Elinramstrom (Talk | contribs) |
|||
(7 intermediate revisions by 3 users not shown) | |||
Line 275: | Line 275: | ||
</div> | </div> | ||
<div class="card-holder"> | <div class="card-holder"> | ||
− | <p>When designing our project, we aimed to create something that could truly be appreciated in the field. We therefore explored the needs and concerns of the various stakeholders of our chosen problem in multiple ways. Each of these interactions has shaped our rather vague initial idea | + | <p>When designing our project, we aimed to create something that could truly be appreciated in the field. We therefore explored the needs and concerns of the various stakeholders of our chosen problem in multiple ways. Each of these interactions has shaped our rather vague initial idea. Our idea of creating a smart bacteria for diagnostics. </p> |
<br> | <br> | ||
<h2> Vidilab </h2> | <h2> Vidilab </h2> | ||
− | <p> Vidilab (a veterinary diagnostics company) was consulted at multiple points in our project. From the very beginning when we didn’t even have a project to the very end of our lab period in august we talked with both management (the CEO, Bitte Ljungström) and researchers at the company (Alice Anlind, Sara Hägglund Ljungström). From these discussions, we | + | <p> Vidilab (a veterinary diagnostics company) was consulted at multiple points in our project. From the very beginning, when we didn’t even have a project, to the very end of our lab period in august we talked with both management (the CEO, Bitte Ljungström) and researchers at the company (Alice Anlind, Sara Hägglund Ljungström). From these discussions, we learnt about the major issues of the field and how large the need was for a new diagnostic tool for small strongyles. In the end this was the reason why we decided to take up the fight against these parasites. </p> |
<br> | <br> | ||
− | <p> Initially, our project focused mainly on small strongyles and <i>in vitro</i> diagnosis of the encysted larvae. From the literature we | + | <p> Initially, our project focused mainly on small strongyles and <i>in vitro</i> diagnosis of the encysted larvae. From the literature we learnt that small strongyles formes cysts containing hundreds of individual worms in the intestinal tract of horses. It was these cysts that we initially planned to detect and isolate from horse tissue and co-culture them with bacteria.</p> |
<br> | <br> | ||
− | <p> Vidilab was kind enough to provide access to horse tissue with encysted larvae. The cysts we received did not correspond with what we initially expected due to our previous research. Because of this, we decided to focus on detection of the worms rather than the cysts. But as we knew, free floating small strongyles do not put the horse into significant danger. | + | <p> Vidilab was kind enough to provide access to horse tissue with encysted larvae. The cysts we received did not correspond with what we initially expected due to our previous research. Because of this, we decided to focus on detection of the worms rather than the cysts. But as we knew, free floating small strongyles do not put the horse into significant danger. Instead we decided only to focus on providing farmers with better information about their horses’ wellbeing. Thanks to Vidilab we also knew that the usage of anthelmintics is leading towards resistance development in the strongyle population, turning them into a threat to the equine industry and horses’ physical health. By administering more accurate treatments, the resistance development rate among the strongyles could possibly be decreased.</p> |
<br> | <br> | ||
− | <p> During our second visit to Vidilab they also informed us about the difficulties with detecting large strongyles since all current techniques are based on egg counting in grass samples. After some consideration we outlined a strategy to battle this problem as well. First of all we wanted to investigate the need for a better preventative tool for large strongyle infections. In order to gather | + | <p>During our second visit to Vidilab they also informed us about the difficulties with detecting large strongyles since all current techniques are based on egg counting in grass samples. After some consideration we outlined a strategy to battle this problem as well. First of all we wanted to investigate the need for a better preventative tool for large strongyle infections. In order to gather data we worked on a market analysis based on a survey that we spread among horse owners in Sweden. Secondly, we wanted to try and see if a similar system as we outlined for the small strongyles could work with large strongyles present in grass, hence we made an analysis of the visibility of fluorescent proteins in grass sampling. </p> |
</div> | </div> | ||
Line 310: | Line 310: | ||
<h2> Interviews </h2> | <h2> Interviews </h2> | ||
<h3> Horse Owners </h3> | <h3> Horse Owners </h3> | ||
− | <p> We used every opportunity we had at our disposal to discuss our project with | + | <p> We used every opportunity we had at our disposal to discuss our project with horse owners. From these discussions we learned about the best ways of isolating samples and about the difficulty of isolating urine from a horse. We therefore moved on to investigating detection methods in feces. These interviews also gave us the idea to start investigating on a larger scale to what extent the horse owners are aware of issues related to strongyle infections — and the idea of conducting a market analysis was born. </p> |
<br> | <br> | ||
<h3> Veterinarians </h3> | <h3> Veterinarians </h3> | ||
− | <p> We contacted different veterinarians in the beginning of the project to see | + | <p> We contacted different veterinarians in the beginning of the project to see what their experience with strongyles was. The overall view was that they did not know about horses becoming ill from a large amount of small strongyles, but they mostly spoke of the negative effects with large strongyles. These results pushed us to investigate more about large strongyle infections. |
</p> | </p> | ||
Line 323: | Line 323: | ||
<h2> Multinational Market Research </h2> | <h2> Multinational Market Research </h2> | ||
− | <p> Before we could start with our project we first needed to look into whether there | + | <p> Before we could start with our project we first needed to look into whether there was a market for our diagnostic tool and whether we could shape the potential product to an existing niche. We were interested in the actual state of urgency of the disease along with potential concerns for the future, though as can be seen from the above mentioned communication we had been receiving some conflicting information. Some sources would state that strongyle infections are of relatively small concern – while others would see it as a large issue. To analyse this further we conducted a market analysis based on a survey that was distributed not only in Sweden but also abroad. This confirmed that the needs of the horse owners regarding large and small strongyles was consistent with Vidilabs needs, indicating that the majority of each stakeholder had the same view of the current situation. This was noticeable in the concern regarding small strongyles, contradicting some of our skeptical sources. In addition, we used the opportunity to gather data about how a GMO based diagnostic tool would be perceived among horse owners. </p> |
<br> | <br> | ||
− | <p> Also, to advocate our | + | <p> Also, to advocate our stance that the amount of treatments can be optimized, we needed to know the mean amount of treatments performed on each horse per year. We received this data as part of our market analysis. Our predictive model simulating the extent of strongyle infection depending on the amount of anthelmintic treatments suggests that the current situation can indeed be optimized. Fewer treatments than the average today would decrease the risk of developing anthelmintic resistance and still keep the horses healthy. </p> |
<br> | <br> | ||
− | <p> The market analysis gave us insight | + | <p> The market analysis gave us insight into the horse-owners perspective and it resulted in the objective data that we needed to draw our conclusions. We used the data from the survey to confirm our project strategy and to build our different models. </p> |
Line 420: | Line 420: | ||
<div class="card-holder"> | <div class="card-holder"> | ||
− | <p>The purpose of our project was to combat the systematic overuse of anthelmintics | + | <p>The purpose of our project was to combat the systematic overuse of anthelmintics and thus also address the growing resistance against such compounds [1]. Resistance may arise from multiple factors, like that of mass treatment, under-dosing and not varying the drugs used [2]. These factors may sound familiar, because this is not unlike how resistance against antibiotics arise in bacteria [3]. </p> |
</div> | </div> | ||
<!--Start of template with side picutre --> | <!--Start of template with side picutre --> | ||
Line 432: | Line 432: | ||
− | <p>The resistance against anthelmintics might also be a problem for humans in the future | + | <p>The resistance against anthelmintics might also be a problem for humans in the future which increases the motivation for a new diagnosis and/or treatment approach [4]. This is “good” news since the organism used in our project (namely <i>E. coli</i>) are inherent to the microbiome of humans and horses alike. We believe that a new, specific and potentially eco-friendly method of diagnosis or treatment would have a positive outcome on society as a whole. This could lower the degree of stress and potential suffering for animals that get infected as well as for their human owners.</p> |
Line 461: | Line 461: | ||
− | <p> There are however some concerns in public about <i>E. coli</i> being pathogenic or a transmitter of disease. It’s often the incidence when <i>E. coli</i> contaminated meat for consumption gets coverage in news media. It is thus a challenge when conveying a complex topic to the public which demands some scientific knowledge, especially in biology and is something our Human Practise group has been challenged with throughout the project. The risks using <i>E. coli</i> and its given traits for this project are discussed further throughout the text. </p> | + | <p> There are however some concerns in the public about <i>E. coli</i> being pathogenic or a transmitter of disease. It’s often the incidence when <i>E. coli</i> contaminated meat for consumption gets coverage in news media. It is thus a challenge when conveying a complex topic to the public which demands some scientific knowledge, especially in biology and this is something our Human Practise group has been challenged with throughout the project. The risks of using <i>E. coli</i> and its given traits for this project are discussed further throughout the text. </p> |
<br> | <br> | ||
<h2> GMO, Welcomed by the Public </h2> | <h2> GMO, Welcomed by the Public </h2> | ||
− | <p> By authoring and distributing a survey to horse owners we could see that the majority of respondents in Sweden had positive attitudes (83.2 %, 368 respondents) towards a GMO-type of diagnosis method. The survey also showed a public fear of growing anthelmintics resistance against blood worms (77.3% of 370 respondents ranked their fear as 4 or 5 were 5 being the most concerned). </p> | + | <p> By authoring and distributing a survey to horse owners we could see that the majority of respondents in Sweden had positive attitudes (83.2 %, 368 respondents) towards a GMO-type of diagnosis method. The survey also showed a public fear of growing anthelmintics resistance against blood worms (strongyles) (77.3% of 370 respondents ranked their fear as 4 or 5 were 5 being the most concerned). </p> |
<br> | <br> | ||
Line 477: | Line 477: | ||
<br> | <br> | ||
− | <p> The <i>E. coli</i> (BL-21, DH5-alpha) that was used in the lab has a biosafety level of 1, which is the lowest possible on a scale of 4 [7]. This means that <i>E. coli</i> is safe to work with in the | + | <p> The <i>E. coli</i> (BL-21, DH5-alpha) that was used in the lab has a biosafety level of 1, which is the lowest possible on a scale of 4 [7]. This means that <i>E. coli</i> is safe to work with in the course laboratories we were provided with by Uppsala University [8]. </p> |
<br> | <br> | ||
− | <p> Nothing that is considered toxic or harmful was genetically introduced (UnaG, amilGFP) into our E.coli. However, for cultivation and selection purposes used in common synthetic biology practical work, antibiotic resistance was also introduced which presents a risk in the potential spread of antibiotic resistance (Chloramphenicol, Ampicillin, Tetracycline) if these plasmids were to spread into the environment. This was avoided to a large degree by following standard lab | + | <p> Nothing that is considered toxic or harmful was genetically introduced (UnaG, amilGFP) into our E.coli. However, for cultivation and selection purposes used in common synthetic biology practical work, antibiotic resistance was also introduced which presents a risk in the potential spread of antibiotic resistance (Chloramphenicol, Ampicillin, Tetracycline), if these plasmids were to spread into the environment. This was avoided to a large degree by following standard lab practise with specific guidelines regarding waste disposal of GMOs. </p> |
<br> | <br> | ||
− | <p> The ability for proliferation of GMOs and organisms in general is determined by their fitness. As a rule of thumb regarding the spread of GMOs in the environment, fitness is greatly reduced for most lab strains of microorganisms | + | <p> The ability for proliferation of GMOs and organisms in general is determined by their fitness. As a rule of thumb regarding the spread of GMOs in the environment, fitness is greatly reduced for most lab strains of microorganisms since they have been modified in numerous ways to make them easy to work with. These are not adaptations that are suitable for their natural environment, giving them a negative fitness contribution [9]. Regarding the risks associated with nematodes, you can look at the separate <a href="https://2018.igem.org/Safety/Final_Safety_Form">safety form</a> and select Uppsala from the menu. </p> |
<br> | <br> | ||
− | <p> This was the first time a team tried to see if this is an applicable solution to diagnose parasitic infections caused by nematodes in | + | <p> This was the first time a team tried to see if this is an applicable solution to diagnose parasitic infections caused by nematodes in equines; it is thus a long way from a potentially finalized product. If a product would surface in the future, further risk assessments must be evaluated to see if an engineered product would be deemed safe to be orally ingested by a living host. Since an enteric diagnostic system based on bacteria is a novel approach there is little to be found in the literature about its applied effects. In addition to internal reviews, it is common for an external entity (like a government) to perform reviews on the product, especially if the product is classified as a GMO. This is necessary to ensure that the product is safe before letting it hit the market.</p> |
<br> | <br> | ||
Line 504: | Line 504: | ||
<div class="card-holder"> | <div class="card-holder"> | ||
<h1 id="Burn"> Understanding Your Limits - a Burnout Guidebook </h1> | <h1 id="Burn"> Understanding Your Limits - a Burnout Guidebook </h1> | ||
− | <p>Mental health awareness being brought into the spotlight in society, yet talking about it is still a taboo in many settings. For instance, in a project that you truly care for, the risks and warning signs might go by unrecognized. It is an art to find balance at work but in our opinion it is an essential part of success in the long run. Therefore, the Uppsala iGEM team has chosen to acknowledge the importance of understanding one’s limits by writing a guide-book on the topic.</p> | + | <p>Mental health awareness is being brought into the spotlight in society, yet talking about it is still a taboo in many settings. For instance, in a project that you truly care for, the risks and warning signs might go by unrecognized. It is an art to find balance at work but in our opinion it is an essential part of success in the long run. Therefore, the Uppsala iGEM team has chosen to acknowledge the importance of understanding one’s limits by writing a guide-book on the topic.</p> |
<br> | <br> | ||
− | <p>The premise and purpose of the guidebook is that many iGEM teams in retrospect have admitted that the work environment during the iGEM competition oftentimes becomes stressful. Factors such as level of experience, responsibilities, ambitions and deadlines drive projects forward but at the same time easily lead to feelings of being overwhelmed and an increases risk of burning out. Though we’re speaking mainly of the iGEM competition here, the topic of stress at work is universally applicable. | + | <p>The premise and purpose of the guidebook is that many iGEM teams in retrospect have admitted that the work environment during the iGEM competition oftentimes becomes stressful. Factors such as level of experience, responsibilities, ambitions and deadlines drive projects forward but at the same time easily lead to feelings of being overwhelmed and an increases risk of burning out. Though we’re speaking mainly of the iGEM competition here, the topic of stress at work is universally applicable. Therefore we wanted to address this topic by creating material that anyone who seeks guidance can relate to and use. We tried to make our guidebook as universal as possible to people both inside and outside of academia.</p> |
<br> | <br> | ||
Line 524: | Line 524: | ||
<br> | <br> | ||
− | <p> Our hope is that we will encourage people | + | <p> Our hope is that we will encourage people not to overlook the importance of their well-being, and to have a healthier relationship with their work. We hope to give back to the iGEM community for all the wonderful experiences that we’ve had, and we hope that future iGEM teams especially will take note of the advice in “Understanding your Limits - a Burnout Guidebook”. iGEM is a giving platform for young brilliant people to do truly amazing things. </p> |
<br> | <br> | ||
Latest revision as of 15:59, 3 December 2018
Integrated Human Practice
When designing our project, we aimed to create something that could truly be appreciated in the field. We therefore explored the needs and concerns of the various stakeholders of our chosen problem in multiple ways. Each of these interactions has shaped our rather vague initial idea. Our idea of creating a smart bacteria for diagnostics.
Vidilab
Vidilab (a veterinary diagnostics company) was consulted at multiple points in our project. From the very beginning, when we didn’t even have a project, to the very end of our lab period in august we talked with both management (the CEO, Bitte Ljungström) and researchers at the company (Alice Anlind, Sara Hägglund Ljungström). From these discussions, we learnt about the major issues of the field and how large the need was for a new diagnostic tool for small strongyles. In the end this was the reason why we decided to take up the fight against these parasites.
Initially, our project focused mainly on small strongyles and in vitro diagnosis of the encysted larvae. From the literature we learnt that small strongyles formes cysts containing hundreds of individual worms in the intestinal tract of horses. It was these cysts that we initially planned to detect and isolate from horse tissue and co-culture them with bacteria.
Vidilab was kind enough to provide access to horse tissue with encysted larvae. The cysts we received did not correspond with what we initially expected due to our previous research. Because of this, we decided to focus on detection of the worms rather than the cysts. But as we knew, free floating small strongyles do not put the horse into significant danger. Instead we decided only to focus on providing farmers with better information about their horses’ wellbeing. Thanks to Vidilab we also knew that the usage of anthelmintics is leading towards resistance development in the strongyle population, turning them into a threat to the equine industry and horses’ physical health. By administering more accurate treatments, the resistance development rate among the strongyles could possibly be decreased.
During our second visit to Vidilab they also informed us about the difficulties with detecting large strongyles since all current techniques are based on egg counting in grass samples. After some consideration we outlined a strategy to battle this problem as well. First of all we wanted to investigate the need for a better preventative tool for large strongyle infections. In order to gather data we worked on a market analysis based on a survey that we spread among horse owners in Sweden. Secondly, we wanted to try and see if a similar system as we outlined for the small strongyles could work with large strongyles present in grass, hence we made an analysis of the visibility of fluorescent proteins in grass sampling.
Figure 1. Some of our team members during a visit at Vidilab
Interviews
Horse Owners
We used every opportunity we had at our disposal to discuss our project with horse owners. From these discussions we learned about the best ways of isolating samples and about the difficulty of isolating urine from a horse. We therefore moved on to investigating detection methods in feces. These interviews also gave us the idea to start investigating on a larger scale to what extent the horse owners are aware of issues related to strongyle infections — and the idea of conducting a market analysis was born.
Veterinarians
We contacted different veterinarians in the beginning of the project to see what their experience with strongyles was. The overall view was that they did not know about horses becoming ill from a large amount of small strongyles, but they mostly spoke of the negative effects with large strongyles. These results pushed us to investigate more about large strongyle infections.
Multinational Market Research
Before we could start with our project we first needed to look into whether there was a market for our diagnostic tool and whether we could shape the potential product to an existing niche. We were interested in the actual state of urgency of the disease along with potential concerns for the future, though as can be seen from the above mentioned communication we had been receiving some conflicting information. Some sources would state that strongyle infections are of relatively small concern – while others would see it as a large issue. To analyse this further we conducted a market analysis based on a survey that was distributed not only in Sweden but also abroad. This confirmed that the needs of the horse owners regarding large and small strongyles was consistent with Vidilabs needs, indicating that the majority of each stakeholder had the same view of the current situation. This was noticeable in the concern regarding small strongyles, contradicting some of our skeptical sources. In addition, we used the opportunity to gather data about how a GMO based diagnostic tool would be perceived among horse owners.
Also, to advocate our stance that the amount of treatments can be optimized, we needed to know the mean amount of treatments performed on each horse per year. We received this data as part of our market analysis. Our predictive model simulating the extent of strongyle infection depending on the amount of anthelmintic treatments suggests that the current situation can indeed be optimized. Fewer treatments than the average today would decrease the risk of developing anthelmintic resistance and still keep the horses healthy.
The market analysis gave us insight into the horse-owners perspective and it resulted in the objective data that we needed to draw our conclusions. We used the data from the survey to confirm our project strategy and to build our different models.
The survey was translated into 10 different languages, making it a truly international feat (see table 1).
Table 1. The table shows the translated versions of the survey with highest amount of answers.
Language | Amount of answers from the survey |
---|---|
Swedish | 370 |
Czech | 75 |
Latvian | 38 |
To read the complete market analysis, click the button below.
Ethics
The purpose of our project was to combat the systematic overuse of anthelmintics and thus also address the growing resistance against such compounds [1]. Resistance may arise from multiple factors, like that of mass treatment, under-dosing and not varying the drugs used [2]. These factors may sound familiar, because this is not unlike how resistance against antibiotics arise in bacteria [3].
There are however some concerns in the public about E. coli being pathogenic or a transmitter of disease. It’s often the incidence when E. coli contaminated meat for consumption gets coverage in news media. It is thus a challenge when conveying a complex topic to the public which demands some scientific knowledge, especially in biology and this is something our Human Practise group has been challenged with throughout the project. The risks of using E. coli and its given traits for this project are discussed further throughout the text.
GMO, Welcomed by the Public
By authoring and distributing a survey to horse owners we could see that the majority of respondents in Sweden had positive attitudes (83.2 %, 368 respondents) towards a GMO-type of diagnosis method. The survey also showed a public fear of growing anthelmintics resistance against blood worms (strongyles) (77.3% of 370 respondents ranked their fear as 4 or 5 were 5 being the most concerned).
Environmental Impact and Risk
The E. coli (BL-21, DH5-alpha) that was used in the lab has a biosafety level of 1, which is the lowest possible on a scale of 4 [7]. This means that E. coli is safe to work with in the course laboratories we were provided with by Uppsala University [8].
Nothing that is considered toxic or harmful was genetically introduced (UnaG, amilGFP) into our E.coli. However, for cultivation and selection purposes used in common synthetic biology practical work, antibiotic resistance was also introduced which presents a risk in the potential spread of antibiotic resistance (Chloramphenicol, Ampicillin, Tetracycline), if these plasmids were to spread into the environment. This was avoided to a large degree by following standard lab practise with specific guidelines regarding waste disposal of GMOs.
The ability for proliferation of GMOs and organisms in general is determined by their fitness. As a rule of thumb regarding the spread of GMOs in the environment, fitness is greatly reduced for most lab strains of microorganisms since they have been modified in numerous ways to make them easy to work with. These are not adaptations that are suitable for their natural environment, giving them a negative fitness contribution [9]. Regarding the risks associated with nematodes, you can look at the separate safety form and select Uppsala from the menu.
This was the first time a team tried to see if this is an applicable solution to diagnose parasitic infections caused by nematodes in equines; it is thus a long way from a potentially finalized product. If a product would surface in the future, further risk assessments must be evaluated to see if an engineered product would be deemed safe to be orally ingested by a living host. Since an enteric diagnostic system based on bacteria is a novel approach there is little to be found in the literature about its applied effects. In addition to internal reviews, it is common for an external entity (like a government) to perform reviews on the product, especially if the product is classified as a GMO. This is necessary to ensure that the product is safe before letting it hit the market.
Understanding Your Limits - a Burnout Guidebook
Mental health awareness is being brought into the spotlight in society, yet talking about it is still a taboo in many settings. For instance, in a project that you truly care for, the risks and warning signs might go by unrecognized. It is an art to find balance at work but in our opinion it is an essential part of success in the long run. Therefore, the Uppsala iGEM team has chosen to acknowledge the importance of understanding one’s limits by writing a guide-book on the topic.
The premise and purpose of the guidebook is that many iGEM teams in retrospect have admitted that the work environment during the iGEM competition oftentimes becomes stressful. Factors such as level of experience, responsibilities, ambitions and deadlines drive projects forward but at the same time easily lead to feelings of being overwhelmed and an increases risk of burning out. Though we’re speaking mainly of the iGEM competition here, the topic of stress at work is universally applicable. Therefore we wanted to address this topic by creating material that anyone who seeks guidance can relate to and use. We tried to make our guidebook as universal as possible to people both inside and outside of academia.
In this little book we have compiled some general background about stress, exhaustion, and burnout in order to explain the issue and show that these topics deserve your attention. This is followed by suggestions of some preventive measures that we have found suitable. Some parts of the book might be a repetition of old truths but we try to mix it up with a mix of unique advice and mindfulness exercises.
In the guidebook you can also find some statistics about stress levels in different iGEM teams over the years. This is a preview of the iGEM work environment report that the iGEM Uppsala association is working on based on the survey described further down.
Also, check out the chapter “The Importance of Authenticity in Organization” from the guidebook written by iGEM Lund’s 2018 team. They have also been focusing on improving the work environment, but instead of more general stress management techniques their guidebook is directed towards hands-on approaches for increasing efficiency through organization of work.
Our hope is that we will encourage people not to overlook the importance of their well-being, and to have a healthier relationship with their work. We hope to give back to the iGEM community for all the wonderful experiences that we’ve had, and we hope that future iGEM teams especially will take note of the advice in “Understanding your Limits - a Burnout Guidebook”. iGEM is a giving platform for young brilliant people to do truly amazing things.
Since brilliant people (usually) don't retire after participating in iGEM, it’s important to take care of yourselves. The world needs you.
References
[1] Salgado JA, Santos C de P, Salgado JA, Santos C de P. 2016. Overview of anthelmintic resistance of gastrointestinal nematodes of small ruminants in Brazil. Revista Brasileira de Parasitologia Veterinária 25: 3–17.
[2] Shalaby HA. 2013. Anthelmintics Resistance; How to Overcome it? Iranian Journal of Parasitology 8: 18–32.
[3] Grenni P, Ancona V, Barra Caracciolo A. 2018. Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal 136: 25–39.
[4] Vercruysse J, Albonico M, Behnke JM, Kotze AC, Prichard RK, McCarthy JS, Montresor A, Levecke B. 2011. Is anthelmintic resistance a concern for the control of human soil-transmitted helminths? International Journal for Parasitology: Drugs and Drug Resistance 1: 14–27.
[5] Genetically Modified Organisms. WWW-document: https://www.efsa.europa.eu/en/topics/topic/genetically-modified-organisms. Retrieved 2018-10-04.
[6] Papademetriou T. 2014. Restrictions on Genetically Modified Organisms: European Union | Law Library of Congress. http://www.loc.gov/law/help/restrictions-on-gmos/eu.php. Retrieved 2018-10-04.
[7] University © Stanford, Stanford, Complaints C 94305 C. Biosafety Levels for Biological Agents – Stanford Environmental Health & Safety. WWW-document: https://ehs.stanford.edu/reference/biosafety-levels-biological-agents. Retrieved 2018-10-04.
[8] Wallin U. GMO - Uppsala University, Sweden. WWW-dokument: http://www.bmc.uu.se/Environment+%26+Safety/Waste/gmo/.Retrieved 2018-10-04.
[9] Qiu J. 2013. Genetically modified crops pass benefits to weeds: herbicide resistance and other genetic modifications could confer an advantage on plants in the wild. Nature 500: 389–390.