Line 36: | Line 36: | ||
</div> | </div> | ||
− | + | <div class='textbody'> | |
+ | <p>We were expecting that the free AMPs behaved differently when they are fused to a protein scaffold. The previously available literature that describe free AMPs does not seem to apply for our constructs. Consequently, we choose to devise a new model for studying the optimization of fused AMPs. Therefore, we design a library of 12k variant that we attached to mCherry through a linker in order to optimize the already characterized effectiveness of core-AMPs.</p> | ||
+ | </div> | ||
Revision as of 23:54, 17 October 2018
Optimization
Based on the results of the Testing and Modeling groups, we arrived at the following simple model for how StarCores function.
Box 1: Why are StarCore Proteins Difficult to Express? |
---|
Based on the results of the Testing and Modeling groups, we arrived at the following simple model for how StarCores function. |
With these considerations in mind, we set out to improve on the basic StarCore designs developed in the Design Section. Our method of choice was targeted saturation mutagenesis. We developed a 12 000 variant library of StarCores varying mainly in the number and location of their positive charges. We systematically screened this library for activity, then explored the key determinants of activity with a custom-made machine learning software.
We were expecting that the free AMPs behaved differently when they are fused to a protein scaffold. The previously available literature that describe free AMPs does not seem to apply for our constructs. Consequently, we choose to devise a new model for studying the optimization of fused AMPs. Therefore, we design a library of 12k variant that we attached to mCherry through a linker in order to optimize the already characterized effectiveness of core-AMPs.