Eschneider (Talk | contribs) |
Eschneider (Talk | contribs) (Undo revision 436907 by Eschneider (talk)) |
||
Line 109: | Line 109: | ||
</table> | </table> | ||
− | + | ||
− | + | ||
− | + | ||
Revision as of 18:11, 17 October 2018
Accumulation Results
Toxicity assay
As intracellular copper triggers toxic effects on the cell (also see Toxicity), an increased uptake of Cu(II) ions should exacerbate cell growth. Therefore, we examined the growth of E. coli expressing copC, copD, oprC, hmtA and pSB1C3 as a control in lysogeny broth (LB) at different concentrations of CuSO4 (0 mM, 1 mM, 2 mM, 3 mM, 4 mM, 8 mM) by measuring the optical density (OD) at a wavelength of 600 nm. The measurement was performed with the Infinite® 200 PRO in a 24 wellplate with flat bottom (Greiner®). For expression the biobricks BBa_K525998 (T7 promoter with RBS) and a combination of BBa_I0500 (pBAD/araC promoter) and BBa_B0030 (RBS) were used each in combination with the basic parts BBa_K2638001 (copC), BBa_K2638002 (copD), BBa_K2638200 (oprC) and BBa_K2638000 (hmtA). The resulting parts are shown in table 1:
Biobrick number | Components | Function |
---|---|---|
BBa_K2638003 | BBa_K525998, BBa_K2638001 | T7, RBS, copC |
BBa_K2638004 | BBa_K525998, BBa_K2638002 | T7, RBS, copD |
BBa_K2638016 | BBa_K525998, BBa_K2638000 | T7, RBS, hmtA |
BBa_K2638201 | BBa_K525998, BBa_K2638200 | T7, RBS, oprC |
BBa_K2638005 | BBa_I0500, BBa_B0030, BBa_K2638001 | pBAD/araC, RBS, copC |
BBa_K2638006 | BBa_I0500, BBa_B0030, BBa_K2638002 | pBAD/araC, RBS, copD |
BBa_K2638204 | BBa_I0500, BBa_B0030, BBa_K2638200 | pBAD/araC, RBS, oprC |
Molecular graphics and analyses performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.
Butts, C.A., Swift, J., Kang, S., Di Costanzo, L., Christianson, D.W., Saven, J.G., and Dmochowski, I.J. (2008).. Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein † , ‡. Biochemistry 47: 12729–12739.
Castro, L., Blázquez, M.L., Muñoz, J., González, F., and Ballester, A. (2014).. Mechanism and Applications of Metal Nanoparticles Prepared by Bio-Mediated Process. Rev. Adv. Sci. Eng. 3.
Ensign, D., Young, M., and Douglas, T. (2004).. Photocatalytic synthesis of copper colloids from CuII by the ferrihydrite core of ferritin. Inorg. Chem. 43: 3441–3446.
Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., and Lopez, R. (2010).. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38: W695-699.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004).UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., and Higgins, D.G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539.
Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., and Manuspiya, H. (2012). . DSynthesis of colloidal silver nanoparticles for printed electronics. /data/revues/16310748/v15i6/S1631074812000549/.
Wang, L., Hu, C., and Shao, L. (2017a).. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine 12: 1227–1249.
Wang, Z., Gao, H., Zhang, Y., Liu, G., Niu, G., and Chen, X. (2017b).. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 11: 633–646.