Difference between revisions of "Team:RHIT/Notebook"

Line 215: Line 215:
 
     $("#event1").click(function(){
 
     $("#event1").click(function(){
 
         $("#entry1").slideToggle("slow");
 
         $("#entry1").slideToggle("slow");
 +
    });
 +
    $("#event2").click(function(){
 +
        $("#entry2").slideToggle("slow");
 
     });
 
     });
 
});
 
});
Line 422: Line 425:
 
<div class = "logTab" id="logtab"> <h1> Events </h1> </div>
 
<div class = "logTab" id="logtab"> <h1> Events </h1> </div>
 
<div class = "log" id="Log">
 
<div class = "log" id="Log">
 +
  <div class = "event" id="event2"> Midwestern Meetup - 6/30/18 </div>
 +
      <div class = "entry" id="entry2"> On June 30th, two members of our team travelled to Michigan State University for the Midwestern iGEM Meetup. We spent the morning on a tour of the university’s botanical gardens learning about a range of plants and the history behind the gardens. After lunch, each team gave a short presentation and answered questions about their project. Then, we went on a tour of the Michigan State University iGEM team’s lab and facilities. Through this meetup, we made connections with other teams and have already started collaborating with the Michigan State team.</div>
 +
 
   <div class = "event" id="event1"> Ampacet Visit - 7/3/18 </div>
 
   <div class = "event" id="event1"> Ampacet Visit - 7/3/18 </div>
 
       <div class = "entry" id="entry1"> On July 3rd, two members of our team spoke with a representative from Ampacet in Terre Haute about our project. As a plastics expert, Dr. Jared Tatum explained the processes that are done at Ampacet. While discussing our project, Dr. Tatum offered the team PET plastic samples for our experiments. He will be giving us pure PET bottles, PET pellets, and PET powder. After explaining our experimental protocol ideas, Dr. Tatum advised us to change our procedures. Our original idea had been to let the bacteria eat the pellets as their only carbon source and observe the change. However, Dr. Tatum advised that we use the powder instead of the pellets because of the greater surface area to volume ratio. Additionally, he informed the team about the effect that humidity plays on the characteristics of pure PET. He encouraged us to monitor the humidity during our experiments and note any change in results based on a difference in humidity. Because pure PET is so susceptible to changes based on humidity, PET used in disposable water bottles contain a great amount of additives to stabilize the plastic and ensure long shelf life. Based on this new information, we began designing an experiment that would determine the effects of these additives on the ability of the bacteria to breakdown the PET. </div>
 
       <div class = "entry" id="entry1"> On July 3rd, two members of our team spoke with a representative from Ampacet in Terre Haute about our project. As a plastics expert, Dr. Jared Tatum explained the processes that are done at Ampacet. While discussing our project, Dr. Tatum offered the team PET plastic samples for our experiments. He will be giving us pure PET bottles, PET pellets, and PET powder. After explaining our experimental protocol ideas, Dr. Tatum advised us to change our procedures. Our original idea had been to let the bacteria eat the pellets as their only carbon source and observe the change. However, Dr. Tatum advised that we use the powder instead of the pellets because of the greater surface area to volume ratio. Additionally, he informed the team about the effect that humidity plays on the characteristics of pure PET. He encouraged us to monitor the humidity during our experiments and note any change in results based on a difference in humidity. Because pure PET is so susceptible to changes based on humidity, PET used in disposable water bottles contain a great amount of additives to stabilize the plastic and ensure long shelf life. Based on this new information, we began designing an experiment that would determine the effects of these additives on the ability of the bacteria to breakdown the PET. </div>

Revision as of 14:19, 18 July 2018




Lab Notebook

Week 1
6/6/18
Our first day in lab! After some training earlier in the week, we began our work in the actual lab. We learned how to make different broths and agars, and made Luria broth (LB) plates with chloramphenicol and LB plates with ampicillin.
Members: Ariel, Brittany, Emilie, Liz, Lining, Kaylee, and Elisa
6/7/18
Whatever we did this day
Week 2
Week 3
Week 4
Week 5
Week 6
7/12/18
We rehydrated our primers.
Members: Ariel and Elisa
7/13/18
We calibrated the plate reader using serial dilutions of fluorescein for InterLab. The table below represents the plate wells and all values are measured in μM.
Members: Brittany
Week 7
7/16/18
We diluted primers for plasmid 1 to 100x and used those primers to amplify our plasmid 1 parts. We also made more chloramphenicol plates, transformed the plasmids for InterLab into competent NEB5-alpha cells, replated cells for InterLab onto chloramphenicol plates, and created a glycerol stock for our InterLab cells.
Members: Brittany and Elisa
7/17/18
We inoculated cultures of transformed InterLab cells. We performed the InterLab Absorbance Calibration measured at 630 nm. We also performed the InterLab microsphere calibration measured at 630 nm. Finally, we transformed the part from well L4 into NEB5-alpha cells.
Members: Brittany and Liz

We ran parts 1-4 and 1-5 in a 2% gel and extracted part 1-4 (1-5 was not amplified.) We also designed new primers for the extraction and submission of parts that will allow us to put our parts in the pSB1C3 backbone for submission to the registry.
Members: Elisa
Week 8
Week 9
Week 10
Week 11

Protocols

Some Protocol Name
Specific details on that protocol

Events

Midwestern Meetup - 6/30/18
On June 30th, two members of our team travelled to Michigan State University for the Midwestern iGEM Meetup. We spent the morning on a tour of the university’s botanical gardens learning about a range of plants and the history behind the gardens. After lunch, each team gave a short presentation and answered questions about their project. Then, we went on a tour of the Michigan State University iGEM team’s lab and facilities. Through this meetup, we made connections with other teams and have already started collaborating with the Michigan State team.
Ampacet Visit - 7/3/18
On July 3rd, two members of our team spoke with a representative from Ampacet in Terre Haute about our project. As a plastics expert, Dr. Jared Tatum explained the processes that are done at Ampacet. While discussing our project, Dr. Tatum offered the team PET plastic samples for our experiments. He will be giving us pure PET bottles, PET pellets, and PET powder. After explaining our experimental protocol ideas, Dr. Tatum advised us to change our procedures. Our original idea had been to let the bacteria eat the pellets as their only carbon source and observe the change. However, Dr. Tatum advised that we use the powder instead of the pellets because of the greater surface area to volume ratio. Additionally, he informed the team about the effect that humidity plays on the characteristics of pure PET. He encouraged us to monitor the humidity during our experiments and note any change in results based on a difference in humidity. Because pure PET is so susceptible to changes based on humidity, PET used in disposable water bottles contain a great amount of additives to stabilize the plastic and ensure long shelf life. Based on this new information, we began designing an experiment that would determine the effects of these additives on the ability of the bacteria to breakdown the PET.