Difference between revisions of "Team:Imperial College/Project"

 
(83 intermediate revisions by 4 users not shown)
Line 5: Line 5:
 
<style>
 
<style>
 
.integration{
 
.integration{
    width:90%;
+
margin:auto;
    margin-top:10%;
+
width:70%;
    position: relative;
+
    z-index: 1;
+
    margin: auto;
+
 
+
 
}
 
}
 +
 
.integration img{
 
.integration img{
    margin: auto;
+
margin-top: 6%;
    top: 0;
+
     z-index:-1;
    left: 0;
+
    right: 0;
+
    bottom: 0;
+
    margin-top:7%;
+
     width: 60%;
+
  position: absolute;
+
 
}
 
}
  
.bmodule{
+
.area{
  margin-top:1%;
+
     background: #A9A9A9;
     width:30%;
+
     display:block;
     padding-top: 1%;
+
     opacity:0;
     background: none;
+
 
    z-index: 10;
+
    float: left;
+
 
}
 
}
.emodule{
+
 
    margin-top:1%;
+
#area1 :hover, #area2 :hover{
    position: absolute;
+
     opacity:0.2;
     margin-left: 70%;
+
    width:40%;
+
    float: right;
+
 
}
 
}
.integrate{
+
 
    clear: both;
+
.fleft{
    margin: 0px auto;
+
float:left;
    margin-top: 20%;
+
clear:left;
     width: 45%;
+
width:50%;
   
+
text-align: center;
 +
     vertical-align: top;
 +
  display: table-cell;
 +
 
 
}
 
}
 +
.fleft p{
 +
text-align: center;
 +
padding-top:6%;
 +
}
 +
 +
.fright{
 +
float:right;
 +
clear:right;
 +
width:50%;
 +
text-align: center;
 +
  display: table-cell;
 +
}
 +
.fright p{
 +
text-align: center;
 +
padding-top:5%;
 +
}
 +
 
</style>
 
</style>
 
</head>
 
</head>
Line 59: Line 65:
 
     </div>
 
     </div>
  
<div class="what">
+
 
     <h3>What is Pixcell?</h3>
+
     <h3>PixCell</h3>
    <p2>As part of the international Genetically Engineered Machine (iGEM) competition in synthetic biology, we are developing PixCell, a foundational technology using an electrogenetic mechanism which links a bacterial response to an electrical stimuli. The system consists of genetically engineered bacteria encoding genetic networks that are activated or deactivated at specific voltages. We are developing hardware (an electrode array), software (in silico models and computational controller) and genetic networks (DNA circuits which produce fluorescence in response to electrical signals) to build a predictable, programmable system for spatial patterning of cells.</p2>
+
</br>
 +
</br>
 +
 
 +
<div class="row">
 +
<div class="fleft">
 +
<img src="https://static.igem.org/mediawiki/2018/7/79/T--Imperial_College--FIGX3T.gif" alt="" width="50%"; >
 
</div>
 
</div>
  
 +
<div class="fright">
 +
<p>Electrogenetics is a synthetic biology discipline developing electronic methods to control and measure gene expression. For PixCell we developed the first aerobic electrogenetic control system.</p>
 +
        </div>
  
        <div class="integration">
+
       </div>
 
+
<img src="https://static.igem.org/mediawiki/2018/5/5d/T--Imperial_College--AND.JPG" >
+
        
+
  <div class="bmodule">
+
               
+
                <h4 class="marginbottom">Biological Modules</h4>
+
                <p3>Tu ne quaesieris, scire nefas, quem mihi, quem tibi
+
                        finem di dederint, Leuconoe, nec Babylonios
+
                        temptaris numeros. Ut melius, quidquid erit, pati!
+
                        Seu pluris hiemes seu tribuit Iuppiter ultimam,
+
                        5quae nunc oppositis debilitat pumicibus mare
+
                        Tyrrhenum, sapias: vina liques et spatio brevi
+
                        spem longam reseces. Dum loquimur, fugerit invida
+
                        aetas: carpe diem, quam minimum credula postero.</p3>
+
                </div>
+
       
+
        <div class="emodule">
+
             
+
                <h4 class="marginbottom">Electrochemical Modules</h4>
+
                <p3>Vivamus mea Lesbia, atque amemus,
+
                        rumoresque senum seueriorum
+
                        omnes unius aestimemus assis!
+
                        soles occidere et redire possunt:
+
                        nobis cum semel occidit breuis lux,
+
                        nox est perpetua una dormienda.
+
                        da mi basia mille, deinde centum,
+
                        dein mille altera, dein secunda centum,
+
                        deinde usque altera mille, deinde centum.
+
                        dein, cum milia multa fecerimus,
+
                        conturbabimus illa, ne sciamus,
+
                        aut ne quis malus inuidere possit,
+
                        cum tantum sciat esse basiorum.</p3>
+
                </div>
+
            </div>
+
    <div class="clr"></div>
+
  
            <div class="integrate">
+
<div class="row">
                    <h6>Pixcell</h6>
+
<div class="fleft">
                    <p3>Tu ne quaesieris, scire nefas, quem mihi, quem tibi
+
                     
                        finem di dederint, Leuconoe, nec Babylonios
+
<p>Using this system we demonstrated precise, programmable biological patterning using an affordable custom-built electrode array. </p>
                        temptaris numeros. Ut melius, quidquid erit, pati!
+
                        Seu pluris hiemes seu tribuit Iuppiter ultimam,
+
                        5quae nunc oppositis debilitat pumicibus mare
+
                        Tyrrhenum, sapias: vina liques et spatio brevi
+
                        spem longam reseces. Dum loquimur, fugerit invida
+
                        aetas: carpe diem, quam minimum credula postero</p3>
+
                    </div>
+
             
+
<div class="why">
+
        <h3>Why is Pixcell useful?</h3>
+
        <p2> Turning specific genes on and off is a fundamental step towards controlling biological systems. If we want to be able to engineer cells, tissues and perhaps entire organisms using a bottom-up approach (from the DNA components to the biological system) we need a way to control the spatio-temporal expression of genes. Our technology is a foundational advance in this field.</p2>
+
 
</div>
 
</div>
  
<div class="how">
+
<div class="fright">
        <h3>Pixcell is The Future</h3>
+
<img src="https://static.igem.org/mediawiki/2018/9/94/T--Imperial_College--FIGX4Tv2.gif" alt="" width="50%"; >
        <p2> There are several alternative methods that allow spatio-temporal control of gene expression. The classic way is to use chemical inducers that bind control transcription factors (which affect expression of genes) which are orthogonal (taken from an organism other than the chassis being used to prevent interactions with the host&#8217;s genetic networks). Gene expression can also be achieved via physical signals, such as temperature, pressure and light. The field of optogenetics, which uses light to control gene expression, is a competitive alternative to the electrogenetic system we are developing due to its ease of computational control. (Important: the addition of new sets of tools for this purpose can open possibilities regards control that cannot be archived by only one methodology)</p2>
+
   
        <h3>BASIC</h3>
+
</div>
        <p2>Not only the project itself, the methods we used are also novel.</p2>
+
 
</div>
 
</div>
  
<div class="manual">
+
<div class="row">
        <h3>Manual Guide</h3>
+
<div class="fleft">
<object data="" type="application/pdf" width="100%" height="900px">  
+
<img src="https://static.igem.org/mediawiki/2018/7/71/T--Imperial_College--FIGX5T.gif" alt="" width="50%"; >
 +
</div>
 +
<div class="fright">
 +
<p>We further improved our system by building a library of electrogenetic parts compatible with a variety of assembly standards. This is the first electrogenetic toolkit and has been characterised for “plug-and-play” manipulation of the transcriptional response to electricity. </p>
  
 +
        </div>
 +
 +
      </div>
 +
 +
      <div class="row">
 +
<div class="fleft">
 +
          <p>Robust models of the system were developed so that electrogenetic circuits can be tested <i>in silico</i> before they are <i>in vivo</i>.
 +
</p>         
 
</div>
 
</div>
 +
<div class="fright">
 +
<img src="https://static.igem.org/mediawiki/2018/1/1c/T--Imperial_College--FIGX6T.gif" alt="" width="50%"; >
 +
        </div>
  
 +
      </div>           
 +
 +
      <div class="row">
 +
<div class="fleft">
 +
          <img src="https://static.igem.org/mediawiki/2018/2/2e/T--Imperial_College--FIGX7Tbiocon.gif" alt="" width="90%"; >
 +
        </div>
 +
<div class="fright">
 +
<p>Using this library we developed devices with important applications in the fields of biocontainment and manufacturing.    </p>
 +
      </div>         
 +
</div>         
 +
   
 +
        <div class="integration">
 +
 +
<h3>Mechanism</h3>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2018/8/86/T--Imperial_College--integration.png" alt="" width="100%"; usemap="#integration" >
 +
<map name="integration">
 +
<area id="area1" class="area" shape="rect" coords="100,0,350,50" href="" alt="biolmodule">
 +
<area id="area2" class="area" shape="rect" coords="550,0,1000,50" href="" alt="electromodule">
 +
<area id="area2" class="area" shape="rect" coords="" href="" alt="pixcell">
 +
</map>
 +
  </div>
 +
 +
<div class="how">
 +
        <h3>Electronic control</h3>
 +
        <p3> The ability to control gene expression in response to electronic stimuli is a very powerful novel tool.By developing this system to work in an aerobic system, for the first time,it has brought about exciting new applications that can be further developed upon. Not only does this project introduce a new system to control gene expression to iGEM but it also expands upon the current parts available to exploit the system. Electrogenetics is, like optigenetics and the others come before it, a new arrow in the quiver of control over gene expression.
 +
       
 +
        <h3>Patterning</h3>
 +
        <p3>Separation of labour between different cell populations allows for more complex biological processes to be engineered. Whilst Ecolibrium demonstrated a method of maintaining a stable multicellular co-culture, PixCell addresses a further necessary condition of complex multicellular life: patterning. Without patterning animals, plants and fungi would not be complex forms of life but a cellular soup. As such spatial control of gene expression is of key importance to the development of complex synthetic biology.
 +
</p3>
 
</div>
 
</div>
 +
 +
 
</div>
 
</div>
 
</body>
 
</body>

Latest revision as of 21:49, 17 October 2018

Project Description



PixCell



Electrogenetics is a synthetic biology discipline developing electronic methods to control and measure gene expression. For PixCell we developed the first aerobic electrogenetic control system.

Using this system we demonstrated precise, programmable biological patterning using an affordable custom-built electrode array.

We further improved our system by building a library of electrogenetic parts compatible with a variety of assembly standards. This is the first electrogenetic toolkit and has been characterised for “plug-and-play” manipulation of the transcriptional response to electricity.

Robust models of the system were developed so that electrogenetic circuits can be tested in silico before they are in vivo.

Using this library we developed devices with important applications in the fields of biocontainment and manufacturing.

Mechanism

biolmodule electromodule pixcell

Electronic control

The ability to control gene expression in response to electronic stimuli is a very powerful novel tool.By developing this system to work in an aerobic system, for the first time,it has brought about exciting new applications that can be further developed upon. Not only does this project introduce a new system to control gene expression to iGEM but it also expands upon the current parts available to exploit the system. Electrogenetics is, like optigenetics and the others come before it, a new arrow in the quiver of control over gene expression.

Patterning

Separation of labour between different cell populations allows for more complex biological processes to be engineered. Whilst Ecolibrium demonstrated a method of maintaining a stable multicellular co-culture, PixCell addresses a further necessary condition of complex multicellular life: patterning. Without patterning animals, plants and fungi would not be complex forms of life but a cellular soup. As such spatial control of gene expression is of key importance to the development of complex synthetic biology.