Difference between revisions of "Team:Toronto"

 
(34 intermediate revisions by 2 users not shown)
Line 5: Line 5:
 
.grid-container {
 
.grid-container {
 
   display: grid;
 
   display: grid;
   grid-template-columns: 300px 300px 300px;
+
   grid-template-columns: 300px 300px 300px 300px;
   grid-gap: 50px;
+
   grid-gap: 30px;
   background-color: rgba(0,0,0,0);
+
   background-color: rgba(0,0,0,0.0);
 
   border-radius: 0px;
 
   border-radius: 0px;
 
   padding-bottom: 30px;
 
   padding-bottom: 30px;
Line 21: Line 21:
 
   font-size: 30px;
 
   font-size: 30px;
 
   line-height: 30px;
 
   line-height: 30px;
 +
}
 +
 +
}
 +
.timeline-wrapper {
 +
  position: relative;
 +
  padding-bottom: 25em;
 +
  background: linear-gradient(#000 10%, #283048 60%, #55679a 70%, rgba(15,65,92,1.0));
 
}
 
}
  
Line 36: Line 43:
 
}
 
}
  
 
+
h1 {
 +
  font-size: 40px;
 +
  line-height: 50px;
 +
  word-break: break-all;
 +
}
 
</style>
 
</style>
  
Line 46: Line 57:
 
<body>
 
<body>
  
  <div class="video-background">
+
<div style="background-color: rgba(73,175,188,1.0);">
    <div class="video-foreground">
+
 
      <img src="https://static.igem.org/mediawiki/2018/e/e1/T--Toronto--Day_HP-banner-mk2.gif" alt="Banner Failed" style="width:100%;height:100%;">
+
    </div>
+
  </div>
+
  
  
   <div style="color:white;text-align: center;padding-top:350px;padding-bottom:0px;background-image:url('https://static.igem.org/mediawiki/2018/5/5c/T--Toronto--2018_homepagebanner.png'); background-color:rgba(0,0,0,0.0); background-repeat: no-repeat; background-size: cover;">
+
   <div style="color:white;text-align: center;padding-top:350px;padding-bottom:0px;background-image:url('https://static.igem.org/mediawiki/2018/2/23/T--Toronto--2018_Homepagebanner2.png'); background-color:rgba(255,255,255,1.0); background-repeat: no-repeat; background-size: cover;">
 
     <div style="width:100%; margin:0 auto; background-color:rgba(0,0,0,0.7); padding-top: 30px; padding-bottom: 30px; color:white;text-align: center;">
 
     <div style="width:100%; margin:0 auto; background-color:rgba(0,0,0,0.7); padding-top: 30px; padding-bottom: 30px; color:white;text-align: center;">
 
       <h1 style="background-color:rgba(0,0,0,0.0); color:white; font-family: 'Trebuchet MS', 'Lucida Grande', 'Lucida Sans Unicode', 'Lucida Sans', Tahoma, sans-serif; font-size:40px; line-height:40px;">
 
       <h1 style="background-color:rgba(0,0,0,0.0); color:white; font-family: 'Trebuchet MS', 'Lucida Grande', 'Lucida Sans Unicode', 'Lucida Sans', Tahoma, sans-serif; font-size:40px; line-height:40px;">
 
       <img src="https://static.igem.org/mediawiki/2017/f/f1/T--Toronto--2017_igemTO2017-logo.svg" alt="Logo" style="width:600px;">
 
       <img src="https://static.igem.org/mediawiki/2017/f/f1/T--Toronto--2017_igemTO2017-logo.svg" alt="Logo" style="width:600px;">
       </br>Home of Toronto's 2018 Team</h1>
+
       </br></br>Flotation, Separation, Bio-remediation</h1>
 
     </div>
 
     </div>
 
   </div>
 
   </div>
Line 66: Line 74:
 
   </div>
 
   </div>
 
   -->
 
   -->
   <div style="background-color: rgba(0,0,0,0.75);">
+
   <div style="background-color: rgba(0,0,0,0.0);">
 
   <div class="center" style="height: 400px; width: 80%;">
 
   <div class="center" style="height: 400px; width: 80%;">
 
   <div class="centerPacker">
 
   <div class="centerPacker">
 
   <div class="grid-container">
 
   <div class="grid-container">
 +
    <div class="item3">
 +
      <h1 style="text-align: center;">
 +
        <a style="text-align: center; color: rgba(255, 255, 255, 1.0);" href="https://2018.igem.org/Team:Toronto/Project">
 +
            </br>
 +
            PROJECT 
 +
        </a>
 +
      </h1>
 +
    </div>
 
   <div class="item1">
 
   <div class="item1">
 
<h1 style="text-align: center;">
 
<h1 style="text-align: center;">
       <a style="text-align: center; color: rgba(200, 200, 200, 1.0);" href="https://2018.igem.org/Team:Toronto/PolicyAndPractices">
+
       <a style="text-align: center; color: rgba(255, 255, 255, 1.0);" href="https://2018.igem.org/Team:Toronto/PolicyAndPractices">
    P & P
+
    POLICY </br>
 +
          AND </br>
 +
          PRACTICES
 
       </a>
 
       </a>
 
     </h1>
 
     </h1>
<p style="text-align: center; color: rgba(255, 255, 255, 1.0);">
 
  Projects first and foremost must be important to people. We answer why our project
 
      is important and what we have done to involve communities.</br>
 
</p>
 
 
</div>
 
</div>
 
   <div class="item2">
 
   <div class="item2">
 
<h1 style="text-align: center;">
 
<h1 style="text-align: center;">
       <a style="text-align: center; color: rgba(200, 200, 200, 1.0);" href="https://2018.igem.org/Team:Toronto/DryLab">
+
       <a style="text-align: center; color: rgba(255, 255, 255, 1.0);" href="https://2018.igem.org/Team:Toronto/DryLab">
    DRYLAB
+
          </br>
 +
          DRYLAB  
 
       </a>
 
       </a>
 
     </h1>
 
     </h1>
<p style="text-align: center; color: rgba(255, 255, 255, 1.0);">
 
      A dry lab is a laboratory where computational or applied mathematical analyses are done on a
 
      computer-generated model to simulate a phenomenon in the physical realm.</br>
 
</p>
 
 
</div>
 
</div>
 
<div class="item3">
 
<div class="item3">
 
     <h1 style="text-align: center;">
 
     <h1 style="text-align: center;">
       <a style="text-align: center; color: rgba(200, 200, 200, 1.0);" href="https://2018.igem.org/Team:Toronto/WetLab">
+
       <a style="text-align: center; color: rgba(255, 255, 255, 1.0);" href="https://2018.igem.org/Team:Toronto/WetLab">
    WETLAB
+
          </br>
 +
          WETLAB  
 
       </a>
 
       </a>
 
     </h1>
 
     </h1>
<p style="text-align: center; color: rgba(255, 255, 255, 1.0);">
 
      A wet lab is a type of laboratory in which a wide range of experiments are performed, for example,
 
      characterizing of enzymes in biology, titration in chemistry, diffraction of light in physics, etc. -
 
      all of which may sometimes involve dealing with hazardous substances.</br>
 
</p>
 
 
</div>
 
</div>
 
   </div>
 
   </div>
Line 108: Line 115:
 
   </div>
 
   </div>
 
   </div>
 
   </div>
<div style="background-color: rgba(200,200,255,1.0);">
+
<div style="background-color: rgba(15,65,92,1.0); background-image: linear-gradient(#1f263c, #000000);">
 +
 
 
<div class="center" style="height: 550px; width: 80%;">
 
<div class="center" style="height: 550px; width: 80%;">
 
<div class="centerPacker">
 
<div class="centerPacker">
<h1 style="color: rgba(15,65,92,1.0); font-size: 50px; line-height:50px;">ABOUT US</h1>
+
<h1 style="color: rgba(255,255,255,1.0); font-size: 50px; line-height:50px;">ABOUT US</h1>
<p style="color: rgba(15,65,92,1.0); font-size: 20px; line-height:20px; text-align: center;">Our project focuses on demonstrating flotation of Escherichia coli using gas vesicle proteins (GvPs) as a novel cellular separation technique for bioremediation processes.</br> </br>  
+
<p style="color: rgba(255,255,255,1.0); font-size: 20px; line-height:20px; text-align: center;">Our project focuses on demonstrating flotation of <i>Escherichia coli</i> using gas vesicle proteins (GvPs) as a novel cellular separation technique for bioremediation processes. Current techniques used in different industries such as mining and municipal wastewater treatment, are mechanical, harmful to the environment and expensive. We propose that our system will be a more cost-effective separation technique for various bioremediation processes.
Previous iGEM teams have demonstrated gas vesicle production and flotation in mammalian and yeast cells using GvPs from various bacterial species. Shapiro et al., (2018) engineered a GvP-producing plasmid using arg1 from Aphanizomenon flos-aquae and Bacillus megaterium to synthesize these echogenic structures and observed that high expression enabled E. coli to float. </br></br>  
+
</br></br>
Our goal is to replicate and improve their flotation results by modifying arg1 to achieve consistent flotation using a specific induction protocol. </br></br>
+
Previous iGEM teams have demonstrated gas vesicle production and flotation in mammalian and yeast cells using GvPs from various bacterial species. Shapiro <i>et al.</i>, (2018) engineered a GvP-producing plasmid using arg1 from <i>Aphanizomenon flos-aquae</i> and <i>Bacillus megaterium</i> to synthesize these echogenic structures and observed that high expression enabled <i>E. coli</i> to float.
We propose that using this technique may be a cost-effective separation technique for various bioremediation processes. Upon sorption or uptake of pollutants or valuable materials, this technique could allow for simpler extraction of pollutant-harboring or heavy metal-bound bacteria. We have developed a bioreactor model to investigate this claim.</p>
+
</br></br>
 +
Our goal is to replicate and improve their flotation results by modifying arg1 to achieve consistent flotation using a specific induction protocol. Upon sorption or uptake of pollutants or valuable materials, this technique could allow for simpler extraction of pollutant-harboring or heavy metal-bound bacteria.</p>
 
</div>
 
</div>
 
</div>
 
</div>

Latest revision as of 23:38, 17 October 2018

Logo

Flotation, Separation, Bio-remediation

ABOUT US

Our project focuses on demonstrating flotation of Escherichia coli using gas vesicle proteins (GvPs) as a novel cellular separation technique for bioremediation processes. Current techniques used in different industries such as mining and municipal wastewater treatment, are mechanical, harmful to the environment and expensive. We propose that our system will be a more cost-effective separation technique for various bioremediation processes.

Previous iGEM teams have demonstrated gas vesicle production and flotation in mammalian and yeast cells using GvPs from various bacterial species. Shapiro et al., (2018) engineered a GvP-producing plasmid using arg1 from Aphanizomenon flos-aquae and Bacillus megaterium to synthesize these echogenic structures and observed that high expression enabled E. coli to float.

Our goal is to replicate and improve their flotation results by modifying arg1 to achieve consistent flotation using a specific induction protocol. Upon sorption or uptake of pollutants or valuable materials, this technique could allow for simpler extraction of pollutant-harboring or heavy metal-bound bacteria.

footer 2018