Difference between revisions of "Team:ZJU-China/Safety"

Line 11: Line 11:
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/pageCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/pageCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/sponsorCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/sponsorCSS&action=raw&ctype=text/css" />
 +
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/subtitleCSS&action=raw&ctype=text/css" />
 
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootstrapJS&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootstrapJS&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/jqueryJS&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/jqueryJS&action=raw&ctype=text/javascript"></script>
Line 354: Line 355:
 
</div>
 
</div>
 
<div class="intro">
 
<div class="intro">
<p>Currently, T7 promoter is one of the most widely used promoters for expression of heterogenous protein in some E.coli strains such as BL21(DE3). Though the wild-type T7 promoter has proven quite effective, in some cases, we need modified T7 promoters with even higher efficiency of protein expression to meet specific demands. Hence, we tried to transform the wild-type T7 promoter to get modified T7 promoters with increased strength . </p>
+
<p>Reliable and repeatable measurement is important in all science experience, so as the synthetic biology. Aiming to repeat measurements in different labs and make measurement tools more available, the Measurement Committee chose GFP as the measurement marker, providing with a detailed protocol and data analysis form, and invite all the iGEM teams to participate in the Interlab study. This is the Fifth Measurement InterLab and we are honored to take part in the study this year.</p>
 
</br>
 
</br>
<p>T7 RNA polymerase promoters consist of a highly conserved 23 base-pair sequence that spans the site of the initiation of transcription (+ 1) and extends from -17 to +6. As reported in some papers, the sequence specificty of T7 promoter is so strong that some point mutations between positions -11 and -7 may make T7 promoter fail to work. Thus, with the help of previous research, we carefully chose the site which would be mutated by PCR. These sites mainly distribute in the range from -4 to +6. The sequences of these modified promoters are shown in the Table below.</p>
+
<p>The objective of the Interlab this year is to reduce lab-to-lab variability in fluorescence measurements by normalizing to absolute cell count or colony-forming units (CFUs) instead of OD. Following the requirements and protocol gave by the Measurement Committee, we have obtained and uploaded the data. We also submitted flow cytometry data for extra credit.</p>
 
</br>
 
</br>
 
</div>
 
</div>
Line 367: Line 368:
 
<div class="cnt"></div>
 
<div class="cnt"></div>
 
<div class="psg" >
 
<div class="psg" >
<span class="psg_ttl">Sequences of Modified Promoters</span>
+
<span class="psg_ttl">Methods and Materials</span>
<table class="table">
+
<span class="psg_subtitle">Transformation</span>
<thead>
+
<p>Transform Escherichia coli DH5&alpha; with these following plasmids (all in pSB1C3):</p>
<tr>
+
<p style="padding-left: 3em; margin-top: .6em;">&bull; Negative control: BBa_R0040</p>
<th><span>Part Number</span></th>
+
<p style="padding-left: 3em; margin-top: .6em;">&bull; Positive control: BBa_I20270</p>
<th><span>Sequence(-17~+6)</span></th>
+
<p style="padding-left: 3em; margin-top: .6em;">&bull; Test Device 1: BBa_J364000</p>
</tr>
+
<p style="padding-left: 3em; margin-top: .6em;">&bull; Test Device 2: BBa_J364001</p>
</thead>
+
<p style="padding-left: 3em; margin-top: .6em;">&bull; Test Device 3: BBa_J364002</p>
<tbody>
+
<p style="padding-left: 3em; margin-top: .6em;">&bull; Test Device 4: BBa_J364007</p>
<tr>
+
<p style="padding-left: 3em; margin-top: .6em;">&bull; Test Device 5: BBa_J364008</p>
<td><span>BBa_R0085(wild type)</span></td>
+
<p style="padding-left: 3em; margin-top: .6em;">&bull; Test Device 6: BBa_J364009</p>
<td><span>TAATACGACTCACTATAGGGAGA</span></td>
+
<p></br>Resuspend DNA in selected wells in the Distribution Kit with 10 &micro;L ddH20. Thaw competent cells on ice. Pipette 25 &micro;L of competent cells into 1.5 mL tube per transformation and add 2 &micro;L of resuspended DNA into it. Incubate on ice for 30 min. Heat shock tubes at 42&deg;C for 90 sec. Then incubate on ice for 5 min.</p>
</tr>
+
<p></br>Add 1000 &micro;L LB media with Chloramphenicol (1000&times;) to each transformation. Incubate at 37&deg;C for 1 hours, shaking at 200-300 rpm.</p>
<tr>
+
<p></br>Pipette 100 &micro;L of each transformation onto LB plates (Chloramphenicol, 1000&times;). Spread with sterilized spreader. Incubate transformations overnight (14-18 hours) at 37&deg;C.</br></p>
<td><span>BBa_K2721000</span></td>
+
<span class="psg_subtitle">Colonies Selection</span>
<td><span>TAATACGACTCACTAT<span style="color: steelblue;">C</span><span></span>G</span><span style="color: steelblue;">C</span><span>G</span><span style="color: steelblue;">GAG</span></td>
+
<p>Pick 2 single colonies from each of plate and inoculate it on 5-10 mL LB medium with Chloramphenicol (1000&times;). Grow the cells overnight (16-18 hours) at 37&deg;C and 220 rpm.</br></p>
</tr>
+
<span class="psg_subtitle">Calibration</span>
<tr>
+
<p>We used the plate reader Synergy Neo2 for all the measurements and we used black 96 well plates with flat, transparent bottom.</p>
<td><span>BBa_K2721001</span></td>
+
<p style="margin-top: .6em; font-weight: bolder;"></br>&bull; OD600 Reference Point</p>
<td><span>TAATACGACTCACT</span><span style="color: steelblue;">CC</span><span>AG</span><span style="color: steelblue;">CA</span><span>A</span><span style="color: steelblue;">TC</span></td>
+
<p style="padding-left: 1em;"></br>Add 100 &micro;l LUDOX into wells A1, B1, C1, D1 and 100 &micro;l of H2O into wells A2, B2, C2, D2. Then measure absorbance at 600 nm of all samples in all standard measurement modes in instrument and turn off the pathlength correction at the same time. The temperature setting was 26.6&deg;C. Record the data.</p>
</tr>
+
<p style="margin-top: .6em; font-weight: bolder;"></br>&bull; Particle Standard Curve</p>
<tr>
+
<p style="padding-left: 1em;"></br>Obtain the tube labeled &ldquo;Silica Beads&ldquo; from the InterLab test kit and vortex vigorously for 30 seconds. Then immediately pipet 96 &micro;L microspheres into a 1.5 mL eppendorf tube. Add 904 &micro;L of ddH2O to the microspheres and vortex well.</p>
<td><span>BBa_K2721002</span></td>
+
<p style="padding-left: 1em;"></br>Prepare the serial dilution of microspheres as shown below. Set 4 copies.</p>
<td><span>TAATACGACTCACT</span><span style="color: steelblue;">TC</span><span>AG</span><span style="color: steelblue;">C</span><span>GA</span><span style="color: steelblue;">CC</span></td>
+
<h5>Fig.1 Dilution of microspheres <sup style="font-family: .8em;">[1]</sup></h5>
</tr>
+
<p style="padding-left: 1em;"></br>Measure the plate in plate reader, the excitation filter was set to 485nm/10nm and the emission filter was set to 525nm/10nm. Pathlength correction was turned off. The gain setting was 50. Fluorescence was from the top. The temperature setting was 26.6&deg;C. Record the data.</p>
<tr>
+
<p style="margin-top: .6em; font-weight: bolder;"></br>&bull; Fluorescence standard curve</p>
<td><span>BBa_K2721003</span></td>
+
<p style="padding-left: 1em;"></br>Spin down fluorescein stock tube. Prepare 10x fluorescein stock solution (100 µM) by resuspending fluorescein in 1 mL of 1xPBS. Dilute the 10x fluorescein stock solution with 1xPBS to make a 1x fluorescein solution with concentration 10 μM.</p>
<td><span>TAATACGACTCAC</span><span style="color: steelblue;">ACG</span><span>AG</span><span style="color: steelblue;">C</span><span>GAGA</span></td>
+
<p style="padding-left: 1em;"></br>Prepare the serial dilutions of fluorescein as shown below. Set 4 copies.</p>
</tr>
+
<h5>Fig.2 Dilution of fluorescein <sup style="font-family: .8em;">[1]</sup></h5>
</tbody>
+
<p style="padding-left: 1em;"></br>Measure the plate in plate reader, the excitation filter was set to 485nm/10nm and the emission filter was set to 525nm/10nm. Pathlength correction was turned off. The gain setting was 50. Fluorescence was from the top. The temperature setting was 26.6&deg;C. Record the data.</p>
</table>
+
<span class="psg_subtitle">Cell measurement</span>
<span class="psg_ttl">Test</span>
+
<p style="padding-left: 1em;">Make a 1:10 dilution of of the overnight cultures prepared after colony selection in LB medium + Chloramphenicol and measure Abs 600 of these 1:10 diluted cultures. Then dilute the cultures further to a target Abs600 of 0.02 in a final volume of 12 ml LB medium + Chloramphenicol in 50 mL falcon tube (amber or covered with foil to block light). Incubate the cultures at 37&deg;C and 220 rpm. Take 500 µL samples of the cultures from each of the 8 devices, two colonies per device, at 0 and 6 hours of incubation and add them into 96 well plates as shown below. Place samples on ice before measurements.</p>
<p>To test the function of mutant promoters, we chose the GFP as our reporter. By assessing the absolute fluorescence units(RFU) and OD600, we can conclude the relative strength of all promoters. When the E.coli BL21(DE3) is cultured at the stage of logarithmic phase, we added IPTG to induce the expression of GFP in strains BL21(DE3) for 4 hours. And the result is shown as Figure and Table below.</p>
+
<h5>Fig.3 Loading samples <sup style="font-family: .8em;">[1]</sup></h5>
<img src="https://static.igem.org/mediawiki/2018/5/54/T--ZJU-China--ip01.png" style="width: 80%;"/>
+
<p style="padding-left: 1em;"></br>Measure the samples (Abs 600 and fluorescence measurement). The cell measurement was under the same condition with the particle standard curve and the fluorescence standard curve, using the same plate.</p>
<h5>Fig.1 Relative Strength of wildtype T7 promoter and mutant promoters</h5>
+
<span class="psg_subtitle">Counting colony-forming units (CFUs)</span>
 +
<p>Measure the OD600 of cell cultures, making sure to dilute to the linear detection range of the plate reader. Then dilute the overnight culture to OD600 = 0.1 in 1 mL of LB + Cam media. Do this in triplicate for each culture and check the OD600 to make sure it is 0.1.</p>
 +
<p></br>Do the following serial dilutions as blow.</p>
 +
<h5>Fig.4 Dilutions <sup style="font-family: .8em;">[1]</sup></h5>
 +
<p></br>Count the colonies on each plate with fewer than 300 colonies. And multiple the colony count by the final dilution factor on each plate to get the colony forming units (CFU) per 1mL of an OD600 = 0.1 culture.</p>
 +
 +
<span class="psg_ttl">Results</span>
 +
<span class="psg_subtitle">OD600 Reference point</span>
 +
<h5>Tab.1 OD600 reference point</h5>
 +
<span class="psg_subtitle">Particle Standard Curve</span>
 +
<h5>Fig.5 Particle standard curve 1 | Fig.6 Particle standard curve 2</h5>
 +
<span class="psg_subtitle">Fluorescence standard curve</span>
 +
<h5>Fig.7 Fluorescence standard curve 1 | Fig.8 Fluorescence standard curve 2</h5>
 +
<span class="psg_subtitle">Cell measurement</span>
 +
<h5>Tab.2 Raw plate reader measurements of fluorescence raw at 0 Hour</h5>
 +
<h5>Tab.3 Raw plate reader measurements of fluorescence raw at 6 Hour</h5>
 +
<h5>Tab.4 Raw data of Abs600 measurement at 0 hour</h5>
 +
<h5>Tab.5 Raw data of Abs600 measurement at 6 hour</h5>
 +
<p></br>The results of the CFUs and the flow cytometry data have been submitted in time by online forms and a zip file.</p>
 +
 +
<span class="psg_ttl">Discussion</span>
 +
<p></br>Our experiments have got a great result, showing that the protocol is rather detailed and easy to operate. We are pleased to share our data with other teams around the world and we sincerely hope the Interlab study this year goes well.</p>
 +
<span class="psg_ttl">References</span>
 +
<p>[1] <a style="color: #131124;" href="https://static.igem.org/mediawiki/2018/0/09/2018_InterLab_Plate_Reader_Protocol.pdf">https://static.igem.org/mediawiki/2018/0/09/2018_InterLab_Plate_Reader_Protocol.pdf</a></p>
 +
<p>[2] <a style="color: #131124;" href="https://2018.igem.org/Measurement/InterLab">https://2018.igem.org/Measurement/InterLab</a></p>
 +
<p>[3] <a style="color: #131124;" href="https://2018.igem.org/Measurement/InterLab/Plate_Reader">https://2018.igem.org/Measurement/InterLab/Plate_Reader</a></p>
 +
<p>[4] <a style="color: #131124;" href="https://2018.igem.org/Measurement/InterLab/Flow_Cytometry">https://2018.igem.org/Measurement/InterLab/Flow_Cytometry</a></p>
 +
 +
 +
 +
 +
 
 +
 
 +
 +
<!--<img src="https://static.igem.org/mediawiki/2018/5/54/T--ZJU-China--ip01.png" style="width: 80%;"/>-->
 
<table class="table">
 
<table class="table">
 
<thead><tr>
 
<thead><tr>
Line 430: Line 465:
 
</tbody>
 
</tbody>
 
</table>
 
</table>
<p></br>As we can see from the figure, our mutant promoters showed largely increased strength compared with wild type T7 promoter. Therefore, our mutant promoters offer users more opportunity to control the expression of protein using T7 promoter and permit higher levels of target protein expression to be obtained.</p>
+
</br></br>
<span class="psg_ttl">References</span>
+
<p>[1] Ikeda R A, Ligman C M, Warshamana S, et al. T7 promoter contacts essential for promoter activity in vivo[J]. Nucleic Acids Research, 1992, 20(10): 2517-2524.</p>
+
<p>[2] Paul S, Stang A, Lennartz K, Tenbusch M, Uberla K. Selection of a T7 promoter mutant with enhanced in vitro activity by a novel multi-copy bead display approach for in vitro evolution[J]. Nucleic Acids Research, 2013, 41(1):e29.</p>
+
<br /><br />
+
 
<!---->
 
<!---->
 
 
Line 451: Line 482:
 
 
 
<!--<hr />-->
 
<!--<hr />-->
<script type="text/javascript">
 
var dom = document.getElementById("container");
 
var myChart = echarts.init(dom);
 
var app = {};
 
option = null;
 
var dataAxis = ['', '', '', '', ''];
 
var data = [2993, 62815.05, 53126.97, 22837.41, 41658.86];
 
var yMax = 500;
 
var dataShadow = [];
 
 
for (var i = 0; i < data.length; i++) {
 
    dataShadow.push(yMax);
 
}
 
 
option = {
 
    title: {
 
        text: '            ',
 
        textStyle: {
 
            color: '#999999',
 
            fontFamily: 'crimson',
 
            fontWeight: 'normal',
 
            align: 'center',
 
        }
 
//      subtext: 'yAxis: Absolute fluorescence unit \ OD600',
 
       
 
    },
 
    xAxis: {
 
    type: 'category',
 
        data: ['BBa_R0085(wild type)', 'BBa_K2721000', 'BBa_K2721001', 'BBa_K2721002', 'BBa_K2721003'],
 
    axisLabel: {
 
            inside: false,
 
            textStyle: {
 
                color: '#999999'
 
            }
 
        },
 
        axisTick: {
 
            show: false
 
        },
 
        axisLine: {
 
            show: false
 
        },
 
        z: 10
 
    },
 
    yAxis: {
 
    name: 'Absolute fluorescence unit \ OD600',
 
    nameRotate: 90,
 
    nameGap: -300,
 
   
 
//  offset: 'start',
 
        axisLine: {
 
            show: false
 
        },
 
        axisTick: {
 
            show: false
 
        },
 
        axisLabel: {
 
            textStyle: {
 
                color: '#999'
 
            }
 
        }
 
    },
 
    dataZoom: [
 
        {
 
            type: 'inside'
 
        }
 
    ],
 
    series: [
 
        { // For shadow
 
            type: 'bar',
 
            itemStyle: {
 
                normal: {color: 'rgba(0,0,0,0.05)'}
 
            },
 
            barGap:'-100%',
 
            barCategoryGap:'80%',
 
            data: dataShadow,
 
            animation: false
 
        },
 
        {
 
            type: 'bar',
 
            itemStyle: {
 
                normal: {
 
                    color: new echarts.graphic.LinearGradient(
 
                        0, 0, 0, 1,
 
                        [
 
                            {offset: 0, color: 'steelblue'},
 
                            {offset: 0.4, color: 'steelblue'},
 
                            {offset: 1, color: 'steelblue'}
 
                        ]
 
                    )
 
                },
 
                emphasis: {
 
                    color: new echarts.graphic.LinearGradient(
 
                        0, 0, 0, 1,
 
                        [
 
                            {offset: 0, color: 'lightsteelblue'},
 
                            {offset: 0.7, color: 'lightsteelblue'},
 
                            {offset: 1, color: 'lightsteelblue'}
 
                        ]
 
                    )
 
                }
 
            },
 
            data: data
 
        }
 
    ]
 
};
 
 
// Enable data zoom when user click bar.
 
//var zoomSize = 6;
 
//myChart.on('click', function (params) {
 
//  console.log(dataAxis[Math.max(params.dataIndex - zoomSize / 2, 0)]);
 
//  myChart.dispatchAction({
 
//      type: 'dataZoom',
 
//      startValue: dataAxis[Math.max(params.dataIndex - zoomSize / 2, 0)],
 
//      endValue: dataAxis[Math.min(params.dataIndex + zoomSize / 2, data.length - 1)]
 
//  });
 
//});
 
if (option && typeof option === "object") {
 
    myChart.setOption(option, true);
 
}
 
      </script>
 
 
         <!--<script type="text/javascript" src="js/bootsnav.js"></script>-->
 
         <!--<script type="text/javascript" src="js/bootsnav.js"></script>-->
 
         <script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootnavJS&action=raw&ctype=text/javascript"></script>
 
         <script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootnavJS&action=raw&ctype=text/javascript"></script>
         <script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/pageJS&action=raw&ctype=text/javascript"></script>
+
         <script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/subtitleJS&action=raw&ctype=text/javascript"></script>
 
</body>
 
</body>
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/pageCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/pageCSS&action=raw&ctype=text/css" />

Revision as of 12:33, 13 October 2018

Improve Part
SAFETY 

Reliable and repeatable measurement is important in all science experience, so as the synthetic biology. Aiming to repeat measurements in different labs and make measurement tools more available, the Measurement Committee chose GFP as the measurement marker, providing with a detailed protocol and data analysis form, and invite all the iGEM teams to participate in the Interlab study. This is the Fifth Measurement InterLab and we are honored to take part in the study this year.


The objective of the Interlab this year is to reduce lab-to-lab variability in fluorescence measurements by normalizing to absolute cell count or colony-forming units (CFUs) instead of OD. Following the requirements and protocol gave by the Measurement Committee, we have obtained and uploaded the data. We also submitted flow cytometry data for extra credit.



Methods and Materials Transformation

Transform Escherichia coli DH5α with these following plasmids (all in pSB1C3):

• Negative control: BBa_R0040

• Positive control: BBa_I20270

• Test Device 1: BBa_J364000

• Test Device 2: BBa_J364001

• Test Device 3: BBa_J364002

• Test Device 4: BBa_J364007

• Test Device 5: BBa_J364008

• Test Device 6: BBa_J364009


Resuspend DNA in selected wells in the Distribution Kit with 10 µL ddH20. Thaw competent cells on ice. Pipette 25 µL of competent cells into 1.5 mL tube per transformation and add 2 µL of resuspended DNA into it. Incubate on ice for 30 min. Heat shock tubes at 42°C for 90 sec. Then incubate on ice for 5 min.


Add 1000 µL LB media with Chloramphenicol (1000×) to each transformation. Incubate at 37°C for 1 hours, shaking at 200-300 rpm.


Pipette 100 µL of each transformation onto LB plates (Chloramphenicol, 1000×). Spread with sterilized spreader. Incubate transformations overnight (14-18 hours) at 37°C.

Colonies Selection

Pick 2 single colonies from each of plate and inoculate it on 5-10 mL LB medium with Chloramphenicol (1000×). Grow the cells overnight (16-18 hours) at 37°C and 220 rpm.

Calibration

We used the plate reader Synergy Neo2 for all the measurements and we used black 96 well plates with flat, transparent bottom.


• OD600 Reference Point


Add 100 µl LUDOX into wells A1, B1, C1, D1 and 100 µl of H2O into wells A2, B2, C2, D2. Then measure absorbance at 600 nm of all samples in all standard measurement modes in instrument and turn off the pathlength correction at the same time. The temperature setting was 26.6°C. Record the data.


• Particle Standard Curve


Obtain the tube labeled “Silica Beads“ from the InterLab test kit and vortex vigorously for 30 seconds. Then immediately pipet 96 µL microspheres into a 1.5 mL eppendorf tube. Add 904 µL of ddH2O to the microspheres and vortex well.


Prepare the serial dilution of microspheres as shown below. Set 4 copies.

Fig.1 Dilution of microspheres [1]


Measure the plate in plate reader, the excitation filter was set to 485nm/10nm and the emission filter was set to 525nm/10nm. Pathlength correction was turned off. The gain setting was 50. Fluorescence was from the top. The temperature setting was 26.6°C. Record the data.


• Fluorescence standard curve


Spin down fluorescein stock tube. Prepare 10x fluorescein stock solution (100 µM) by resuspending fluorescein in 1 mL of 1xPBS. Dilute the 10x fluorescein stock solution with 1xPBS to make a 1x fluorescein solution with concentration 10 μM.


Prepare the serial dilutions of fluorescein as shown below. Set 4 copies.

Fig.2 Dilution of fluorescein [1]


Measure the plate in plate reader, the excitation filter was set to 485nm/10nm and the emission filter was set to 525nm/10nm. Pathlength correction was turned off. The gain setting was 50. Fluorescence was from the top. The temperature setting was 26.6°C. Record the data.

Cell measurement

Make a 1:10 dilution of of the overnight cultures prepared after colony selection in LB medium + Chloramphenicol and measure Abs 600 of these 1:10 diluted cultures. Then dilute the cultures further to a target Abs600 of 0.02 in a final volume of 12 ml LB medium + Chloramphenicol in 50 mL falcon tube (amber or covered with foil to block light). Incubate the cultures at 37°C and 220 rpm. Take 500 µL samples of the cultures from each of the 8 devices, two colonies per device, at 0 and 6 hours of incubation and add them into 96 well plates as shown below. Place samples on ice before measurements.

Fig.3 Loading samples [1]


Measure the samples (Abs 600 and fluorescence measurement). The cell measurement was under the same condition with the particle standard curve and the fluorescence standard curve, using the same plate.

Counting colony-forming units (CFUs)

Measure the OD600 of cell cultures, making sure to dilute to the linear detection range of the plate reader. Then dilute the overnight culture to OD600 = 0.1 in 1 mL of LB + Cam media. Do this in triplicate for each culture and check the OD600 to make sure it is 0.1.


Do the following serial dilutions as blow.

Fig.4 Dilutions [1]


Count the colonies on each plate with fewer than 300 colonies. And multiple the colony count by the final dilution factor on each plate to get the colony forming units (CFU) per 1mL of an OD600 = 0.1 culture.

Results OD600 Reference point
Tab.1 OD600 reference point
Particle Standard Curve
Fig.5 Particle standard curve 1 | Fig.6 Particle standard curve 2
Fluorescence standard curve
Fig.7 Fluorescence standard curve 1 | Fig.8 Fluorescence standard curve 2
Cell measurement
Tab.2 Raw plate reader measurements of fluorescence raw at 0 Hour
Tab.3 Raw plate reader measurements of fluorescence raw at 6 Hour
Tab.4 Raw data of Abs600 measurement at 0 hour
Tab.5 Raw data of Abs600 measurement at 6 hour


The results of the CFUs and the flow cytometry data have been submitted in time by online forms and a zip file.

Discussion


Our experiments have got a great result, showing that the protocol is rather detailed and easy to operate. We are pleased to share our data with other teams around the world and we sincerely hope the Interlab study this year goes well.

References

[1] https://static.igem.org/mediawiki/2018/0/09/2018_InterLab_Plate_Reader_Protocol.pdf

[2] https://2018.igem.org/Measurement/InterLab

[3] https://2018.igem.org/Measurement/InterLab/Plate_Reader

[4] https://2018.igem.org/Measurement/InterLab/Flow_Cytometry

Part Number Relative Strength
BBa_R0085(wild type) 1
BBa_K2721000 20.99
BBa_K2721001 17.75
BBa_K2721002 7.63
BBa_K2721003 13.92