Line 68: | Line 68: | ||
<article> | <article> | ||
− | The phytochelatin synthase produces phytochelatin which plays a major role in heavy metal detoxification processes in Arabidopsis thalina. The phytochelatin synthase <a href="http://parts.igem.org/Part:BBa_K2638150">BBa_K2638150</a> was cloned into pSB1C3 in <i>Escherichia Coli (E.coli)</i> DH5α. For an enzyme assay it was cloned downstream of T7 promoter and upstream of the intein tag in <i>E. coli</i> ER2566. After overexpression and purification the protein was analyzed via SDS-PAGE and MALDI-TOF. An enzyme assay ensured the catalytic activity of the <a href="http://parts.igem.org/Part:BBa_K2638150">BBa_K2638150</a>. | + | The phytochelatin synthase produces phytochelatin which plays a major role in heavy metal detoxification processes in Arabidopsis thalina. The phytochelatin synthase <a href="http://parts.igem.org/Part:BBa_K2638150">BBa_K2638150 </a>was cloned into pSB1C3 in <i>Escherichia Coli (E.coli)</i> DH5α. For an enzyme assay it was cloned downstream of T7 promoter and upstream of the intein tag in <i>E. coli</i> ER2566. After overexpression and purification the protein was analyzed via SDS-PAGE and MALDI-TOF. An enzyme assay ensured the catalytic activity of the <a href="http://parts.igem.org/Part:BBa_K2638150">BBa_K2638150</a>. |
</br> | </br> | ||
The gene for the phytochelatin synthase (PCS1) has been ordered as gene synthesis from IDT. The gene synthesis was designed containing overlapping sequences to the iGEM standard backbone pSB1C3 to incorporate it directly via Gibson Assembly. The resulting BioBrick containing the phytochelatin synthetase is <a href="http://parts.igem.org/Part:BBa_K2638150">BBa_K2638150</a>. After successful transformation in <i>E.coli</i> DH5 α different promoters were used to construct different composite parts. The Anderson promoter of <a href="http://parts.igem.org/Part:BBa_J23111">BBa_J23111</a> with the ribosomal binding site (RBS) <a href="http://parts.igem.org/Part:BBa_B0030">BBa_B0030</a> was cloned upstream of the phytochelatin synthase for <a href="http://parts.igem.org/Part:BBa_K2638152">BBa_K2638152</a> as well as the pTet promoter <a href="http://parts.igem.org/Part:BBa_R0040">BBa_R0040</a> and the RBS <a href="http://parts.igem.org/Part:BBa_J61101">BBa_J61101</a> for <a href="http://parts.igem.org/Part:BBa_B2638151">BBa_K2638151</a>. For inducible expression pBad/araC promoter <a href="http://parts.igem.org/Part:BBa_I0500">BBa_I0500</a> was cloned together with the RBS <a href="http://parts.igem.org/Part:BBa_B0030">BBa_B0030</a> for BioBrick <a href="http://parts.igem.org/Part:BBa_K2638153">BBa_K2638153</a>. For characterization we wanted to overexpress and purify the phytochelatin synthase. Therefore, <a href="http://parts.igem.org/Part:BBa_K2638150">BBa_K2638150</a> was cloned downstream of a T7 promoter and fused to an intein tag and chitin binding domain. This construct was transformed into <i>E. coli</i> ER2566 and the phytochelatin synthase was overexpressed by induction of the T7 promoter. After cultivation, purification was carried out with the NEB IMPACT system. Briefly, the phytochelatin synthase was bound to the column with its chitin binding domain. Afterwards, washing the column with cleavage buffer resulted in self-cleavage of the intein leading to a separation of the protein from the column. The protein concentration was determined by Roti-Nanoquant assay, showing a protein concentration of 20.21 mg/mL. To confirm successful expression and purification the protein was loaded onto a SDS-PAGE (Figure 1). | The gene for the phytochelatin synthase (PCS1) has been ordered as gene synthesis from IDT. The gene synthesis was designed containing overlapping sequences to the iGEM standard backbone pSB1C3 to incorporate it directly via Gibson Assembly. The resulting BioBrick containing the phytochelatin synthetase is <a href="http://parts.igem.org/Part:BBa_K2638150">BBa_K2638150</a>. After successful transformation in <i>E.coli</i> DH5 α different promoters were used to construct different composite parts. The Anderson promoter of <a href="http://parts.igem.org/Part:BBa_J23111">BBa_J23111</a> with the ribosomal binding site (RBS) <a href="http://parts.igem.org/Part:BBa_B0030">BBa_B0030</a> was cloned upstream of the phytochelatin synthase for <a href="http://parts.igem.org/Part:BBa_K2638152">BBa_K2638152</a> as well as the pTet promoter <a href="http://parts.igem.org/Part:BBa_R0040">BBa_R0040</a> and the RBS <a href="http://parts.igem.org/Part:BBa_J61101">BBa_J61101</a> for <a href="http://parts.igem.org/Part:BBa_B2638151">BBa_K2638151</a>. For inducible expression pBad/araC promoter <a href="http://parts.igem.org/Part:BBa_I0500">BBa_I0500</a> was cloned together with the RBS <a href="http://parts.igem.org/Part:BBa_B0030">BBa_B0030</a> for BioBrick <a href="http://parts.igem.org/Part:BBa_K2638153">BBa_K2638153</a>. For characterization we wanted to overexpress and purify the phytochelatin synthase. Therefore, <a href="http://parts.igem.org/Part:BBa_K2638150">BBa_K2638150</a> was cloned downstream of a T7 promoter and fused to an intein tag and chitin binding domain. This construct was transformed into <i>E. coli</i> ER2566 and the phytochelatin synthase was overexpressed by induction of the T7 promoter. After cultivation, purification was carried out with the NEB IMPACT system. Briefly, the phytochelatin synthase was bound to the column with its chitin binding domain. Afterwards, washing the column with cleavage buffer resulted in self-cleavage of the intein leading to a separation of the protein from the column. The protein concentration was determined by Roti-Nanoquant assay, showing a protein concentration of 20.21 mg/mL. To confirm successful expression and purification the protein was loaded onto a SDS-PAGE (Figure 1). |
Revision as of 23:59, 17 October 2018
Toxicity Results
Abstract
Phytochelatin synthase
Evaluation
Heavy metal exposure poses many risks and dangers to living organisms and the environment. Certain heavy metal ions such as copper can interact with enzymes and lower their activity as well as their specificity. Reactive oxygen species (ROS) arise from processes such as Fenton chemistry and Haber-Weiss reactions. Therefore, a sophisticated approach to lower the toxic effects of heavy metals on the cell is desired. We evaluated several approaches of applying anti-oxidants against the generation of ROS.
In our project, we set a focus on the accumulation of copper ions. Furthermore, using cupric salts is cheaper than gold ions and easier to solve than ferric salts. Its toxicity is lower than that of silver ions. Hence there is a broader spectrum in which anti-toxic measures can be explored. Therefore, we tested our approaches on anti-oxidant measures in different concentrations of cupric salts.
Subject to our research were the five following composite parts: BBa_K2638109, BBa_K2638112, BBa_K2638114, BBa_K2638110 and BBa_K2638118.
BBa_K2638112 | pSB1C3 | BBa_K2638114 | BBa_K2638118 | BBa_K2638110 | |
---|---|---|---|---|---|
R value | 0.996 | 0.952 | 0.993 | 0.987 | 0.994 |
R2 value | 0.992 | 0.907 | 0.985 | 0.973 | 0.989 |
BBa_K2638112 | pSB1C3 | BBa_K2638114 | BBa_K2638118 | BBa_K2638110 | |
---|---|---|---|---|---|
R value | 0.953 | 0.998 | 0.968 | 0.972 | 0.915 |
R2 value | 0.908 | 0.997 | 0.937 | 0.945 | 0.837 |
BBa_K2638112 | pSB1C3 | BBa_K2638114 | BBa_K2638118 | BBa_K2638110 | |
---|---|---|---|---|---|
R value | -0.576 | -0.955 | -0.817 | -0.952 | -0.924 |
R2 value | 0.332 | 0.913 | 0.668 | 0.906 | 0.853 |