Toxicity
Short Summary
Gold
Silver
Copper
Iron
Reactive Oxygen Species
The results for the toxicity can be found here
Alkilany, A. M., Nagaria, P. K., Hexel, C. R., Shaw, T. J., Murphy, C. J., & Wyatt, M. D. (2009). Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small, 5(6), 701-708.
Alum, A., Alboloushi, A., & Abbaszadegan, M. (2018). Copper nanoparticles toxicity: Laboratory strains verses environmental bacterial isolates. Journal of Environmental Science and Health, Part A, 1-8.
Bi, D.Q., Xu, Y.M. (2012). Influence of iron oxide doping on the photocatalytic degradation of organic dye X3B over tungsten oxide. Acta Physico-Chimica Sinica, 28, 1777-1782.
Bortner, C. D., Cidlowski, J. A. (2007). Cell shrinkage and monovalent cation fluxes: role in apoptosis. Archives of Biochemistry and Biophysics, 462(2), 176-188.
Broxton, C. N., & Culotta, V. C. (2016). SOD enzymes and microbial pathogens: surviving the oxidative storm of infection. PLoS pathogens, 12(1), e1005295.
Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., & Kiely, C. (1995). Synthesis and reactions of functionalised gold nanoparticles. Journal of the Chemical Society, Chemical Communications, (16), 1655-1656.
Burgess, J. E., Quarmby, J., & Stephenson, T. (1999). Role of micronutrients in activated sludge-based biotreatment of industrial effluents. Biotechnology advances, 17(1), 49-70.
Caruntu D, Remond Y, Chou NH, Jun M-J, Caruntu G, He J, Goloverda G, O'Connor C, Kolesnichenko V (2002). Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. Inorganic chemistry, 41(23), 6137-6146.
Chaithawiwat, K., Vangnai, A., McEvoy, J. M., Pruess, B., Krajangpan, S., & Khan, E. (2016). Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. Science of the Total Environment, 565, 857-862.
Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., Bleve-Zacheo, T., D’Alessio, M., Zambonin, P.G., Traversa, E. (2005). Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 17(21), 5255-5262.
Chang, M. L., Chen, J. C., Yeh, C. T., Chang, M. Y., Liang, C. K., Chiu, C. T., Lin D.Y., Liaw, Y. F. (2008). Gene gun bombardment with DNA-coated gold particles is a potential alternative to hydrodynamics-based transfection for delivering genes into superficial hepatocytes. Human gene therapy, 19(4), 391-395.
Colman, B. P., Arnaout, C. L., Anciaux, S., Gunsch, C. K., Hochella Jr, M. F., Kim, B., Lowry, G.V., McGill, B.M., Reinsch, B.C., Richardson, C.J., Unrine, J. M., Wright, J.P., Yin, L., Bernhardt, E.S. (2013). Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One, 8(2), e57189.
Dubbs, J. M., & Mongkolsuk, S. (2016). Peroxide‐Sensing Transcriptional Regulators in Bacteria. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 587-602.
Eid, R., Arab, N.T.T., Greenwood, M.T. (2017). Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864(2), 399-430.
Fagali, N. S., Grillo, C. A., Puntarulo, S., & Lorenzo, M. A. F. (2015). Biodegradation of metallic biomaterials: its relation with the generation of reactive oxygen species. REACTIVE OXYGEN SPECIES, LIPID PEROXIDATION AND PROTEIN OXIDATION, 127.
Farr, S. B., Kogoma, T. (1991). Oxidative Stress Responses in Escherichia coli and Salmonella typhimurium. Microbiological Reviews, 55(4), 561-585.
Halliwell, B. (1991). Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. The American Journal of Medicine, 91(3), S14-S22.
Halliwell, B. (2007). Biochemistry of oxidative stress. Biochem Soc Trans, 35(5), 1147-1150.
Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford University Press, USA.
Holleman, A. F.; Wiberg, N. (2001). Inorganic Chemistry. San Diego: Academic Press.
Huang, Q., Cao, M.H., Ai, Z.H., Zhang, L.Z. (2015). Reactive oxygen species dependent degradation pathway of 4-chlorophenol with Fe@Fe2O3 core-shell nanowires. Appl Catal B-Environ, 162, 319-326.
Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B. I., & Gu, M. B. (2008). Analysis of the toxic mode of action of silver nanoparticles using stress‐specific bioluminescent bacteria. Small, 4(6), 746-750.
Ivask, A., ElBadawy, A., Kaweeteerawat, C., Boren, D., Fischer, H., Ji, Z., Chang, C.H., Liu, R., Tolaymat, T., Telesca, D., Zink, J. I., Cohen, Y., Holden, P.A., Godwin, H.A., (2013). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. Acs Nano, 8(1), 374-386.
Kamariah, N., Nartey, W., Eisenhaber, B., Eisenhaber, F., & Grüber, G. (2016). Low resolution solution structure of an enzymatic active AhpC10: AhpF2 ensemble of the Escherichia coli Alkyl hydroperoxide Reductase. Journal of structural biology, 193(1), 13-22.
Kaplan, J. H., & Lutsenko, S. (2009). Copper transport in mammalian cells: special care for a metal with special needs. Journal of Biological Chemistry, 284(38), 25461-25465.
Kehrer, J.P. (2000). The Haber-Weiss reaction and mechanisms of toxicity. Toxicology, 149, 43-50.
Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho, M.H., (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 3, 95-101.
Letelier, M. E., Sánchez-Jofré, S., Peredo-Silva, L., Cortés-Troncoso, J., & Aracena-Parks, P. (2010). Mechanisms underlying iron and copper ions toxicity in biological systems: Pro-oxidant activity and protein-binding effects. Chemico-biological interactions, 188(1), 220-227.
Li, F., Lei, C., Shen, Q., Li, L., Wang, M., Guo, M., Huang, Y., Nie, Z., Yao, S. (2013). Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale, 5(2), 653-662.
Liu, L., Wu, D., Zhao, B., Han, X., Wu, J., Hou, H., & Fan, Y. (2015). Copper (II) coordination polymers: tunable structures and a different activation effect of hydrogen peroxide for the degradation of methyl orange under visible light irradiation. Dalton Transactions, 44(3), 1406-1411.
Magner, L.N. (1992). In: Hippocrates and the Hippocratic Tradition. A History of Medicine. Duffy J, editor. Marcel Dekker, Inc; NYC: 1992. p. 393.
Masoud, R., Bizouarn, T., Trepout, S., Wien, F., Baciou, L., Marco, S., & Levin, C. H. (2015). Titanium dioxide nanoparticles increase superoxide anion production by acting on NADPH oxidase. PloS one, 10(12), e0144829.
Mignolet-Spruyt, L., Xu, E., Idänheimo, N., Hoeberichts, F. A., Mühlenbock, P., Brosché, M. & Kangasjärvi, J. (2016). Spreading the news: subcellular and organellar reactive oxygen species production and signalling. Journal of Experimental Botany, 67(13), 3831-3844.
Morones-Ramirez, J. R., Winkler, J. A., Spina, C. S., & Collins, J. J. (2013). Silver enhances antibiotic activity against gram-negative bacteria. Science translational medicine, 5(190), 190ra81-190ra81.
Ochoa-Herrera, V., León, G., Banihani, Q., Field, J. A., Sierra-Alvarez, R. (2011). Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems. Science of the total environment, 412, 380-385.
Seo, S. W., Kim, D., Szubin, R., & Palsson, B. O. (2015). Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. Cell Reports, 12(8), 1289-1299.
Shareena Dasari, TP, Zhang, Y, Yu, H (2015). Antibacterial Activity and Cytotoxicity of Gold (I) and (III) Ions and Gold Nanoparticles. Biochem Pharmacol (Los Angel) 4(6), 199.
Wang, X., Gu, Y., Johnson, D., Chen, C., Huang, Y. (2017). The toxicity and DNA-damage mechanism of α-Fe2O3 nanoparticles. Medicinal chemistry Research, 26(2), 384-389.
Winterbourn, C.C. (1995). Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett., 82-83, 969-974.
Witkiewicz, P. L., & Shaw, C. F. (1981). Oxidative cleavage of peptide and protein disulphide bonds by gold (III): a mechanism for gold toxicity. Journal of the Chemical Society, Chemical Communications, (21), 1111-1114.
Yaeger C.C. (1991). Copper and zinc preservatives. In S.S. Block (ed.), Disinfection, sterilization, and preservation. 4th edn, Lea & Fiebiger Press, Philadelphia, USA, 358-361.
Yun, J., Lee, D.G. (2017). Silver Nanoparticles: A Novel Antimicrobial Agent. Antimicrobial Nanoarchitectonics, 139-166.
Zhang, C. (2014). Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 5, 750-760.
Zhang, Y., Newton, B., Lewis, E., Fu, P. P., Kafoury, R., Ray, P. C., & Yu, H. (2015). Cytotoxicity of organic surface coating agents used for nanoparticles synthesis and stability. Toxicology in Vitro, 29(4), 762-768.
Zhang, H., Jiang, X., Cao, G., Zhang, X., Croley, T. R., Wu, X., & Yin, J. J. (2018). Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants. Journal of Environmental Science and Health, Part C, 36(2), 84-97.
Zhao, G, Stevens, SE Jr. (1998). Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. BioMetals 11(1), 27-32.
Alum, A., Alboloushi, A., & Abbaszadegan, M. (2018). Copper nanoparticles toxicity: Laboratory strains verses environmental bacterial isolates. Journal of Environmental Science and Health, Part A, 1-8.
Bi, D.Q., Xu, Y.M. (2012). Influence of iron oxide doping on the photocatalytic degradation of organic dye X3B over tungsten oxide. Acta Physico-Chimica Sinica, 28, 1777-1782.
Bortner, C. D., Cidlowski, J. A. (2007). Cell shrinkage and monovalent cation fluxes: role in apoptosis. Archives of Biochemistry and Biophysics, 462(2), 176-188.
Broxton, C. N., & Culotta, V. C. (2016). SOD enzymes and microbial pathogens: surviving the oxidative storm of infection. PLoS pathogens, 12(1), e1005295.
Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., & Kiely, C. (1995). Synthesis and reactions of functionalised gold nanoparticles. Journal of the Chemical Society, Chemical Communications, (16), 1655-1656.
Burgess, J. E., Quarmby, J., & Stephenson, T. (1999). Role of micronutrients in activated sludge-based biotreatment of industrial effluents. Biotechnology advances, 17(1), 49-70.
Caruntu D, Remond Y, Chou NH, Jun M-J, Caruntu G, He J, Goloverda G, O'Connor C, Kolesnichenko V (2002). Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. Inorganic chemistry, 41(23), 6137-6146.
Chaithawiwat, K., Vangnai, A., McEvoy, J. M., Pruess, B., Krajangpan, S., & Khan, E. (2016). Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. Science of the Total Environment, 565, 857-862.
Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., Bleve-Zacheo, T., D’Alessio, M., Zambonin, P.G., Traversa, E. (2005). Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 17(21), 5255-5262.
Chang, M. L., Chen, J. C., Yeh, C. T., Chang, M. Y., Liang, C. K., Chiu, C. T., Lin D.Y., Liaw, Y. F. (2008). Gene gun bombardment with DNA-coated gold particles is a potential alternative to hydrodynamics-based transfection for delivering genes into superficial hepatocytes. Human gene therapy, 19(4), 391-395.
Colman, B. P., Arnaout, C. L., Anciaux, S., Gunsch, C. K., Hochella Jr, M. F., Kim, B., Lowry, G.V., McGill, B.M., Reinsch, B.C., Richardson, C.J., Unrine, J. M., Wright, J.P., Yin, L., Bernhardt, E.S. (2013). Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One, 8(2), e57189.
Dubbs, J. M., & Mongkolsuk, S. (2016). Peroxide‐Sensing Transcriptional Regulators in Bacteria. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 587-602.
Eid, R., Arab, N.T.T., Greenwood, M.T. (2017). Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864(2), 399-430.
Fagali, N. S., Grillo, C. A., Puntarulo, S., & Lorenzo, M. A. F. (2015). Biodegradation of metallic biomaterials: its relation with the generation of reactive oxygen species. REACTIVE OXYGEN SPECIES, LIPID PEROXIDATION AND PROTEIN OXIDATION, 127.
Farr, S. B., Kogoma, T. (1991). Oxidative Stress Responses in Escherichia coli and Salmonella typhimurium. Microbiological Reviews, 55(4), 561-585.
Halliwell, B. (1991). Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. The American Journal of Medicine, 91(3), S14-S22.
Halliwell, B. (2007). Biochemistry of oxidative stress. Biochem Soc Trans, 35(5), 1147-1150.
Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford University Press, USA.
Holleman, A. F.; Wiberg, N. (2001). Inorganic Chemistry. San Diego: Academic Press.
Huang, Q., Cao, M.H., Ai, Z.H., Zhang, L.Z. (2015). Reactive oxygen species dependent degradation pathway of 4-chlorophenol with Fe@Fe2O3 core-shell nanowires. Appl Catal B-Environ, 162, 319-326.
Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B. I., & Gu, M. B. (2008). Analysis of the toxic mode of action of silver nanoparticles using stress‐specific bioluminescent bacteria. Small, 4(6), 746-750.
Ivask, A., ElBadawy, A., Kaweeteerawat, C., Boren, D., Fischer, H., Ji, Z., Chang, C.H., Liu, R., Tolaymat, T., Telesca, D., Zink, J. I., Cohen, Y., Holden, P.A., Godwin, H.A., (2013). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. Acs Nano, 8(1), 374-386.
Kamariah, N., Nartey, W., Eisenhaber, B., Eisenhaber, F., & Grüber, G. (2016). Low resolution solution structure of an enzymatic active AhpC10: AhpF2 ensemble of the Escherichia coli Alkyl hydroperoxide Reductase. Journal of structural biology, 193(1), 13-22.
Kaplan, J. H., & Lutsenko, S. (2009). Copper transport in mammalian cells: special care for a metal with special needs. Journal of Biological Chemistry, 284(38), 25461-25465.
Kehrer, J.P. (2000). The Haber-Weiss reaction and mechanisms of toxicity. Toxicology, 149, 43-50.
Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho, M.H., (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 3, 95-101.
Letelier, M. E., Sánchez-Jofré, S., Peredo-Silva, L., Cortés-Troncoso, J., & Aracena-Parks, P. (2010). Mechanisms underlying iron and copper ions toxicity in biological systems: Pro-oxidant activity and protein-binding effects. Chemico-biological interactions, 188(1), 220-227.
Li, F., Lei, C., Shen, Q., Li, L., Wang, M., Guo, M., Huang, Y., Nie, Z., Yao, S. (2013). Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale, 5(2), 653-662.
Liu, L., Wu, D., Zhao, B., Han, X., Wu, J., Hou, H., & Fan, Y. (2015). Copper (II) coordination polymers: tunable structures and a different activation effect of hydrogen peroxide for the degradation of methyl orange under visible light irradiation. Dalton Transactions, 44(3), 1406-1411.
Magner, L.N. (1992). In: Hippocrates and the Hippocratic Tradition. A History of Medicine. Duffy J, editor. Marcel Dekker, Inc; NYC: 1992. p. 393.
Masoud, R., Bizouarn, T., Trepout, S., Wien, F., Baciou, L., Marco, S., & Levin, C. H. (2015). Titanium dioxide nanoparticles increase superoxide anion production by acting on NADPH oxidase. PloS one, 10(12), e0144829.
Mignolet-Spruyt, L., Xu, E., Idänheimo, N., Hoeberichts, F. A., Mühlenbock, P., Brosché, M. & Kangasjärvi, J. (2016). Spreading the news: subcellular and organellar reactive oxygen species production and signalling. Journal of Experimental Botany, 67(13), 3831-3844.
Morones-Ramirez, J. R., Winkler, J. A., Spina, C. S., & Collins, J. J. (2013). Silver enhances antibiotic activity against gram-negative bacteria. Science translational medicine, 5(190), 190ra81-190ra81.
Ochoa-Herrera, V., León, G., Banihani, Q., Field, J. A., Sierra-Alvarez, R. (2011). Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems. Science of the total environment, 412, 380-385.
Seo, S. W., Kim, D., Szubin, R., & Palsson, B. O. (2015). Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. Cell Reports, 12(8), 1289-1299.
Shareena Dasari, TP, Zhang, Y, Yu, H (2015). Antibacterial Activity and Cytotoxicity of Gold (I) and (III) Ions and Gold Nanoparticles. Biochem Pharmacol (Los Angel) 4(6), 199.
Wang, X., Gu, Y., Johnson, D., Chen, C., Huang, Y. (2017). The toxicity and DNA-damage mechanism of α-Fe2O3 nanoparticles. Medicinal chemistry Research, 26(2), 384-389.
Winterbourn, C.C. (1995). Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett., 82-83, 969-974.
Witkiewicz, P. L., & Shaw, C. F. (1981). Oxidative cleavage of peptide and protein disulphide bonds by gold (III): a mechanism for gold toxicity. Journal of the Chemical Society, Chemical Communications, (21), 1111-1114.
Yaeger C.C. (1991). Copper and zinc preservatives. In S.S. Block (ed.), Disinfection, sterilization, and preservation. 4th edn, Lea & Fiebiger Press, Philadelphia, USA, 358-361.
Yun, J., Lee, D.G. (2017). Silver Nanoparticles: A Novel Antimicrobial Agent. Antimicrobial Nanoarchitectonics, 139-166.
Zhang, C. (2014). Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 5, 750-760.
Zhang, Y., Newton, B., Lewis, E., Fu, P. P., Kafoury, R., Ray, P. C., & Yu, H. (2015). Cytotoxicity of organic surface coating agents used for nanoparticles synthesis and stability. Toxicology in Vitro, 29(4), 762-768.
Zhang, H., Jiang, X., Cao, G., Zhang, X., Croley, T. R., Wu, X., & Yin, J. J. (2018). Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants. Journal of Environmental Science and Health, Part C, 36(2), 84-97.
Zhao, G, Stevens, SE Jr. (1998). Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. BioMetals 11(1), 27-32.