Line 104: | Line 104: | ||
<h2>Outlook</h2> | <h2>Outlook</h2> | ||
+ | |||
+ | <article> | ||
+ | Analysis workflow: The TEM images of the nanoparticles were automatically analyzed in ImageJ. The particles were separated from the background by k-means clustering. Afterwards touching particles were segmented by watershed segmentation. The processed image was binarized and a particle analysis was performed. | ||
+ | </article> | ||
+ | <figure role="group"> | ||
+ | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/3/39/T--Bielefeld-CeBiTec--BBa_K1189019_LK.png"> | ||
+ | <figcaption> | ||
+ | <b>Figure 4:</b>Automatic identification of 147 nanoparticles in the wild type human ferritin sample (BBa_K1189019). | ||
+ | </figcaption> | ||
+ | </figure> | ||
+ | |||
+ | <figure role="group"> | ||
+ | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/9/95/T--Bielefeld-CeBiTec--BBa_K2638999_LK.png"> | ||
+ | <figcaption> | ||
+ | <b>Figure 5:</b> Automatic identification of 708 nanoparticles in the gold silver mutant ferritin sample (BBa_K2638999). 431 (60.8%) of the nanoparticles had a mean diameter of 8 nm or less. | ||
+ | </figcaption> | ||
+ | </figure> | ||
+ | |||
+ | |||
+ | |||
+ | <article> | ||
+ | |||
+ | </article> | ||
+ | <figure role="group"> | ||
+ | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/8/88/T--Bielefeld-CeBiTec--nanoparticles_result_LK.png"> | ||
+ | <figcaption> | ||
+ | <b>Figure 6:</b> The nanoparticles in our gold silver mutant ferritin (BBa_K2638999) with a mean diameter of 8.2 nm were significant smaller than the nanoparticles of the wild type human ferritin (BBa_K1189019) with a mean diameter of 531.8 nm. | ||
+ | </figcaption> | ||
+ | </figure> | ||
+ | |||
+ | |||
<!-- | <!-- |
Revision as of 23:04, 17 October 2018
Improve a Part
Original Part: BBa_K1189019
Improved Human Ferritin: BBa_K2638999
Outlook
Molecular graphics and analyses performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.
Butts, C.A., Swift, J., Kang, S., Di Costanzo, L., Christianson, D.W., Saven, J.G., and Dmochowski, I.J. (2008).. Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein † , ‡. Biochemistry 47: 12729–12739.
Castro, L., Blázquez, M.L., Muñoz, J., González, F., and Ballester, A. (2014).. Mechanism and Applications of Metal Nanoparticles Prepared by Bio-Mediated Process. Rev. Adv. Sci. Eng. 3.
Ensign, D., Young, M., and Douglas, T. (2004).. Photocatalytic synthesis of copper colloids from CuII by the ferrihydrite core of ferritin. Inorg. Chem. 43: 3441–3446.
Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., and Lopez, R. (2010).. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38: W695-699.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004).UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., and Higgins, D.G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539.
Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., and Manuspiya, H. (2012). . DSynthesis of colloidal silver nanoparticles for printed electronics. /data/revues/16310748/v15i6/S1631074812000549/.
Wang, L., Hu, C., and Shao, L. (2017a).. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine 12: 1227–1249.
Wang, Z., Gao, H., Zhang, Y., Liu, G., Niu, G., and Chen, X. (2017b).. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 11: 633–646.