Difference between revisions of "Team:Uppsala/Transcriptomics/PolyA Tailing"

Line 263: Line 263:
 
<!--Start of template with side picutre -->
 
<!--Start of template with side picutre -->
  
<p>A successful poly(A) tailed mRNA has a complete chain of adenosines connected to the 3’UTR of the mRNA strand. Initially, the adition of polyA has been very inefficient due to low enzyme concentrations. Using double the recommended amount of enzyme, we managed to successfully attach of polyA tail to RNA. To be able to clearly illustrate the polyadenylation, we have added polyA tails to RNA ladder as can be seen in <b>Figure 1 </b>. The shift in size is especially well visible for the lowest 200 bp band.<br><br>
+
<p>A successful poly(A) tailed mRNA has a complete chain of adenosines connected to the 3’UTR of the mRNA strand. Initially, the adition of polyA has been very inefficient due to among other reasons low enzyme concentrations. Using double the recommended amount of enzyme, we managed to successfully attach of polyA tail to RNA. To be able to clearly illustrate the polyadenylation, we have added polyA tails to RNA ladder as can be seen in <b>Figure 1 </b>. The shift in size is especially well visible for the lowest 200 bp band.<br><br>
  
 
<p>Equal enzyme concentrations as those used in the RNA ladder polyadenylation were used to attach polyA tails to the isolated mRNA. The increase in polyA polymerase concentration has resulted in significantly higher cDNA yields, as decribed <a href="https://2018.igem.org/Team:Uppsala/Transcriptomics/cDNA_Conversion">here</a><br><br>
 
<p>Equal enzyme concentrations as those used in the RNA ladder polyadenylation were used to attach polyA tails to the isolated mRNA. The increase in polyA polymerase concentration has resulted in significantly higher cDNA yields, as decribed <a href="https://2018.igem.org/Team:Uppsala/Transcriptomics/cDNA_Conversion">here</a><br><br>

Revision as of 21:49, 17 October 2018