Difference between revisions of "Team:Uppsala/Transcriptomics/Barcoding-Library Preparation"

Line 301: Line 301:
 
                     <p>It was not certain whether the barcodes and adaptors were attached properly. If some of these steps fails, all the subsequent part would most likely fail as well and therefore lead to low sequencing throughput. In order to test if the library preparation has been done correctly, we prepared a library of standard lambda phage DNA (provided with the kit for troubleshooting). Table 2 shows the yields at the various steps. Interestingly, large amount of material is lost at the adaptor ligation step. </p>
 
                     <p>It was not certain whether the barcodes and adaptors were attached properly. If some of these steps fails, all the subsequent part would most likely fail as well and therefore lead to low sequencing throughput. In order to test if the library preparation has been done correctly, we prepared a library of standard lambda phage DNA (provided with the kit for troubleshooting). Table 2 shows the yields at the various steps. Interestingly, large amount of material is lost at the adaptor ligation step. </p>
  
                    <h4>Result</h4>
+
                 
  
  
Line 368: Line 368:
 
                     <p>Graph shown in figure 2 shows that reads are of high quality. In our actual sequencing runs, reads were always of very low quality. This result suggests that low quality / amount of passed reads is most likely due to input material (cDNA library) rather than to the library preparation itself. </p>
 
                     <p>Graph shown in figure 2 shows that reads are of high quality. In our actual sequencing runs, reads were always of very low quality. This result suggests that low quality / amount of passed reads is most likely due to input material (cDNA library) rather than to the library preparation itself. </p>
  
                     <h4>Discussion</h4>
+
                      
  
  
Line 377: Line 377:
 
                     <p>Library preparation is a complex procedure involving multiple enzymes and purification steps. Decreased efficiency of library preparation can be due to malfunctioning of any of the steps. The major issue in prepared libraries has been low sequencing throughput and low quality of reads. We have therefore tested if the issue is somehow connected to our samples or to the actual library prep. Since preparing library from supplied phage DNA was successful (high quality reads, decent throughput), we concluded that the issue was in fact in our input material. This has later proven to be true due to RNA contamination of the libraries as described in cDNA synthesis. <br><br>
 
                     <p>Library preparation is a complex procedure involving multiple enzymes and purification steps. Decreased efficiency of library preparation can be due to malfunctioning of any of the steps. The major issue in prepared libraries has been low sequencing throughput and low quality of reads. We have therefore tested if the issue is somehow connected to our samples or to the actual library prep. Since preparing library from supplied phage DNA was successful (high quality reads, decent throughput), we concluded that the issue was in fact in our input material. This has later proven to be true due to RNA contamination of the libraries as described in cDNA synthesis. <br><br>
  
                     Even with RNA contamination as the potential explanation for low quality reads (RNA is being sequenced using algorithm for DNA and therefore the bases are not being recognized) the problem of low throughput persisted. Major losses are seen during the library prep (up to 75%). According to Oxford Nanopore, this loss is expected, Question is whether it would be worth to increase input material above the recommendation of a manufacturer to achieve higher throughput. <br><br>
+
                     Even with RNA contamination as the potential explanation for low quality reads (RNA is being sequenced using algorithm for DNA and therefore the bases are not being recognized) the problem of low throughput persisted. Major losses are seen during the library prep (up to 75%). According to Oxford Nanopore, this loss is expected, Question is whether it would be worth to increase input material above the recommendation of the manufacturer to achieve higher throughput. <br><br>
  
 
                     Sequencing using Oxford Nanopore has been used mainly for long fragments of genomic DNA. In our application we aimed to sequenced very short reads (average about 1 kb) of cDNA. As this application is relatively new, we assume the process might not be fully optimized (eg. retention of small fragments by beads, amount of input library, etc.) for our application. <br><br>
 
                     Sequencing using Oxford Nanopore has been used mainly for long fragments of genomic DNA. In our application we aimed to sequenced very short reads (average about 1 kb) of cDNA. As this application is relatively new, we assume the process might not be fully optimized (eg. retention of small fragments by beads, amount of input library, etc.) for our application. <br><br>

Revision as of 22:13, 17 October 2018