Difference between revisions of "Team:Vilnius-Lithuania/Design"

Line 41: Line 41:
 
                     <div class="image-container">
 
                     <div class="image-container">
 
                                       <img src="https://static.igem.org/mediawiki/2018/3/3b/T--Vilnius-Lithuania--Fig1_Liposomes.png"/>
 
                                       <img src="https://static.igem.org/mediawiki/2018/3/3b/T--Vilnius-Lithuania--Fig1_Liposomes.png"/>
                                       <strong>Fig 1</strong> he composition of a liposome with encapsulated machinery for membrane protein integration. Size, membrane composition and interior composition can be easily varied.
+
                                       <strong>Fig 1</strong> The composition of a liposome with encapsulated machinery for membrane protein integration. Size, membrane composition and interior composition can be easily varied.
 
                                   </p>
 
                                   </p>
 
                     </div>
 
                     </div>
Line 68: Line 68:
 
                                   </p>
 
                                   </p>
 
                     </div>
 
                     </div>
 +
                   
 +
 +
 +
 +
 +
 
                      
 
                      
 
              
 
              
Line 76: Line 82:
 
                             After calculating the exact parameters for microfluidic channels and receiving a printed photomask, photolithography is performed to create a master for microfluidic chip preparation. After completing this step, PDMS (<var>polydimethylsiloxane</var>) is poured on to the master left in a thermostat overnight. Inlets and outlets are punched with a biopsy puncher, and the PDMS is cleaned and plasma treated before attaching it to the PDMS coated microscope glass slides. Fig. 3 presents a simplified scheme demonstrating photolithography and other +6steps towards creating a microfluidic chip. To learn more details about the fabrication process, refer to <a href="https://2018.igem.org/Team:Vilnius-Lithuania/Protocols">our Protocols</a>. We called our chip LipoDrop.  The final form of LipoDrop is shown in Fig. 4.   
 
                             After calculating the exact parameters for microfluidic channels and receiving a printed photomask, photolithography is performed to create a master for microfluidic chip preparation. After completing this step, PDMS (<var>polydimethylsiloxane</var>) is poured on to the master left in a thermostat overnight. Inlets and outlets are punched with a biopsy puncher, and the PDMS is cleaned and plasma treated before attaching it to the PDMS coated microscope glass slides. Fig. 3 presents a simplified scheme demonstrating photolithography and other +6steps towards creating a microfluidic chip. To learn more details about the fabrication process, refer to <a href="https://2018.igem.org/Team:Vilnius-Lithuania/Protocols">our Protocols</a>. We called our chip LipoDrop.  The final form of LipoDrop is shown in Fig. 4.   
 
                     </p>
 
                     </p>
                    <p>
+
                              
                             <strong>Fig. 3</strong> Simplified scheme for microfluidic device preparation. <strong>a-b</strong> the silicon wafer is cleaned and spin-coated with photoresist; <strong>c</strong> the photomask is aligned on the sample and exposed to UV light. <strong>d</strong> sample is submerged to a developer – only the sections that were exposed to the UV light remain intact  on the wafer; <strong>e</strong> PDMS is poured onto the master to create a PDMS mold and left for a bake in the oven; <strong>f</strong> the mold is then separated and prepared further by cleaning and punching inlets and outlets; <strong>e-f</strong> a microscopic slide is prepared by applying a thin layer of PDMS on top; <strong>i</strong> PDMS mold and PDMS covered microscopic slide are plasma treated and connected to each other to produce a final microfluidic chip.
+
 
                     </p>
 
                     </p>
 
                     <p>
 
                     <p>
                             <strong>Fig. 4</strong> Final form of Lipodrop.
+
 
 +
                             <div class="image-container">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/7/7d/T--Vilnius-Lithuania--Fig3_Liposomes.png"/>
 +
                                    <strong>Fig 3 </strong> Simplified scheme for microfluidic device preparation. <strong>a-b</strong> the silicon wafer is cleaned and spin-coated with photoresist; <strong>c</strong> the photomask is aligned on the sample and exposed to UV light. <strong>d</strong> sample is submerged to a developer – only the sections that were exposed to the UV light remain intact  on the wafer; <strong>e</strong> PDMS is poured onto the master to create a PDMS mold and left for a bake in the oven; <strong>f</strong> the mold is then separated and prepared further by cleaning and punching inlets and outlets; <strong>e-f</strong> a microscopic slide is prepared by applying a thin layer of PDMS on top; <strong>i</strong> PDMS mold and PDMS covered microscopic slide are plasma treated and connected to each other to produce a final microfluidic chip.
 +
                                </p>
 +
                  </div>
 +
 
 +
                </p>
 +
                <p>
 +
 
 +
                        <div class="image-container">
 +
                                <img src="https://static.igem.org/mediawiki/2018/7/75/T--Vilnius-Lithuania--Fig4_Liposomes.png"/>
 +
                                <strong>Fig 4 </strong> Final form of Lipodrop.
 +
                            </p>
 +
              </div>
 +
 
 
                     </p>
 
                     </p>
 
                     <p></p>
 
                     <p></p>

Revision as of 00:12, 18 October 2018

Design and Results

Results

Cell-free, synthetic biology systems open new horizons in engineering biomolecular systems which feature complex, cell-like behaviors in the absence of living entities. Having no superior genetic control, user-controllable mechanisms to regulate gene expression are necessary to successfully operate these systems. We have created a small collection of synthetic RNA thermometers that enable temperature-dependent translation of membrane proteins, work well in cells and display great potential to be transferred to any in vitro protein synthesis system.

invert