Line 21: | Line 21: | ||
<h3>Safety</h3> | <h3>Safety</h3> | ||
</br> | </br> | ||
− | <p1> Our genetic circuit is activated/deactivated by the redox state of the transcription factor (SoxR). SoxR oxidation is modulated by small redox molecules, such as pyocyanin. However, | + | <p1> Our genetic circuit is activated/deactivated by the redox state of the transcription factor (SoxR). SoxR oxidation is modulated by small redox molecules, such as pyocyanin. However, after Francesca Ceroni, a PI at Imperial who was pregnant at the time declined to meet us in the lab out of concern of toxic substances, we realized that toxicity is a huge factor in downstream implementation of our system. Pyocyanin is a toxin synthesised by the pathogen Pseudomonas aeruginosa and is implicated in its virulence (https://www.sciencedirect.com/science/article/pii/S0924857912002105?via%3Dihub). We also realized that using another cheaper redox molecule could not only make our system cheaper to use, but also replace inducer molecules such as IPTG due to their price. Using PMS which is a small redox molecule, we can activate a gene much like IPTG would with p<i>lac</i>. Not only is PMS far cheaper than both pyocyanin and IPTG, it is also non-toxic and makes our system more applicable for real world applications. |
</br></br> | </br></br> | ||
<h4>Toxicity comparison between Pyocyanin and PMS</h4></br> | <h4>Toxicity comparison between Pyocyanin and PMS</h4></br> |
Revision as of 01:50, 16 October 2018