Eschneider (Talk | contribs) |
Eschneider (Talk | contribs) |
||
Line 96: | Line 96: | ||
<figure role="group"> | <figure role="group"> | ||
− | <img class="figure eighty" src=" | + | <img class="figure eighty" src="https://static.igem.org/mediawiki/2018/8/8a/T--Bielefeld-CeBiTec--ES--Accumulation-4-Importer.png"> |
<figcaption> | <figcaption> | ||
<b>Figure 1:</b> Overview on the different copper accumulation components we worked with. The active copper export system cusCBA is knocked out and prevents Cu(I) loss. Uptake is promoted from the outer membrane importer OprC supported by the inner membrane importers CopD and HmtA. CopC is a metallochaperone delivering Cu(II) to CopD. Toxic Cu(I) ions in the periplasm are oxidated to Cu(II) in the periplasm by the native copper oxidase Cue | <b>Figure 1:</b> Overview on the different copper accumulation components we worked with. The active copper export system cusCBA is knocked out and prevents Cu(I) loss. Uptake is promoted from the outer membrane importer OprC supported by the inner membrane importers CopD and HmtA. CopC is a metallochaperone delivering Cu(II) to CopD. Toxic Cu(I) ions in the periplasm are oxidated to Cu(II) in the periplasm by the native copper oxidase Cue |
Revision as of 15:48, 14 October 2018
Copper Accumulation System
Introduction
Preventing Copper Export
Copper Import
In order to increase the concentration of copper ions further, the P-type ATPase HmtA from P. aeruginosa can be used. It actively transports copper ions across the cytoplasmic membrane into the cytoplasm (Lewinsohn, Lee & Rees, 2009). As with oprC, the homolog from the non-pathogenic P. brassicacearum 3Re2-7 with a protein identity of 80% was used. HmtA expression was found to result in acute hypersensitivity for Cu(II) and Zn(II), which is a result of Cu(II)/Zn(II) uptake as the expression resulted in increased intracellular concentration of these metal ions (Lewinsohn, Lee & Rees, 2009). Uptake of other cations into the cytoplasm like toxic Ag(I) and Cd(II) ions did not occur (Lewinsohn, Lee & Rees, 2009). As hmtA expression depends on the extracellular Zn(II) concentration and Zn(II) is transported as well as Cu(II) by HmtA (Pederick et al., 2015), it can be assumed that HmtA is a zinc importer which also transports copper ions due to the similarity in size and charge of Zn(II) and Cu(II) ions.
Another transportation system is copCD from the copABCD operon for copper homeostasis in Pseudomonas syringae pv. tomato. This operon encodes for a precise regulation system of intracellular Cu(II) concentration and is a homolog to pcoABCD (Lawton et al., 2016). The two genes exist in various forms like in a copABCD operon, standing alone as a copCD operon or even build up CopCD fusion proteins (Lawton et al., 2016, Arnesano et al., 2002) and their function is not fully understood yet. One proposed function is the uptake of Cu(II) ions into the cytoplasm (Cha & Cooksey, 1993). CopC is a probable metallochaperone and exists in different forms with one or two copper binding sites (Lawton et al., 2016) and CopD is a inner membrane protein that is presumably able to pump Cu(II) into the cell. We identified both genes in the genome of Pseudomonas brassicacearum 3Re2-7 and transfered them into E. coli to increase the uptake of Cu(II) and accumulate intracellular copper.
Conclusion
Our copper accumulation system works in two ways. We prevent the export of Cu(I) by knocking out the whole cus operon. Then we identified genes involved in copper uptake, hmtA, oprC, copC and copD and cloned them into E. coli. Together this systems provide a highly efficient and also specific accumulation system for copper ions.
Ladomersky, E., & Petris, M. J. (2015). Copper tolerance and virulence in bacteria. Metallomics, 7(6), 957-964.
Lewinson, O., Lee, A. T., & Rees, D. C. (2009). A P-type ATPase importer that discriminates between essential and toxic transition metals. Proceedings of the National Academy of Sciences, 106(12), 4677-4682.
Pederick, V. G., Eijkelkamp, B. A., Begg, S. L., Ween, M. P., McAllister, L. J., Paton, J. C., & McDevitt, C. A. (2015). ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Scientific reports, 5, 13139.
Postle, K., & Good, R. F. (1983). DNA sequence of the Escherichia coli tonB gene. Proceedings of the National Academy of Sciences, 80(17), 5235-5239.
Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS microbiology reviews, 27(2-3), 197-213.
Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., ... & Tian, L. (2014). Copper active sites in biology. Chemical reviews, 114(7), 3659-3853.
Xiao, M., Zhu, X., Fan, F., Xu, H., Tang, J., Qin, Y., ... & Zhang, X. (2017). Osmotolerance in Escherichia coli is improved by activation of copper efflux genes or supplementation with sulfur containing amino acids. Applied and environmental microbiology, AEM-03050.
Yoneyama, H., & Nakae, T. (1996). Protein C (OprC) of the outer membrane of Pseudomonas aeruginosa is a copper-regulated channel protein. Microbiology, 142(8), 2137-2144.
Lewinson, O., Lee, A. T., & Rees, D. C. (2009). A P-type ATPase importer that discriminates between essential and toxic transition metals. Proceedings of the National Academy of Sciences, 106(12), 4677-4682.
Pederick, V. G., Eijkelkamp, B. A., Begg, S. L., Ween, M. P., McAllister, L. J., Paton, J. C., & McDevitt, C. A. (2015). ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Scientific reports, 5, 13139.
Postle, K., & Good, R. F. (1983). DNA sequence of the Escherichia coli tonB gene. Proceedings of the National Academy of Sciences, 80(17), 5235-5239.
Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS microbiology reviews, 27(2-3), 197-213.
Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., ... & Tian, L. (2014). Copper active sites in biology. Chemical reviews, 114(7), 3659-3853.
Xiao, M., Zhu, X., Fan, F., Xu, H., Tang, J., Qin, Y., ... & Zhang, X. (2017). Osmotolerance in Escherichia coli is improved by activation of copper efflux genes or supplementation with sulfur containing amino acids. Applied and environmental microbiology, AEM-03050.
Yoneyama, H., & Nakae, T. (1996). Protein C (OprC) of the outer membrane of Pseudomonas aeruginosa is a copper-regulated channel protein. Microbiology, 142(8), 2137-2144.