable way of moving Cas9 systems into cells - namely, with outer membrane vesicles (OMVs).</p>
 
+
            <p style="text-align: center;margin-top: 80px"><img src="https://static.igem.org/mediawiki/2018/f/f8/T--SIAT-SCIE--description.png" width="600px" height="600px"></p>
</div>  
+
<p style="font-size: 20px">OMVs are an emergent mode of transporting molecular content that encompasses many unrealized powers. Our project aims to construct a system that uses OMVs as vectors for transporting the Cas9 protein and sgRNA into the host cells to achieve efficient muting of the virulent gene of interest in its genome.
 
+
 
+
<div class="column full_size"; style = "text-align:center;"> <!--拷贝这一行来获得居中 -->
+
 
+
<h3>Brief Intro</h3>
+
<p> Outer membrane vesicles (OMVs) are ubiquitously produced in the world of bacteria yet have been grievously overlooked in the past; budding out as spherical containers of 20 to 500 nm in diameter from the bacterial membrane, they are potentially capable of transporting a wide array of biomolecules that awaits the academia to divulge. <a href="#r1">[1]</a> As potent transporters, OMVs play an integral role in various biological phenomena, ranging from stress regulation to microbial interactions. <a href="#r2">[2]</a>  
+
 
</p>
 
</p>
<p>Seeing that the unique properties of OMVs may revolutionize traditional delivery system, our team aims to apply the wonders of OMVs to the very frontiers of genetic engineering research - the CRISPR-Cas9 system. As natural kins to cell membranes, they can be degraded easily while preserving the shape and bioactivity of sensitive Cas9 proteins within, as well as single guide RNA (sg-RNA). [缺reference] We expect this technique would open up new possibilities of in vitro genetic engineering, and be of substantial aid in curing and preventing illnesses such as inflammatory bowel diseases by removing virulence genes from malignant bacteria.</p>
+
<p style="font-size: 20px">This unprecedented approach would open up exhilarating possibilities for creative use of gene editing systems as aided by OMV transport.</p>
</div>
+
           
 
+
    </div>
 
+
</body>
<div class="clear extra_space"></div>
+
<div class="line_divider"></div>
+
<div class="clear extra_space"></div>
+
 
+
 
+
 
+
<div class="column full_size"; style = "text-align:center;">
+
<h3> The Specifics </h3>
+
<p>As a preliminary step, we will perform transformation of plasmids containing genes of Cas9 and sg-RNA on pathogens, whose efficacy of gene editing may serve as a baseline for further experiments involving OMV transport of the Cas9 protein and sg-RNA.
+
</p>
+
<p>In hopes of maximizing the yield of OMVs, insertion of hypervesiculation genes into the bacteria will be performed. <a href="#r3">[3]</a> A SpyCatcher/SpyTag system will also be constructed with regards to Cas9, which may efficiently direct the protein into the OMV. <a href="#r4">[4]</a>
+
</p>
+
<p>To quantify the expression of Cas9 within the bacteria into which the OMVs have fused, a fluorophore may be attached to the protein for fluorescence analysis.
+
</p>
+
<p>Lastly to confirm the efficacy of our OMV-CRISPR-Cas9 system, the expression of virulence gene in pathogen, which should be mostly removed, may be quantified as well.
+
 
+
</p>  
+
 
+
</div>
+
 
+
 
+
 
+
 
+
<div class="clear extra_space"></div>
+
 
+
 
+
<ol>
+
<li id='r1'> Liu, Y., Alexeeva, S., Defourny, K. A., Smid, E. J. & Abee, T. (2018). Tiny but mighty: bacterial membrane vesicles in food biotechnological applications. Current Opinion in Biotechnology, 49, 179-184
+
</li>
+
<li id='r2'> Schwechheimer, C., & Kuehn, M. J. (2015). Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews. Microbiology, 13(10), 605–619.
+
</li>
+
<li id='r3'> Valderrama, J. D. & Gutierrez F. R.S. (2018). Lipo Nanocarriers for Drug Targeting. 199-229.
+
</li>
+
<li id='r4'>Zakeri, B., Fierer, J. O., Celik, E., Chittock, E. C., Schwarz- Linek, U., Moy, V. T. & Howarth, M. (2012) Peptide Tag Forming a Rapid Covalent Bond to a Protein, Through Engineering a Bacterial Adhesion. Proc. Natl. Acad. Sci. U. S. A. 109, e690−e697. </li>
+
</ol>
+
 
+
 
</html>
 
</html>

Latest revision as of 03:50, 18 October 2018

Welcome

Recent developments in genetic engineering research has yielded promising technology, the CRISPR-Cas9 gene editing system for one. While it is important to push the frontiers of biological research forward, ancillary development of technology should also be kept up to date as they complement practical application towards the human society. Therefore, our team has aimed to establish a reliable way of moving Cas9 systems into cells - namely, with outer membrane vesicles (OMVs).

OMVs are an emergent mode of transporting molecular content that encompasses many unrealized powers. Our project aims to construct a system that uses OMVs as vectors for transporting the Cas9 protein and sgRNA into the host cells to achieve efficient muting of the virulent gene of interest in its genome.

This unprecedented approach would open up exhilarating possibilities for creative use of gene editing systems as aided by OMV transport.