Difference between revisions of "Team:Hong Kong HKUST"

 
(101 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Hong_Kong_HKUST}}
+
{{ Hong_Kong_HKUST/head }}
 
<html>
 
<html>
 +
<head>
 +
<!--<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
 +
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css" integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO" crossorigin="anonymous">-->
 +
<title>iGem HKUST 2018</title>
 +
<meta charset="utf-8" />
 +
<meta name="viewport" content="width=device-width, initial-scale=1" />
 +
<link rel="stylesheet" type="text/css"
 +
href="https://2018.igem.org/wiki/index.php?title=Team:Hong_Kong_HKUST/Bootstrap.min.css&action=raw&ctype=text/css"/>
 +
<link rel="stylesheet" type="text/css"
 +
href="https://2018.igem.org/wiki/index.php?title=Team:Hong_Kong_HKUST/fontawesome.css&action=raw&ctype=text/css"/>
 +
<link rel="stylesheet" type="text/css"
 +
href="https://2018.igem.org/wiki/index.php?title=Template:Hong_Kong_HKUST/main.css&action=raw&ctype=text/css"/>
  
 +
<style>
 +
button {
 +
    -webkit-transition-duration: 0.4s; /* Safari */
 +
    transition-duration: 0.4s;
 +
}
  
 +
button:hover {
 +
background-color:white ;
 +
color: black;
 +
}
 +
button:before{
 +
background-color:black;
 +
color:white
 +
}
 +
button:after{
 +
background-color:white ;
 +
color: black;
 +
}
 +
</style>
 +
</head>
 +
<body style="background-color:black">
 +
<!-- Banner -->
 +
<section class="banner full">
 +
<article>
 +
<img src="https://static.igem.org/mediawiki/2018/e/e1/T--Hong_Kong_HKUST--_LAB-1.jpeg" alt="" />
 +
<div class="inner">
 +
<header>
 +
<p>We degrade polyethylene and generate electricity from it! <br> <a href="https://2018.igem.org/Team:Hong_Kong_HKUST/Description">CLICK HERE FOR MORE</a> </br> </p>
 +
<h2>PEkaC<sub>2</sub>H<sub>4</sub>U</h2>
 +
</header>
 +
</div>
 +
</article>
 +
<article>
 +
<img src="https://static.igem.org/mediawiki/2018/b/ba/T--Hong_Kong_HKUST--plasticriver.jpeg" alt="" />
 +
<div class="inner">
 +
<header>
 +
<p>Engineer <i>E. coli</i> with Laccase gene to degrade PE into smaller alkane chains</p>
 +
<h2>Polyethylene Degradation</h2>
 +
</header>
 +
</div>
 +
</article>
 +
<article>
 +
<img src="https://static.igem.org/mediawiki/2018/9/98/T--Hong_Kong_HKUST--Citylights.jpeg"  alt="" />
 +
<div class="inner">
 +
<header>
 +
<p>Metabolise alkane chains to convert it into <i>Shewanella oneidensis</i> food source</p>
 +
<h2>Alkane Metabolism</h2>
 +
</header>
 +
</div>
 +
</article>
 +
<article>
 +
<img src="https://static.igem.org/mediawiki/2018/c/cc/T--Hong_Kong_HKUST--Bacteriapicts.jpeg"  alt="" />
 +
<div class="inner">
 +
<header>
 +
<p>Use <i>Shewanella oneidensis</i> inbuilt <br>extracellular electron transport mechanism to produce electricity</p>
 +
<h2>The Microbial Fuel Cell</h2>
 +
</header>
 +
</div>
 +
</article>
 +
<article>
 +
<img src="https://static.igem.org/mediawiki/2018/0/06/T--Hong_Kong_HKUST--_candidphoto-17.jpeg"  alt="" />
 +
<div class="inner">
 +
<header>
 +
 +
<h2><a href ="https://2018.igem.org/Team:Hong_Kong_HKUST/Human_Practices"> Human Practices </a></h2>
 +
</header>
 +
</div>
 +
</article>
 +
</section>
  
 +
<section id="one" class="wrapper style2">
 +
  <div class="inner">
 +
    <div class="grid-style">
 +
<div>
 +
<div class="box">
 +
  <div class="image fit">
 +
    <img src="https://static.igem.org/mediawiki/2018/9/97/T--Hong_Kong_HKUST--Description.png" alt="" />
 +
  </div>
 +
<div class="content">
 +
  <header class="align-center">
 +
    <h3 style="color:grey;padding-bottom:-2em">IGEM 2018 - TEAM HKUST</h3>
 +
                  <hr style="color:grey"></hr>
 +
    <h2>PROJECT &nbsp;OVERVIEW</h2>
 +
  </header>
 +
<p style="color:black;">
 +
The iGEM HKUST 2018 team attempts to generate electricity from the degradation of the most widely used plastic, polyethylene (PE), using a synthetic biology approach. Making use of <i>E. coli</i> engineered with genes encoding for laccase to degrade polyethylene into smaller alkane chains, our team recognizes the opportunity to further advance this project by addressing another key issue – energy. Using <i>Shewanella oneidensis</i> MR-1 strain’s inbuilt extracellular electron transport mechanism in tandem with genes responsible for alkane metabolism derived from <i>Desulfatibacillum alkenivorans</i>, we will generate electricity from the metabolism of degraded polyethylene, hoping that it will one day help in solving the world’s growing energy needs. Thus, our project serves as an integrated effort to simultaneously solve two crucial problems.
 +
</p>
 +
<footer class="align-center">
 +
    <a href="https://2018.igem.org/Team:Hong_Kong_HKUST/Description"><button type="button" >Learn More</button></a>
 +
</footer>
 +
  </div>
 +
      </div>
 +
    </div>
 +
<div>
 +
      <div class="box">
 +
<div class="image fit">
 +
          <img src="https://static.igem.org/mediawiki/2018/e/e9/T--Hong_Kong_HKUST--Design.png" alt="" />
 +
</div>
 +
      <div class="content">
 +
<header class="align-center">
 +
  <h3 style="color:grey;padding-bottom:-2em">IGEM 2018 - TEAM HKUST</h3>
 +
                  <hr style="color:grey"></hr>
 +
        <h2>MFC DESIGN</h2>
 +
</header>
 +
  <p style="color:black;"> Aside from plastic degradation and alkane metabolism, generation of electricity was another important focus of our iGEM project. </p>
  
<div class="column full_size" >
+
<p style="color:black;">For the Microbial Fuel Cell design, we focused on generating a stable electrical current by utilizing <i>Shewanella oneidensis MR-1</i> strain’s inbuilt extracellular electron transport mechanism. In order to better harness its electrogenicity, we housed a culture of the bacterium within a microbial fuel cell of our design, aiming at maximizing electrical output for a given amount of substrate.
  
<h3>Project Description</h3>
+
<p style="color:black;">Our final design of biosphere-MFC conjugation had integrated the different comments and suggestions from our potential users. This MFC design aimed to be used both in households or indoor public areas. </p>
<p>Polyethylene is the most widely used plastic and arguably one of the most versatile materials to ever be synthesized. Its practicality and convenience however, have come at a great environmental cost. Polyethylene takes millennia to decompose, leeching harmful microplastics into the environment. The iGEM HKUST 2018 team approaches this pressing issue from a synthetic biology perspective, making use of transformant E. coli engineered with genes encoding for Laccase to degrade polyethylene into smaller alkane chains. Our team recognizes the opportunity to further advance this project by addressing another key issue – energy. Using <i>Shewanella oneidensis</i> MR-1 strain’s inbuilt extracellular electron transport mechanism in tandem with genes responsible for alkane metabolism derived from <i>Desulfatibacillum alkenivorans</i>, we generate electricity from the metabolism of degraded polyethylene, hoping that it will one day solve the world’s growing energy needs. Thus, our project serves as an integrated effort to simultaneously solve two crucial problems.</p>
+
<br />
+
  
<h1> Welcome to iGEM 2018! </h1>
+
  <footer class="align-center">
<p>Your team has been approved and you are ready to start the iGEM season! </p>
+
            <a href="https://2018.igem.org/Team:Hong_Kong_HKUST/Design"><button type="button" >Learn More</button></a>
 
+
  </footer>
 
+
</div>
<img src="http://placehold.it/1080x320/c4baba/e4dede">
+
      </div>
 +
    </div>
 +
 
 
 +
 +
      <div>
 +
<div class="box">
 +
  <div class="image fit">
 +
    <img src="https://static.igem.org/mediawiki/2018/3/38/T--Hong_Kong_HKUST--Modelling.png" alt="" />
 +
  </div>
 +
  <div class="content">
 +
    <header class="align-center">
 +
<h3 style="color:grey;padding-bottom:-2em">IGEM 2018 - TEAM HKUST</h3>
 +
                  <hr style="color:grey"></hr>
 +
<h2>MODELLING</h2>
 +
    </header>
 +
<p style="color:black"> Modeling plays a huge role in the whole project, as we fill in the gap between the experimental results and the existing data.</p>
  
</div>  
+
<p style="color:black">We characterized PE degradation rate based on previous iGEM data and predict how much adding OmpA to the sequence is going to affect the result of the laccase secretion. Kinetic parameters of fumarate addition mechanism were attempted to observe the activity of ASS genes and monitor the rate of conversion from alkane to succinate. This is very crucial since we do not have any laboratory experiment result to compare with. At the same time, we adopt Flux Balance Analysis to characterize how different factors from culturing media can affect direct electron transfers. For the MFC module, we have successfully established data to find the optimum culturing medium concentration for <i>Shewanella oneidensis MR-1</i> growth, which aids the design of MFC experiment. Voltage and power density that can be produced from alkane were also estimated.</p>
  
 +
<p style="color:black;">The innovative part of our modeling is using the existing model to further explore the effect of fumarate on the integrated alkane metabolism system, which guided our experimental design and will hopefully inspire future work on similar systems.</p>
  
<div class="column full_size" >
+
  <footer class="align-center">
 +
<a href="https://2018.igem.org/Team:Hong_Kong_HKUST/Model"><button type="button" >Learn More</button></a>
 +
  </footer>
 +
  </div>
 +
</div>
 +
    </div>
 +
<div>
 +
  <div class="box">
 +
    <div class="image fit">
 +
      <img src="https://static.igem.org/mediawiki/2018/b/b2/T--Hong_Kong_HKUST--HumanPractice.png" alt="" />
 +
    </div>
 +
    <div class="content">
 +
<header class="align-center">
 +
        <h3 style="color:grey;padding-bottom:-2em">IGEM 2018 - TEAM HKUST</h3>
 +
                  <hr style="color:grey"></hr>
 +
  <h2> HUMAN PRACTICES</h2>
 +
</header>
 +
<p style="color:black;">
 +
Public education is presented in the form of exhibition during our university's information day (open day) with the following goals:</p>
 +
<p style="color:black;">1. Promote synthetic biology as a tool to solve current problems and explain how the synthetic biology field tries to involve safety, ethics, policies, and the environment into our research and product designs. </p>
  
<h3>Before you start</h3>
+
<p style="color:black;">2. Promote renewable energies as a part of our project theme of environmental sustainability.</p>
<p> Please read the following pages:</p>
+
<ul>
+
<li>  <a href="https://2018.igem.org/Competition">Competition Hub</a> </li>
+
<li> <a href="https://2018.igem.org/Competition/Deliverables/Wiki">Wiki Requirements page</a></li>
+
<li> <a href="https://2018.igem.org/Resources/Template_Documentation">Template documentation</a></li>
+
</ul>
+
</div>
+
  
 +
<p style="color:black;">3. Integrate stakeholders to our product design by demonstrating our project and conducting surveys from our potential users to discover public’s concerns and area of focus for product improvements.
  
<div class="clear extra_space"></div>
+
<p style="color:black"> The survey data from our public engagement exhibition, collaborations, and interviews with Prof. Davis Bookhart (department head of the HKUST sustainability office), had been integrated into the systematic design of our Microbial Fuel Cell. </p>
<div class="line_divider"></div>
+
<div class="clear extra_space"></div>
+
  
 +
    <footer class="align-center">
 +
            <a href="https://2018.igem.org/Team:Hong_Kong_HKUST/Human_Practices"><button type="button" >Learn More</button></a>
 +
            </footer>
 +
  </div>
 +
        </div>
 +
      </div>
  
 
+
   
<div class="column full_size" >
+
  </div>
<h3> Styling your wiki </h3>
+
<p>You may style this page as you like or you can simply leave the style as it is. You can easily keep the styling and edit the content of these default wiki pages with your project information and completely fulfill the requirement to document your project.</p>
+
<p>While you may not win Best Wiki with this styling, your team is still eligible for all other awards. This default wiki meets the requirements, it improves navigability and ease of use for visitors, and you should not feel it is necessary to style beyond what has been provided.</p>
+
 
+
 
</div>
 
</div>
 +
</section>
  
 +
  
 +
<!-- Scripts -->
  
  
<div class="clear extra_space"></div>
+
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:Hong_Kong_HKUST/jquery.min.js/&action=raw&ctype=text/javascript"></script>
 
+
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:Hong_Kong_HKUST/jquery.scrollex.min.js/&action=raw&ctype=text/javascript"></script>
 
+
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:Hong_Kong_HKUST/skel.min.js/&action=raw&ctype=text/javascript"></script>
 
+
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:Hong_Kong_HKUST/util.js/&action=raw&ctype=text/javascript"></script>
<div class="column third_size" >
+
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:Hong_Kong_HKUST/main.js/&action=raw&ctype=text/javascript"></script>  
 
+
<h3> Uploading pictures and files </h3>
+
<p> You must upload any pictures and files to the iGEM 2018 server. Remember to keep all your pictures and files within your team's namespace or at least include your team's name in the file name. </p>
+
 
+
 
+
<p>When you upload, set the "Destination Filename" to <b> T--YourOfficialTeamName--NameOfFile.jpg</b>. (If you don't do this, someone else might upload a different file with the same "Destination Filename", and your file would be erased!)</p>
+
 
+
<div class="button_link">
+
<a href="https://2018.igem.org/Special:Upload">
+
UPLOAD FILES
+
</a>
+
</div>
+
 
+
</div>
+
 
+
<div class="column third_size" >
+
<h3> Wiki template information </h3>
+
<p>We have created these wiki template pages to help you get started and to help you think about how your team will be evaluated. You can find a list of all the pages tied to awards here at the <a href="https://2018.igem.org/Judging/Pages_for_Awards">Pages for awards</a> link. You must edit these pages to be evaluated for medals and awards, but ultimately the design, layout, style and all other elements of your team wiki is up to you!</p>
+
 
+
</div>
+
 
+
 
+
 
+
<div class="column third_size" >
+
<div class="highlight decoration_B_full">
+
<h3> Editing your wiki </h3>
+
<p>On this page you can document your project, introduce your team members, document your progress and share your iGEM experience with the rest of the world! </p>
+
<p>Use WikiTools - Edit in the black menu bar to edit this page</p>
+
 
+
<div class="button_link">
+
<a href="https://2018.igem.org/wiki/index.php?title=Team:Hong_Kong_HKUST&action=edit">
+
EDIT PAGE
+
</a>
+
</div>
+
 
+
 
+
</div>
+
</div>
+
 
+
 
+
 
+
 
+
 
+
<div class="clear extra_space"></div>
+
<div class="line_divider"></div>
+
<div class="clear extra_space"></div>
+
 
+
 
+
 
+
<div class="column two_thirds_size" >
+
<h3>Tips</h3>
+
<p>This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started: </p>
+
<ul>
+
<li>State your accomplishments! Tell people what you have achieved from the start. </li>
+
<li>Be clear about what you are doing and how you plan to do this.</li>
+
<li>You have a global audience! Consider the different backgrounds that your users come from.</li>
+
<li>Make sure information is easy to find; nothing should be more than 3 clicks away.  </li>
+
<li>Avoid using very small fonts and low contrast colors; information should be easy to read.  </li>
+
<li>Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the <a href="https://2018.igem.org/Calendar">iGEM 2018 calendar</a> </li>
+
<li>Have lots of fun! </li>
+
</ul>
+
</div>
+
 
+
 
+
<div class="column third_size">
+
<div class="highlight decoration_A_full">
+
<h3>Inspiration</h3>
+
<p> You can also view other team wikis for inspiration! Here are some examples:</p>
+
<ul>
+
<li> <a href="https://2014.igem.org/Team:SDU-Denmark/"> 2014 SDU Denmark </a> </li>
+
<li> <a href="https://2014.igem.org/Team:Aalto-Helsinki">2014 Aalto-Helsinki</a> </li>
+
<li> <a href="https://2014.igem.org/Team:LMU-Munich">2014 LMU-Munich</a> </li>
+
<li> <a href="https://2014.igem.org/Team:Michigan"> 2014 Michigan</a></li>
+
<li> <a href="https://2014.igem.org/Team:ITESM-Guadalajara">2014 ITESM-Guadalajara </a></li>
+
<li> <a href="https://2014.igem.org/Team:SCU-China"> 2014 SCU-China </a></li>
+
</ul>
+
</div>
+
</div>
+
 
+
 
+
  
  
 +
</body>
 
</html>
 
</html>
 +
{{ Hong_Kong_HKUST/footer }}

Latest revision as of 21:53, 15 October 2018

iGem HKUST 2018

IGEM 2018 - TEAM HKUST


PROJECT  OVERVIEW

The iGEM HKUST 2018 team attempts to generate electricity from the degradation of the most widely used plastic, polyethylene (PE), using a synthetic biology approach. Making use of E. coli engineered with genes encoding for laccase to degrade polyethylene into smaller alkane chains, our team recognizes the opportunity to further advance this project by addressing another key issue – energy. Using Shewanella oneidensis MR-1 strain’s inbuilt extracellular electron transport mechanism in tandem with genes responsible for alkane metabolism derived from Desulfatibacillum alkenivorans, we will generate electricity from the metabolism of degraded polyethylene, hoping that it will one day help in solving the world’s growing energy needs. Thus, our project serves as an integrated effort to simultaneously solve two crucial problems.

IGEM 2018 - TEAM HKUST


MFC DESIGN

Aside from plastic degradation and alkane metabolism, generation of electricity was another important focus of our iGEM project.

For the Microbial Fuel Cell design, we focused on generating a stable electrical current by utilizing Shewanella oneidensis MR-1 strain’s inbuilt extracellular electron transport mechanism. In order to better harness its electrogenicity, we housed a culture of the bacterium within a microbial fuel cell of our design, aiming at maximizing electrical output for a given amount of substrate.

Our final design of biosphere-MFC conjugation had integrated the different comments and suggestions from our potential users. This MFC design aimed to be used both in households or indoor public areas.

IGEM 2018 - TEAM HKUST


MODELLING

Modeling plays a huge role in the whole project, as we fill in the gap between the experimental results and the existing data.

We characterized PE degradation rate based on previous iGEM data and predict how much adding OmpA to the sequence is going to affect the result of the laccase secretion. Kinetic parameters of fumarate addition mechanism were attempted to observe the activity of ASS genes and monitor the rate of conversion from alkane to succinate. This is very crucial since we do not have any laboratory experiment result to compare with. At the same time, we adopt Flux Balance Analysis to characterize how different factors from culturing media can affect direct electron transfers. For the MFC module, we have successfully established data to find the optimum culturing medium concentration for Shewanella oneidensis MR-1 growth, which aids the design of MFC experiment. Voltage and power density that can be produced from alkane were also estimated.

The innovative part of our modeling is using the existing model to further explore the effect of fumarate on the integrated alkane metabolism system, which guided our experimental design and will hopefully inspire future work on similar systems.

IGEM 2018 - TEAM HKUST


HUMAN PRACTICES

Public education is presented in the form of exhibition during our university's information day (open day) with the following goals:

1. Promote synthetic biology as a tool to solve current problems and explain how the synthetic biology field tries to involve safety, ethics, policies, and the environment into our research and product designs.

2. Promote renewable energies as a part of our project theme of environmental sustainability.

3. Integrate stakeholders to our product design by demonstrating our project and conducting surveys from our potential users to discover public’s concerns and area of focus for product improvements.

The survey data from our public engagement exhibition, collaborations, and interviews with Prof. Davis Bookhart (department head of the HKUST sustainability office), had been integrated into the systematic design of our Microbial Fuel Cell.