Project Description
Growing environmental concerns have led to an increase in the use of biofuels. Biofuels contain higher concentrations of organic compounds, making them much more suitable for bacterial and fungal growth than traditional fuels. Consequently, fuel tanks or pipes containing biofuels are much more susceptible to biofilms. Biofilms cause a number of problems, including clogging pipes and filters, degrading the fuel, and corroding fuel tanks and pipes. The goal of this project is to combat biofilms by engineering an E. coli to swim to and destroy the biofilms.
Pseudomonas aeruginosa, a bacterium found in most biofilms, releases the quorum sensing molecule C4-Homoserine Lactone (C4-HSL). By sensing C4-HSL, the RhlR promoter will allow for the transcription of CheZ gene. Expression of the CheZ gene allows the flagella motors of E. coli to rotate counterclockwise in a straight-line path instead of tumbling. It continues to swim throughout the biofilm with the ability to tumble and redirect its path even if it leaves the concentration gradient of C4-HSL. Along with swimming to the biofilm, the engineered E. coli will produce chitinase and cinnamaldehyde to kill the fungi and bacteria. Low concentrations of Cinnamaldehyde destroy bacteria by breaking down the cell membrane. However, fungi have cell walls, which prevents cinnamaldehyde from reaching the cell membrane. Chitinase breaks down chitin, a major component of fungal cell walls, and allows the cinnamaldehyde to reach the cell membrane and kill fungal cells. Two forms of chitinase are used, Chitinase C-1 from Streptomyces griseus and Chitinase B4A from Serratia marcescens. Fusing chitinase and ice nucleation protein tethers the chitinase to the membrane of the engineered microbe, ensuring the chitinase will not diffuse away from the biofilm.
Welcome to iGEM 2018!
Your team has been approved and you are ready to start the iGEM season!
Project Description
Growing environmental concerns have led to an increase in the use of biofuels. Biofuels contain higher concentrations of organic compounds, making them much more suitable for bacterial and fungal growth than traditional fuels. Consequently, fuel tanks or pipes containing biofuels are much more susceptible to biofilms. Biofilms cause a number of problems, including clogging pipes and filters, degrading the fuel, and corroding fuel tanks and pipes. The goal of this project is to combat biofilms by engineering an E. coli to swim to and destroy the biofilms.
Pseudomonas aeruginosa, a bacterium found in most biofilms, releases the quorum sensing molecule C4-Homoserine Lactone (C4-HSL). By sensing C4-HSL, the RhlR promoter will allow for the transcription of CheZ gene. Expression of the CheZ gene allows the flagella motors of E. coli to rotate counterclockwise in a straight-line path instead of tumbling. It continues to swim throughout the biofilm with the ability to tumble and redirect its path even if it leaves the concentration gradient of C4-HSL. Along with swimming to the biofilm, the engineered E. coli will produce chitinase and cinnamaldehyde to kill the fungi and bacteria. Low concentrations of Cinnamaldehyde destroy bacteria by breaking down the cell membrane. However, fungi have cell walls, which prevents cinnamaldehyde from reaching the cell membrane. Chitinase breaks down chitin, a major component of fungal cell walls, and allows the cinnamaldehyde to reach the cell membrane and kill fungal cells. Two forms of chitinase are used, Chitinase C-1 from Streptomyces griseus and Chitinase B4A from Serratia marcescens. Fusing chitinase and ice nucleation protein tethers the chitinase to the membrane of the engineered microbe, ensuring the chitinase will not diffuse away from the biofilm.
Before you start
Please read the following pages:
Styling your wiki
You may style this page as you like or you can simply leave the style as it is. You can easily keep the styling and edit the content of these default wiki pages with your project information and completely fulfill the requirement to document your project.
While you may not win Best Wiki with this styling, your team is still eligible for all other awards. This default wiki meets the requirements, it improves navigability and ease of use for visitors, and you should not feel it is necessary to style beyond what has been provided.
Uploading pictures and files
You must upload any pictures and files to the iGEM 2018 server. Remember to keep all your pictures and files within your team's namespace or at least include your team's name in the file name.
When you upload, set the "Destination Filename" to T--YourOfficialTeamName--NameOfFile.jpg. (If you don't do this, someone else might upload a different file with the same "Destination Filename", and your file would be erased!)
Wiki template information
We have created these wiki template pages to help you get started and to help you think about how your team will be evaluated. You can find a list of all the pages tied to awards here at the Pages for awards link. You must edit these pages to be evaluated for medals and awards, but ultimately the design, layout, style and all other elements of your team wiki is up to you!
Editing your wiki
On this page you can document your project, introduce your team members, document your progress and share your iGEM experience with the rest of the world!
Use WikiTools - Edit in the black menu bar to edit this page
Tips
This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started:
- State your accomplishments! Tell people what you have achieved from the start.
- Be clear about what you are doing and how you plan to do this.
- You have a global audience! Consider the different backgrounds that your users come from.
- Make sure information is easy to find; nothing should be more than 3 clicks away.
- Avoid using very small fonts and low contrast colors; information should be easy to read.
- Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the iGEM 2018 calendar
- Have lots of fun!
Inspiration
You can also view other team wikis for inspiration! Here are some examples: