Line 466: | Line 466: | ||
<meta name="viewport" content="width=device-width, initial-scale=1"> | <meta name="viewport" content="width=device-width, initial-scale=1"> | ||
<script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML' async></script> | <script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML' async></script> | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</head> | </head> |
Revision as of 19:49, 17 October 2018
Mathematical Modeling
$$ 1. R + Pr \leftrightharpoons R:Pr $$ $$ 2. R:Pr + D \leftrightharpoons R:Pr:D $$ $$ 3. R:Pr:D + S \leftrightharpoons R:Pr:D:S $$ $$ 4. R:Pr:D:S + P \leftrightharpoons R:Pr:D:S:P $$ $$ 5. R:Pr:D:S:P \leftrightharpoons R + Pr:D:S:P $$ $$ 6. Pr:D:S:P \to 2D + S + P + Pr + D $$ $$ /frac{d[R]}{dt} = -R/cdot Pr/cdot k_1f + K_1r /cdot R:Pr + k_5f /cdot R:Pr:D:S:P - k_5r /cdot R/cdot Pr:D:S:P $$