Difference between revisions of "Team:DTU-Denmark"

Line 359: Line 359:
 
<div class="spacefront">
 
<div class="spacefront">
 
<h1 id="frontheadline2">Challenges</h1>
 
<h1 id="frontheadline2">Challenges</h1>
<h5  style="color:#fff;text-align: center;">Growth of the fungus in the Martian environment can prove to be a problem.  
+
<h5  style="color:#fff;text-align: center;"> Researching and optimizing a fungal species for the purpose of mycotecture.  
 
<br><br>
 
<br><br>
The fungal spores may be troublesome: They might smell and <i>A. oryzae</i> is a known allergen (1).  
+
Designing easily deployable production facilities that can protect the cultivation systems from the Martian environment.
 
<br><br>
 
<br><br>
 
We have not researched whether the structural properties depend on being on earth, eg. lower pressure compromising strength.
 
We have not researched whether the structural properties depend on being on earth, eg. lower pressure compromising strength.
Line 370: Line 370:
 
</h5>
 
</h5>
 
</div></div>
 
</div></div>
<div class="frontspace frontphases">
 
<p style="color:#000; font-size:14px;">(1) Mousavi B, Hedayati MT, Hedayati N, Ilkit M, Syedmousavi S. 2016. <i>Aspergillus</i> species in indoor environments and their possible occupational and public health hazards. Curr Med Mycol 2:36–42.</p>
 
 
</div>
 
</div>
  

Revision as of 01:04, 18 October 2018

Fungal building materials for extreme environments

Colonization of uninhabitable areas, like Mars, will require building materials to be transported to the site of deployment. Transport limitations such as space and weight make this process very expensive. Based on these challenges, we propose to make building materials from fungal mycelium to be grown on site. Our project is focused on how to optimize the material properties of the fungi through engineering of basic fungal characteristics. Our initial studies identified Aspergillus oryzae as the best candidate chassis for material properties and ease of genetic engineering. Based on our choice of fungus, we decided to increase the gene expression of melanin to improve A. oryzae’s capabilities of withstanding UV radiation and change the colors of the fungi by inserting a blue chromoprotein gene. Furthermore, we have designed a final geometric structure that can withstand external conditions and reduce the amount of work needed to assemble it.

The Plan

PHASE ONE - Preparations on Earth

PHASE TWO - Inventory

The space shuttle would need to have the essentials for our fungus to be grown.
Vials of spores from our GMO fungus would be prepared and a necessary means of biomass, most likely cyanobacteria, will be included.
Specific molds will let the fungus grow in a desired shape. Creating the pieces for the dome.
General laboratory tools will have to be included to perform the needed work.

PHASE THREE - Producing the Sheets

Plate production will be established inside a provisional inflatable tent.
Biomass and spores will be combined in easy-to-manage molds.
Growth in a confined space will let the fungus conform into the desired shape.
When the mold is appropriately filled, the fungus will be extracted and killed as preparation for the building process.

PHASE FOUR - Assembly

Given the high pressure difference between human habitats and the Martian atmosphere, the final structures will have to be sealed as to make the structure completely airtight.
At this point, otherwise optimized fungal species can be used to synthesize a range of useful biochemicals and materials.
The cyanobacteria used in the production of fungal materials can also be used to supply oxygen to the habitat.

Why do we want to land on Mars?

Challenges

Researching and optimizing a fungal species for the purpose of mycotecture.

Designing easily deployable production facilities that can protect the cultivation systems from the Martian environment.

We have not researched whether the structural properties depend on being on earth, eg. lower pressure compromising strength.

Automatized robotic assembly of the dome needs to be designed beforehand.