Difference between revisions of "Team:Uppsala/InterLab"

(Undo revision 481151 by Rut (talk))
 
Line 179: Line 179:
 
  <h2>Conversion Between Absorbance of Cells to Absorbance of a Known Concentration of Beads</h2>
 
  <h2>Conversion Between Absorbance of Cells to Absorbance of a Known Concentration of Beads</h2>
  
   <p>By measuring the scattered light from a known concentration of silica beads that are roughly the same size and shape as a normal  <i>E.coli</i> cells we converted each lab’s absorbance measurement into a standard “equivalent concentration of beads” measurement</p>
+
   <p>By measuring the scattered light from a known concentration of silica beads that are roughly the same size and shape as a normal  <i>E.coli</i> cells we converted each lab's absorbance measurement into a standard “equivalent concentration of beads” measurement.</p>
  
 
  <h2>Counting Colony-Forming Units (CFUs) from the Sample</h2>
 
  <h2>Counting Colony-Forming Units (CFUs) from the Sample</h2>
  
   <p>By spreading a known concentration of cells in liquid media on a plate to see how many colonies grow, we can determine the cell concentration of the sample as a whole since each colony should grow from one single cell. We determined the number of CFUs in negative and positive control samples to compute a conversion factor from absorbance to CFU. </p>
+
   <p>By spreading a known concentration of cells in liquid media on a plate to see how many colonies that grow, we can determine the cell concentration of the sample as a whole since each colony should grow from one single cell. We determined the number of CFUs in negative and positive control samples to compute a conversion factor from absorbance to CFU. </p>
  
  
Line 368: Line 368:
 
<h2>Method for Counting Colony-Forming Units (CFUs) from the Sample</h2>  
 
<h2>Method for Counting Colony-Forming Units (CFUs) from the Sample</h2>  
  
<p>To determine the CFU count, we counted colonies from two positive control (<a  href="http://parts.igem.org/Part:BBa_I20270"><strong>BBa_I20270</strong></a>) plates and two negative control (<a  href="http://parts.igem.org/Part:BBa_R0040"><strong>BBa_R0040</strong></a>) plates. The OD values of the liquid cultures of the four samples were measured and diluted in triplicates to OD = 0.1 in 1 mL of LB + Cam media. Each diluted sample was further diluted in series where samples with dilution factor 8 x 10<sup>-3</sup>, 8 x 10<sup>-4</sup> and 8 x 10<sup>-5</sup> was plated on LB + Cam plates.<br><br>  
+
<p>To determine the CFU count, we counted colonies from two positive control (<a  href="http://parts.igem.org/Part:BBa_I20270"><strong>BBa_I20270</strong></a>) plates and two negative control (<a  href="http://parts.igem.org/Part:BBa_R0040"><strong>BBa_R0040</strong></a>) plates. The OD values of the liquid cultures of the four samples were measured and diluted in triplicates to OD = 0.1 in 1 mL of LB + Cam media. Each diluted sample was further diluted in series where samples with dilution factor 8 x 10<sup>-3</sup>, 8 x 10<sup>-4</sup> and 8 x 10<sup>-5</sup> were streaked on LB + Cam plates.<br><br>  
  
After Incubation at 37°C for 17 hours the colonies on the plates were counted. Based on the assumption that 1 bacterial cell gives rise to 1 colony, CFU per 1 mL of an OD = 0.1 was calculated by the formula:  
+
After incubation at 37°C for 17 hours the colonies on the plates were counted. Based on the assumption that 1 bacterial cell gives rise to 1 colony, CFU per 1 mL of an OD = 0.1 was calculated by the formula:  
 
  #colonies x Final Dilution Factor = CFU/mL</p>
 
  #colonies x Final Dilution Factor = CFU/mL</p>
  

Latest revision as of 14:18, 3 December 2018