Line 88: | Line 88: | ||
<img class="figure sixty" src="https://static.igem.org/mediawiki/2018/9/90/T--Bielefeld-CeBiTec--Human_ferritin_wt_vk.png"> | <img class="figure sixty" src="https://static.igem.org/mediawiki/2018/9/90/T--Bielefeld-CeBiTec--Human_ferritin_wt_vk.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure 2:</b> Protein structure of the human ferritin wild-type. | + | <b>Figure 2:</b> Protein structure of the human ferritin wild-type. The protein structure was generated with Chimera (Pettersen et al., 2004) |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
Line 148: | Line 148: | ||
<div id="myDIV" class="reftext"> | <div id="myDIV" class="reftext"> | ||
+ | <b>Molecular graphics and analyses performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.</b> </br> | ||
+ | |||
<b> Briat, J.-F. and Lobréaux, S. (1997)</b>. Iron transport and storage in plants. Trends Plant Sci. 2: 187–193.</br> | <b> Briat, J.-F. and Lobréaux, S. (1997)</b>. Iron transport and storage in plants. Trends Plant Sci. 2: 187–193.</br> | ||
<b> Butts, C.A., Swift, J., Kang, S., Di Costanzo, L., Christianson, D.W., Saven, J.G., and Dmochowski, I.J. (2008)</b>. Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein † , ‡. Biochemistry 47: 12729–12739.</br> | <b> Butts, C.A., Swift, J., Kang, S., Di Costanzo, L., Christianson, D.W., Saven, J.G., and Dmochowski, I.J. (2008)</b>. Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein † , ‡. Biochemistry 47: 12729–12739.</br> | ||
Line 155: | Line 157: | ||
<b> Jacobs, J. F., Hasan, M. N., Paik, K. H., Hagen, W. R., & van Loosdrecht, M. (2010)</b>. Development of a bionanotechnological phosphate removal system with thermostable ferritin. Biotechnology and bioengineering, 105(5), 918-923.</br> | <b> Jacobs, J. F., Hasan, M. N., Paik, K. H., Hagen, W. R., & van Loosdrecht, M. (2010)</b>. Development of a bionanotechnological phosphate removal system with thermostable ferritin. Biotechnology and bioengineering, 105(5), 918-923.</br> | ||
<b>Massé, E., & Gottesman, S. (2002).</b> A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proceedings of the National Academy of Sciences, 99(7), 4620-4625.</br> | <b>Massé, E., & Gottesman, S. (2002).</b> A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proceedings of the National Academy of Sciences, 99(7), 4620-4625.</br> | ||
+ | |||
+ | <b>Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004).</b> UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.</br> | ||
+ | |||
<b>Pozzi, C., Di Pisa, F., Bernacchioni, C., Ciambellotti, S., Turano, P., and Mangani, S. (2015)</b>. Iron binding to human heavy-chain ferritin. Acta Crystallogr. D Biol. Crystallogr. 71: 1909–1920.</br> | <b>Pozzi, C., Di Pisa, F., Bernacchioni, C., Ciambellotti, S., Turano, P., and Mangani, S. (2015)</b>. Iron binding to human heavy-chain ferritin. Acta Crystallogr. D Biol. Crystallogr. 71: 1909–1920.</br> | ||
<b>Rivera, M. (2017)</b>. Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.</br> | <b>Rivera, M. (2017)</b>. Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.</br> |
Revision as of 16:19, 14 October 2018
Iron Uptake by Ferritin
Human Ferritin
Molecular graphics and analyses performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.
Briat, J.-F. and Lobréaux, S. (1997). Iron transport and storage in plants. Trends Plant Sci. 2: 187–193.
Butts, C.A., Swift, J., Kang, S., Di Costanzo, L., Christianson, D.W., Saven, J.G., and Dmochowski, I.J. (2008). Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein † , ‡. Biochemistry 47: 12729–12739.
Casiday, R. and Frey, R. (2000).Ferritin, the Iron-Storage Protein.: 25.
Iwahori, K., Takagi, R., Kishimoto, N., & Yamashita, I. (2011). A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin. Materials Letters, 65(21-22), 3245-3247.
Jacobs, J. F., Hasan, M. N., Paik, K. H., Hagen, W. R., & van Loosdrecht, M. (2010). Development of a bionanotechnological phosphate removal system with thermostable ferritin. Biotechnology and bioengineering, 105(5), 918-923.
Massé, E., & Gottesman, S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proceedings of the National Academy of Sciences, 99(7), 4620-4625.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.
Pozzi, C., Di Pisa, F., Bernacchioni, C., Ciambellotti, S., Turano, P., and Mangani, S. (2015). Iron binding to human heavy-chain ferritin. Acta Crystallogr. D Biol. Crystallogr. 71: 1909–1920.
Rivera, M. (2017). Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.
Rivera, M. (2017). Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.
Yoshizawa, K., Iwahori, K., Sugimoto, K., & Yamashita, I. (2006). Fabrication of gold sulfide nanoparticles using the protein cage of apoferritin. Chemistry Letters, 35(10), 1192-1193.
Zhang, L., Swift, J., Butts, C.A., Yerubandi, V., and Dmochowski, I.J. (2007).Structure and activity of apoferritin-stabilized gold nanoparticles. J. Inorg. Biochem. 101: 1719–1729.