Difference between revisions of "Team:Imperial College/Wetover"

(Created page with "{{:Team:Imperial_College/Templates/NavBar}} <html> <head> <style> .box{ margin: auto; width: 40%; } .boxr{ margin: 0; width: 40%; background:none; float: left;...")
 
 
(5 intermediate revisions by 3 users not shown)
Line 43: Line 43:
 
   <div class="content">
 
   <div class="content">
 
   <h3>Our Aims</h3>
 
   <h3>Our Aims</h3>
 +
<p>After developing our idea for electronic control of gene expression we found a previous method was developed by Tschirhart et al. (2017). Although several barriers prevent this systems general use in synthetic biology. It only functions in anaerobic conditions, did not demonstrate spatial control, used an expensive electrochemical set-up, was not assembled modularly and provided no part library to modify the biological response. Throughout our wet lab experiments we aimed to overcome these problems to generate a modular, affordable and aerobic electrogenetic control system capable of patterning cells capable of achieving spatial patterning.</br> 
 +
 +
</p>
 
             <h3 class="marginbottom">General Circuit Design</h3>  
 
             <h3 class="marginbottom">General Circuit Design</h3>  
  
Line 48: Line 51:
 
             <div class="boxr">
 
             <div class="boxr">
 
                 <h4 class="center">Circuit Construction</h4>
 
                 <h4 class="center">Circuit Construction</h4>
                 <p3>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</p3>
+
                 <p3>We constructed electrogenetic circuits and characterised their activity in various chemical redox conditions.  
 +
</p3>
 
             </div>
 
             </div>
 
          
 
          
 
             <div class="boxl">
 
             <div class="boxl">
 
                 <h4 class="center">Electrochemistry Testing</h4>
 
                 <h4 class="center">Electrochemistry Testing</h4>
                 <p3>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</p3>
+
                 <p3>We used an affordable electrochemical set-up to determine how we can use electrical pulses to convert between redox states.
 +
</p3>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
Line 63: Line 68:
 
             <div class="box">
 
             <div class="box">
 
                 <h4 class="center">Integration </h4>
 
                 <h4 class="center">Integration </h4>
                 <p3>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</p3>
+
                 <p3>We proved that electric pulses can be used to induce spatial patterning by controlling our electrogenetic circuit via changes in the local redox environment. We also developed a library of electrogenetic parts to allow for modification of the system which we used to build an application device.   </p3>
 
             </div>
 
             </div>
            <h3>Experimental Set-up</h3>
+
 
</div>
+
 
 
</div>
 
</div>
 
</body>
 
</body>

Latest revision as of 23:38, 17 October 2018

Overview

Our Aims

After developing our idea for electronic control of gene expression we found a previous method was developed by Tschirhart et al. (2017). Although several barriers prevent this systems general use in synthetic biology. It only functions in anaerobic conditions, did not demonstrate spatial control, used an expensive electrochemical set-up, was not assembled modularly and provided no part library to modify the biological response. Throughout our wet lab experiments we aimed to overcome these problems to generate a modular, affordable and aerobic electrogenetic control system capable of patterning cells capable of achieving spatial patterning.

General Circuit Design

Circuit Construction

We constructed electrogenetic circuits and characterised their activity in various chemical redox conditions.

Electrochemistry Testing

We used an affordable electrochemical set-up to determine how we can use electrical pulses to convert between redox states.

Integration

We proved that electric pulses can be used to induce spatial patterning by controlling our electrogenetic circuit via changes in the local redox environment. We also developed a library of electrogenetic parts to allow for modification of the system which we used to build an application device.