Difference between revisions of "Team:Oxford/Applied Design"

Line 67: Line 67:
 
<p class="lead">They survey told us the public wanted a treatment that treats “a condition at its source rather than masking symptoms.” that was also “less invasive and less dangerous”. They also showed support of a device that was able to provide personalised doses according to the patient. From these results we were able to begin the design of our treatment.</p>
 
<p class="lead">They survey told us the public wanted a treatment that treats “a condition at its source rather than masking symptoms.” that was also “less invasive and less dangerous”. They also showed support of a device that was able to provide personalised doses according to the patient. From these results we were able to begin the design of our treatment.</p>
  
      </div>
 
      </div>
 
  
 
<h3>Safety</h3>
 
<h3>Safety</h3>

Revision as of 09:50, 13 October 2018

Full Width Pics - Start Bootstrap Template

Applied Design

Overview

Product design has been at the front of our project since we came up with our initial ideas. We wanted to spend our summer creating a solution to a real world problem that affects a large proportion of the world’s population. In creating a realistic therapeutic product we have looked into current treatments, safety, manufacture, accessibility and the next stage for the product, throughout each stage we have had the patient at the forefront of our minds. After a range of ideas we have settled on a final design for a new therapeutic to treat IBD.

Autoimmune Disease Survey

We received 48 responses from members of the public suffering from autoimmune diseases from a range of age groups. The responses gave us a greater understanding of the current treatments, the problems with them and what patients would like from a treatment. We were astounded by the positivity towards GE and for our project. There is a great deal of belief from the public in the potential of GE in medicine.

They survey told us the public wanted a treatment that treats “a condition at its source rather than masking symptoms.” that was also “less invasive and less dangerous”. They also showed support of a device that was able to provide personalised doses according to the patient. From these results we were able to begin the design of our treatment.

Safety

Safety of the product was the main concern raised in the survey. The majority of people are not highly knowledgeable about genetic engineering so we believe it is especially important to make safety a priority due to the apprehension towards the topic. We aimed to promote the safety of GE probiotics and make it clear that the patient's genome will be unaffected.

Concern on what we would engineer lead to greater investigation into species and strains of bacteria we would engineer with a focus on the safety. We also were directed into investigating how our product would alter the natural balance of the microbiome and how we can reduce any possible negative interactions. This is also why we began our initial research into how to test the safety of the product, we realise this is an important issue and aimed to create a plan to ensure the efficacy and safety to the patient and environment.

This led to us modifying our device to include a kill switch for biosafety.

Autoimmune Diseases

Our survey was completed by people suffering from a range of autoimmune conditions. We realised that our initial idea of a general treatment was over ambitious. Many of the responses said that they would feel more comfortable if the treatment was designed with a greater focus on select conditions.

We have specifically designed our treatment with Crohn’s disease and Ulcerative Colitis in mind, however, we also found how closely related other autoimmune diseases are and decided to look into which conditions we have the potential of treating if we were to develop our treatment further. Our treatment has a huge range of applications. For our initial market we would focus on IBD but the range of diseases affected by the intestinal immune system allows our product to be modified for trials on other relevant autoimmune conditions.

Autoimmune enteropathy, Coeliac disease, Rheumatoid Arthritis, Multiple sclerosis, Psoriasis and Type 1 diabetes have all been shown to linked to the balance between intestinal Th17 and Treg populations (or IL10 concentration) in the gut. For Coeliac disease we may also need to combine our system with a mechanism to digest or modify gluten. Other conditions, such as Microscopic colitis, Lupus and Hashimoto’s thyroiditis, also relate to at least one of these populations but more research will be needed to find how they are connected to the gut. As well as this, specific probiotics have been shown to be beneficial in a range of these conditions. Our device may act as an appropriate treatment with some minor modifications for these conditions. An imbalance in the immune cells in the gut has been shown to cause an autoimmune condition in the kidneys due to migration of Th17 cells showing the importance of population control in the gut.

Types of epilepsy have also been found to relate autoimmunity in the gut. The gut-brain axis may connect autoimmunity in the gut to nervous system diseases and promote Th17 cells in the CNS, similar to what has been found with multiple sclerosis. 80% of cases of epilepsy are in the developing world, this is thought to be due to the influence of bacteria, such as segmented filamentous bacteria (SFB), from water sources influencing the gut microbiome and immune cells. The recent and sharp increase in cases shows the necessity of a simple and effective treatment. If the condition is confirmed to be linked to autoimmunity in the gut then our product can offer an easily administered treatment that stops the disease at its source.

We created table to illustrate which autoimmune diseases have been found to be linked to immune cell balance in the gut:


    ConditionLinked to the microbiomeLinked to increased intestinal Th17Linked to decreased intestinal IL10Reference
    Crohn's DiseaseA
    Ulcerative ColitisA
    Autoimmune EnteropathyB
    Coeliac DiseaseC, D
    Microscopic ColitisE
    Rheumatoid ArthritisF, G
    PsoriasisH, I
    Multiple SclerosisJ, K
    LupusL, M
    Graves' DiseaseN
    Hashimoto's ThyroiditisN
    Type 1 DiabetesO
    Myasthenia GravisN, P

References

IndexReferences
AOmenetti S, Pizarro TT. The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Frontiers in Immunology. 2015;6:639.
BParoni M, Magarotto A, Tartari S, et al. Uncontrolled IL-17 Production by Intraepithelial Lymphocytes in a Case of non-IPEX Autoimmune Enteropathy. Clinical and Translational Gastroenterology. 2016;7(7):e182
CCicerone C, Nenna R, Pontone S. Th17, intestinal microbiota and the abnormal immune response in the pathogenesis of celiac disease . Gastroenterology and Hepatology From Bed to Bench. 2015;8(2):117-122.
DGranzotto M, dal Bo S, Quaglia S et al. Regulatory T-cell function is impaired in celiac disease. Dig Dis Sci 2009;54:1513.
EKumawat AK, Strid H, Tysk C, Bohr J, Hörnquist EH. Microscopic colitis patients demonstrate a mixed Th17/Tc17 and Th1/Tc1 mucosal cytokine profile. Molecular Immunology 2013;55(3-4):355-364.
FGaffen SL. Role of IL-17 in the Pathogenesis of Rheumatoid Arthritis. Current rheumatology reports. 2009;11(5):365-370.
GCooles, F.A.H., Isaacs, J.D. & Anderson, A.E. Treg Cells in Rheumatoid Arthritis: An Update. Curr Rheumatol Rep. 2013;15:352.
HOpazo MC, Ortega-Rocha EM, Coronado-Arrázola I, et al. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Frontiers in Microbiology. 2018;9:432.
IAsadullah K, Sterry W, Stephanek K, et al. IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. Journal of Clinical Investigation. 1998;101(4):783-794.
JCosorich I, Dalla-Costa G, Sorini C, et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Science Advances. 2017;3(7):e1700492.
KNouri M, Bredberg A, Weström B, Lavasani S. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells. Lees JR, ed. PLoS ONE. 2014;9(9):e106335.
LSlingerland AE, Schwabkey Z, Wiesnoski DH, Jenq RR. Clinical Evidence for the Microbiome in Inflammatory Diseases. Frontiers in Immunology. 2017;8:400.
MTian, G., Li, JL., Wang, DG. et al. Cell Biochem Biophys 2014;70:37.
NKöhling H, Plummer S, Marchesi J, Davidge K, Ludgate M, The microbiota and autoimmunity: Their role in thyroid autoimmune diseases. Clinical Immunology. 2017;183:63-74.
OShao S, He F, Yang Y, Yuan G, Zhang M, Yu X, Th17 cells in type 1 diabetes, Cellular Immunology. 2012;280(1):16-21.
PDanikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. Journal of Neuroinflammation. 2017;14:117.