Team:Oxford/Human Practices

<> Full Width Pics - Start Bootstrap Template

Human Practices

An important aspect of synthetic biology is the consideration of how the technology has applications in the context of the wider society. We believed that collaborating with scientists, clinicians, social scientists, patients and the general public was essential to ensuring that our product benefits society. Our approach to human practices involved working with professionals, patients and the public to understand their opinions about various aspects of our project, and using this feedback to alter the design of our project and tailor our educational outreach activities.

The focus of our work on human practices was to integrate four major themes:

- Applied Design

Our approach to applied design involved creating surveys and interviewing patients to analyse the unmet patient needs and the most important issues that require addressing to improve patients’ quality of life. Regular conversations with patients, as well as professionals with knowledge in the law, manufacture and clinical delivery of therapeutics, enabled our design to continually evolve in light of this feedback.

- Public Engagement and Outreach

As a field still in its infancy, public knowledge of synthetic biology is limited and is often viewed with scepticism. As a result, public acceptance of genetically engineered therapeutics will be restricted by public knowledge unless educational resources are provided. The provision of summer school classes, public outreach events, online resources and a long-term public education plan were parts of our public outreach efforts. Our public engagement was integrated with our work covering applied design, since we remained open to feedback and used guidance from the public to shape our product design.

Detailed information about our work centred around each of the four themes can be found on the respective pages of our wiki.

Overview of Human Practices

Our philosophy regarding human practices was to ensure a reciprocal relationship between our team and society, ensuring that we remain open to feedback from the public, patients and professionals. Our human practices work involved the education of the wider public about our project ideas and the broader applications of synthetic biology, as well as discussions and interviews to understand society’s opinions of our project. We acted upon the feedback we received, meaning that our project continually evolved in light of the public’s input. An important focus of our work was to ensure that ‘society’ encompassed the broadest range of individuals, so we engaged with clinicians, researchers, professionals involved in the legal and business side of drug development, patients, students and the lay public.

In this manner, our vision and plans for human practices were altered throughout the course of the project. The timeline below summarises our work for human practices and demonstrates how engaging with different individuals prompted us to take alternative pathways in the project, both in terms of human practices and the design of our therapeutic.

Timeline of Integrated Human Practices Work

People We Worked With

As well as the students, public and patients we worked with throughout the project, we are incredibly grateful for the support and advice we gained from a wide range of professionals.

Dr Tony Cutler - Wellcome Trust Centre for Human Genetics

As an immunologist specialising in Type 1 diabetes and autoimmune diseases, Dr Cutler provided us with an invaluable insight into the pathogenesis of autoimmune diseases and how anti-inflammatory molecules may have the potential to have therapeutic effects. We met with him during the early stages of the project to understand whether the production of IL-10 may have beneficial anti-inflammatory effects in individuals suffering from autoimmune diseases. He highlighted the importance of safety, and encouraged us to speak to patients and clinicians to understand how a GM probiotic may be accepted in clinical settings.

Professor Simon Travis FRCP - Professor of Clinical Gastroenterology

Professor Travis provided us with valuable advice based on his insight as a practising clinician. He believed that a GM probiotic would be a safe treatment, although he advised us to consider the possible complications of the treatment escaping into the environment when excreted by patients in areas with poor sewage systems. In light of this, we designed a kill switch to ensure that our bacteria will not function when outside of the human gut. Professor Travis also advised us to focus our efforts on the treatment of autoimmune diseases of the gut, as opposed to autoimmune diseases in general, based on the heterogeneous nature of different autoimmune diseases. He also recommended that we consider the strain of bacteria we would use in the final therapeutic product, since it is vital that the bacteria adheres to the wall of the gut. He provided us with information on clinical trials using IL-10 to treat Crohn’s disease, and recommended the use of IL-10 therapy as opposed to other anti-inflammatory molecules (such as anti-TNFa).

Dr Hannah Chen - Translational Gastroenterology Unit, University of Oxford

Dr Chen gave us further guidance about the treatment of Crohn’s disease and other inflammatory diseases of the gut, highlighting the fact that the symptoms and cause of Crohn’s disease are heterogenous. Her insight made us consider the range of inflammatory markers that vary in individuals with Crohn’s disease, prompting us to undertake further research into biomarkers for Crohn’s disease. Dr Chen recommended reading about certain research studies, and this enabled us to find evidence to demonstrate that luminal NO is a suitable biomarker for Crohn’s disease, as well as providing quantitative data for use in modelling. Dr Chen also discussed the importance of the microbiome and the general lack of understanding among the public, which encouraged us to create an information leaflet about probiotics and the microbiome.